CN110563467B - 一种低温SiC纤维表面石墨界面的制备方法 - Google Patents
一种低温SiC纤维表面石墨界面的制备方法 Download PDFInfo
- Publication number
- CN110563467B CN110563467B CN201910971091.6A CN201910971091A CN110563467B CN 110563467 B CN110563467 B CN 110563467B CN 201910971091 A CN201910971091 A CN 201910971091A CN 110563467 B CN110563467 B CN 110563467B
- Authority
- CN
- China
- Prior art keywords
- sic
- interface
- sic fiber
- graphite
- pyc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62844—Coating fibres
- C04B35/62857—Coating fibres with non-oxide ceramics
- C04B35/62873—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5244—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/02—Fuel elements
- G21C3/04—Constructional details
- G21C3/06—Casings; Jackets
- G21C3/07—Casings; Jackets characterised by their material, e.g. alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Inorganic Fibers (AREA)
Abstract
本发明涉及一种低温SiC纤维表面石墨界面的制备方法,属于核燃料包壳管制备领域。本发明的目的是为了解决现有制备SiCf/SiC复合材料采用的PyC界面在高剂量中子辐照后,界面发生退化,界面处产生裂缝,导致材料力学性能和导热性能降低等问题,提供一种低温SiC纤维表面石墨界面的制备方法;该方法首先在SiC纤维预制体表面沉积PyC界面,然后通过强磁场及加热实现PyC界面的石墨化,在维持SiC纤维原有力学性能的同时提高SiCf/SiC复合材料的高温抗中子辐照能力。本发明利用强磁场辅助加热使PyC界面石墨化,降低石墨化温度,可避免高温加热对SiC纤维的损伤,防止SiC纤维晶粒长大,保持SiC纤维力学强度,也会保证SiCf/SiC复合材料的力学性能。
Description
技术领域
本发明涉及一种低温SiC纤维表面石墨界面的制备方法,属于核燃料包壳管制备领域。
背景技术
对于SiCf/SiC复合材料,界面相理论上应采用具有各项异性的、层状结构的石墨,以达到偏转裂纹的效果。石墨层间以范德华力结合,当裂纹尖端扩展与其相遇时,会在弱结合的原子层之间发生偏转,从而使SiCf/SiC材料呈现非线性断裂。但是在界面相实际制备中,常使用热解碳(PyC)界面代替石墨,现有的采用化学气相渗透法(CVI)制备的核级SiCf/SiC材料多采用单层PyC或多层PyC/SiC作为材料界面层,界面层厚度通常为20~500nm。PyC界面通常以气态碳氢化合物作为前体,通过化学气相沉积(CVD)工艺沉积在纤维预制体表面。尽管PyC具有较小的中子吸收截面,但是作为核级SiCf/SiC复合材料的界面已被证明在高剂量中子辐照条件下,PyC界面会受到严重的辐射损伤,使得SiCf/SiC复合材料难以保持优异的机械性能和断裂韧性。例如,Nozawa等通过纤维顶出实验(Push-out test)研究了中子辐照(1073K,7.7dpa)对分别具有单层PyC及多层(PyC/SiC)n界面相的CVI Hi-NicalonType S SiCf/SiC复合材料界面剪切强度的影响规律,发现了辐照后SiCf/(PyC/SiC)n/SiC复合材料界面剪切强度下降幅度大于SiCf/PyC/SiC复合材料。Ozawa等分别研究了FCVITSA3SiCf/SiC和HNLS SiCf/SiC复合材料在辐照温度为740~750℃、中子通量分别为3.1×1025n/m2及1.2×1026n/m2时的力学性能变化规律。结果表明:复合材料纤维/基体界面滑移应力均显著下降。Katoh和Bergquist等研究了辐照温度为300℃、500℃及800℃,辐照剂量为71~74dpa时,CVI Hi-Nicalon Type S SiCf/SiC复合材料的微观结构及宏观性能变化:发现复合材料PyC界面处产生裂缝,界面结合强度降低,力学性能呈不同程度下降。Koyanagi和Nozawa等研究了辐照导致的CVI SiCf/SiC复合材料机械性能衰退机理,当辐照剂量为100dpa、辐照温度为319℃和629℃时,复合材料PyC界面结合强度分别变强及变弱,导致前者呈脆性断裂、后者断口有大量纤维拔出,材料强度均大幅下降。现有的结果表明在经高剂量(>70dpa)中子辐照后PyC退化,由乱层石墨结构演变为高度富碳的无定形C/Si混合物,界面相性能衰退,产生应力,引起界面脱粘,进而影响SiCf/SiC复合材料在高剂量中子辐照环境下的力学及导热性能。
上述采用化学气相沉积法制备的PyC界面,均为具有一定取向的、非连续的“类石墨烯”结构,为“短程有序”状态,因此具有一定的导电性,能对磁场的作用做出一定的响应。经强磁场处理后,“类石墨烯”结构会沿磁场方向取向,堆叠成的纳米石墨片层与磁场方向平行,从而使PyC发生石墨化转变。
而石墨具有较高的散射截面和极低的热中子吸收截面,其抗辐照性能极好,常作为高温气冷堆的支撑体首选材料,且相比于PyC,石墨材料的导热性能也更为优异。与此同时,石墨为层状结构结晶度高,作为SiCf/SiC复合材料界面能得到良好的裂纹偏转效果。一般来说,通过1600℃以上高温热处理可以实现PyC材料的石墨化,但1500℃以上的高温会引起SiC纤维中的晶粒长大,从而导致SiC纤维的力学性能下降。而若将石墨作为SiCf/SiC复合材料的界面层,需解决以下问题:一、降低PyC材料石墨化的温度(不高于1300℃),以免损坏SiC纤维的力学,保证纤维化学性能不变;二、防止界面层氧化,保证界面层的完整性。因此如何实现较低温度下在SiC纤维表面制备石墨界面,对提高SiCf/SiC复合材料的抗辐照性能、热导性能及力学性能至关重要。
发明内容
本发明的目的是为了解决现有制备SiCf/SiC复合材料采用的PyC界面在高剂量中子辐照后,界面发生退化,界面处产生裂缝,导致材料力学性能和导热性能降低等问题,提供一种低温SiC纤维表面石墨界面的制备方法;该方法首先在SiC纤维预制体表面沉积PyC界面,然后通过磁场及加热实现PyC界面的石墨化,在维持SiC纤维原有力学性能的同时提高SiCf/SiC复合材料的高温抗中子辐照能力。
本发明的目的是通过下述技术方案实现的。
一种低温条件下在SiC纤维表面制备石墨界面的方法,具体步骤如下:
步骤1、PyC界面的制备:采用化学气相沉积法在SiC纤维预制体中引入界面层,制备出SiC纤维预制体;所述界面层为热解碳PyC层;
步骤2、SiC纤维预制体的清洗:对SiC纤维预制体进行超声清洗并烘干;
步骤3、石墨界面的制备:采用强磁场辅助加热的方式使PyC界面石墨化;
步骤4、SiC纤维预制体的清洗:对SiC纤维预制体进行超声清洗并烘干,得到石墨界面。
所述步骤3中磁场强度为5~10特斯拉,磁场方向为沿纤维径向方向,加热温度为1000℃~1300℃,时间为30min~90min。
所述SiC纤维直径为12~14μm。
所述PyC界面的厚度为60~250nm。
所述石墨界面层的厚度为50~200nm。
有益效果
1、本发明的一种低温条件下在SiC纤维表面制备石墨界面的方法,在SiC纤维预制体表面引入一层PyC界面,通过调节磁场强度降低PyC界面的石墨化温度,从而获得厚度为50~200nm的石墨界面,提高SiCf/SiC复合材料的抗中子辐照能力。
2、同时,利用磁场辅助加热使PyC界面石墨化,可避免高温加热对SiC纤维的损伤,防止SiC纤维晶粒长大,保持SiC纤维力学强度,也会保证SiCf/SiC复合材料的力学性能。
附图说明
图1为采用该方法所制备的石墨界面的扫描电镜照片;
图2为采用该方法所制备的石墨界面处的EDS点扫描图;
图3为石墨层EDS元素成分分析;
图4为SiC纤维的EDS点扫描图;
图5为SiC纤维EDS元素成分分析;
图6为采用该方法所制备的含有石墨界面SiC纤维预制体的XRD图;
图7为采用该方法所制备的含有石墨界面SiC纤维预制体的TEM衍射图。
具体实施方式
现结合实施例与附图对本发明作进一步说明。
实施例1:
一种低温条件下在SiC纤维表面制备石墨界面的方法,石墨层厚度为50~200nm。采用化学气相沉积法在SiC纤维表面引入PyC界面,通过磁场下加热方式使PyC界面完全石墨化。
一种低温条件下在SiC纤维表面制备石墨界面的方法,具体步骤如下:
1、采用学气相沉积法,在SiC纤维预制体中引入一层PyC界面,沉积温度为900℃,厚度约为150nm,SiC纤维为厦门大学Amosic-3碳化硅纤维;
2、将SiC纤维预制体表面清洗干净,烘干;
3、将刷完表面带有PyC界面的SiC纤维预制体直接放入磁场加热设备中,氩气气氛保护下,调节磁场强度为6.0特斯拉,温度为1000℃,时间为30min,原位将PyC石墨化,得到石墨界面为120μm;
4、将SiC纤维预制体再次进行超声清洗并烘干,得到力学性能良好且完全包覆石墨界面的SiC纤维预制体;
5、对石墨界面进行SEM和EDS表征,图1-5表明石墨层均匀包覆SiC纤维表面;
6、对包覆石墨层SiC纤维进行XRD表征,无非晶石墨峰出现,且可观察到明显的石墨及SiC特征峰(图6),PyC层在原位经过磁场加热后可完全石墨化;
7、对包覆120μm石墨界面的SiC纤维进行单丝拉伸强度测量,纤维单丝拉伸强度为2.98GPa,对比原始SiC纤维,其单丝拉伸强度未下降;
8、对包覆120μm石墨界面的SiC纤维进行TEM表征(图7),对比原始SiC纤维,其平均晶粒尺寸未发生明显改变。
实施例2
一种低温SiC纤维表面石墨界面的制备方法,石墨层厚度为50~200nm。采用化学气相沉积法在SiC纤维表面引入PyC界面,通过磁场下加热方式使PyC界面完全石墨化。
一种低温SiC纤维表面石墨界面的制备方法,具体实施方法:
1、采用学气相沉积法,在SiC纤维预制体中引入一层PyC界面,沉积度为850℃,厚度约为60nm,SiC纤维为厦门大学Amosic-3碳化硅纤维;
2、将SiC纤维预制体表面清洗干净,烘干;
3、将刷完表面带有PyC界面的SiC纤维预制体直接放入磁场加热设备中,氩气气氛保护下,调节磁场强度为5.0特斯拉,温度为1100℃,时间为40min,原位将PyC石墨化,得到石墨界面为50μm;
4、将SiC纤维预制体再次进行超声清洗并烘干,得到力学性能良好且完全包覆石墨界面的SiC纤维预制体;
5、对石墨界面进行SEM和EDS表征,图片显示石墨层均匀包覆SiC纤维表面;
6、对包覆石墨层SiC纤维进行XRD表征,无非晶石墨峰出现,且可观察到明显的石墨及SiC特征峰,PyC层在原位经过磁场加热后可完全石墨化;
7、对包覆50μm石墨界面的SiC纤维进行单丝拉伸强度测量,纤维单丝拉伸强度为3.02GPa,对比原始SiC纤维,其单丝拉伸强度未下降;
8、对包覆50μm石墨界面的SiC纤维进行TEM表征,对比原始SiC纤维,其平均晶粒尺寸未发生明显改变。
实施例3
一种低温SiC纤维表面石墨界面的制备方法,石墨层厚度为50~200nm。采用化学气相沉积法在SiC纤维表面引入PyC界面,通过磁场下加热方式使PyC界面完全石墨化。
一种低温SiC纤维表面石墨界面的制备方法,具体实施方法:
1、采用学气相沉积法,在SiC纤维预制体中引入一层PyC界面,沉积度为950℃,厚度约为250nm,SiC纤维为厦门大学Amosic-3碳化硅纤维;
2、将SiC纤维预制体表面清洗干净,烘干;
3、将刷完表面带有PyC界面的SiC纤维预制体直接放入磁场加热设备中,氩气气氛保护下,调节磁场强度为8.0特斯拉,温度为1300℃,时间为70min,原位将PyC石墨化,得到石墨界面为200μm;
4、将SiC纤维预制体再次进行超声清洗并烘干,得到力学性能良好且完全包覆石墨界面的SiC纤维预制体;
5、对石墨界面进行SEM和EDS表征,图片显示石墨层均匀包覆SiC纤维表面;
6、对包覆石墨层SiC纤维进行XRD表征,无非晶石墨峰出现,且可观察到明显的石墨及SiC特征峰,PyC层在原位经过磁场加热后可完全石墨化;
7、对包覆200μm石墨界面的SiC纤维进行单丝拉伸强度测量,纤维单丝拉伸强度为2.94GPa,对比原始SiC纤维,其单丝拉伸强度未下降;
8、对包覆200μm石墨界面的SiC纤维进行TEM表征,对比原始SiC纤维,其平均晶粒尺寸未发生明显改变。
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (4)
1.一种低温条件下在SiC纤维表面制备石墨界面层的方法,其特征在于:具体步骤如下:
采用化学气相沉积法在SiC纤维预制体中引入界面层,制备出SiC纤维预制体;所述界面层为热解碳PyC层;
超声清洗并烘干;
采用磁场辅助加热的方式使PyC界面层石墨化,所述磁场强度为5~10特斯拉,磁场方向为沿纤维径向方向,加热温度为1000℃~1300℃,时间为30min~90min。
2.如权利要求1所述的一种低温条件下在SiC纤维表面制备石墨界面层的方法,其特征在于:所述PyC界面层的厚度为60~250nm。
3.如权利要求1所述的一种低温条件下在SiC纤维表面制备石墨界面层的方法,其特征在于:石墨界面层的厚度为50~200nm。
4.如权利要求1所述的一种低温条件下在SiC纤维表面制备石墨界面层的方法,其特征在于:使PyC界面层石墨化时处于惰性气体保护下进行。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910971091.6A CN110563467B (zh) | 2019-10-14 | 2019-10-14 | 一种低温SiC纤维表面石墨界面的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910971091.6A CN110563467B (zh) | 2019-10-14 | 2019-10-14 | 一种低温SiC纤维表面石墨界面的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110563467A CN110563467A (zh) | 2019-12-13 |
CN110563467B true CN110563467B (zh) | 2020-06-30 |
Family
ID=68784852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910971091.6A Active CN110563467B (zh) | 2019-10-14 | 2019-10-14 | 一种低温SiC纤维表面石墨界面的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110563467B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113087533B (zh) * | 2021-03-31 | 2022-09-02 | 西北工业大学 | 利用SiC纳米晶粒在SiC纤维表面原位合成Ti3SiC2界面相的制备方法 |
CN113402304B (zh) * | 2021-07-08 | 2023-05-16 | 中国人民解放军国防科技大学 | 在连续纤维上制备连续热解炭涂层的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101710617A (zh) * | 2009-05-12 | 2010-05-19 | 大连丽昌新材料有限公司 | 一种锂离子电池用高能硅碳复合负极材料及其制造工艺 |
CN104651981A (zh) * | 2013-11-25 | 2015-05-27 | 大连惟康科技有限公司 | 一种碳纤维表面缺陷的修补方法 |
CN110204332A (zh) * | 2019-06-12 | 2019-09-06 | 北京理工大学 | 一种电场辅助下低温快速固化核素的方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050276961A1 (en) * | 2003-08-04 | 2005-12-15 | Sherwood Walter J | Materials and methods for making ceramic matrix composites |
-
2019
- 2019-10-14 CN CN201910971091.6A patent/CN110563467B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101710617A (zh) * | 2009-05-12 | 2010-05-19 | 大连丽昌新材料有限公司 | 一种锂离子电池用高能硅碳复合负极材料及其制造工艺 |
CN104651981A (zh) * | 2013-11-25 | 2015-05-27 | 大连惟康科技有限公司 | 一种碳纤维表面缺陷的修补方法 |
CN110204332A (zh) * | 2019-06-12 | 2019-09-06 | 北京理工大学 | 一种电场辅助下低温快速固化核素的方法 |
Non-Patent Citations (2)
Title |
---|
Wear behavior of SiC/PyC composite materials prepared by electromagnetic-field-assisted CVI;Chuan-jun TU等;《Trans. Nonferrous Met. Soc. China》;20150406;第25卷(第3期);第856-862页 * |
反应堆用SiC陶瓷基复合包壳材料研究进展;陆浩然等;《核电技术》;20161231;第9卷(第4期);第306-312页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110563467A (zh) | 2019-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | Ablation behavior and thermal conduction mechanism of 3D ZrC–SiC-modified carbon/carbon composite having high thermal conductivity using mesophase-pitch-based carbon fibers and pyrocarbon as heat transfer channels | |
Li et al. | Fabrication and characterization of carbon-bonded carbon fiber composites with in-situ grown SiC nanowires | |
He et al. | Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites | |
Xin et al. | Ablative property and mechanism of C/C-ZrB2-ZrC-SiC composites reinforced by SiC networks under plasma flame | |
Gu et al. | Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration | |
Xu et al. | Mechanical enhancement of lightweight ZrB2-modified carbon-bonded carbon fiber composites with self-grown carbon nanotubes | |
Li et al. | Fabrication of 2D C/ZrC–SiC composite and its structural evolution under high-temperature treatment up to 1800° C | |
He et al. | Microstructure, mechanical and anti-ablation properties of SiCnw/PyC core-shell networks reinforced C/C–ZrC–SiC composites fabricated by a multistep method of chemical liquid-vapor deposition | |
Chen et al. | The mechanical properties and thermal conductivity of carbon/carbon composites with the fiber/matrix interface modified by silicon carbide nanofibers | |
Chu et al. | SiC coating toughened by SiC nanowires to protect C/C composites against oxidation | |
Fu et al. | Carbon nanotube-toughened interlocking buffer layer to improve the adhesion strength and thermal shock resistance of SiC coating for C/C–ZrC–SiC composites | |
Fang et al. | Design and optimization of the coating thickness on chopped carbon fibers and sintering temperature for ZrB2-SiC-Cf composites prepared by hot pressing | |
CN110563467B (zh) | 一种低温SiC纤维表面石墨界面的制备方法 | |
Zhu et al. | Effect of BNNTs/matrix interface tailoring on toughness and fracture morphology of hierarchical SiC f/SiC composites | |
CN102330328A (zh) | 一种三维纤维/碳纳米管多级增强体及其制备方法 | |
Li et al. | Preparation and ablation resistance of ZrC nanowires-reinforced CVD-ZrC coating on sharp leading edge C/C composites | |
Xu et al. | Influence of graphitization temperature on microstructure and mechanical property of C/C-SiC composites with highly textured pyrolytic carbon | |
Lu et al. | Oxidation behavior of C/C composites with the fibre/matrix interface modified by carbon nanotubes grown in situ at low temperature | |
Zhao et al. | Fabrication of C/SiC composites by siliconizing carbon fiber reinforced nanoporous carbon matrix preforms and their properties | |
Gaab et al. | Effects of thermal and thermomechanical induced mechanical changes of C/C composites | |
Li et al. | In-situ synthesis and growth mechanism of silicon nitride nanowires on carbon fiber fabrics | |
Zhang et al. | Ablation-resistant Ta0. 78Hf0. 22C solid solution ceramic modified C/C composites for oxidizing environments over 2200° C | |
Nguyen et al. | Synthesis of sea urchin-like particles of carbon nanotubes directly grown on stainless steel cores and their effect on the mechanical properties of polymer composites | |
He et al. | Carbon fiber/SiC composites modified SiC nanowires with improved strength and toughness | |
Zhao et al. | Fast-diffusion joining of SiC-coated three-dimensional C/SiC composites with a Mo-W-Mo interlayer by spark plasma sintering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |