CN110563467B - 一种低温SiC纤维表面石墨界面的制备方法 - Google Patents

一种低温SiC纤维表面石墨界面的制备方法 Download PDF

Info

Publication number
CN110563467B
CN110563467B CN201910971091.6A CN201910971091A CN110563467B CN 110563467 B CN110563467 B CN 110563467B CN 201910971091 A CN201910971091 A CN 201910971091A CN 110563467 B CN110563467 B CN 110563467B
Authority
CN
China
Prior art keywords
sic
interface
sic fiber
graphite
pyc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910971091.6A
Other languages
English (en)
Other versions
CN110563467A (zh
Inventor
王一光
陶鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201910971091.6A priority Critical patent/CN110563467B/zh
Publication of CN110563467A publication Critical patent/CN110563467A/zh
Application granted granted Critical
Publication of CN110563467B publication Critical patent/CN110563467B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明涉及一种低温SiC纤维表面石墨界面的制备方法,属于核燃料包壳管制备领域。本发明的目的是为了解决现有制备SiCf/SiC复合材料采用的PyC界面在高剂量中子辐照后,界面发生退化,界面处产生裂缝,导致材料力学性能和导热性能降低等问题,提供一种低温SiC纤维表面石墨界面的制备方法;该方法首先在SiC纤维预制体表面沉积PyC界面,然后通过强磁场及加热实现PyC界面的石墨化,在维持SiC纤维原有力学性能的同时提高SiCf/SiC复合材料的高温抗中子辐照能力。本发明利用强磁场辅助加热使PyC界面石墨化,降低石墨化温度,可避免高温加热对SiC纤维的损伤,防止SiC纤维晶粒长大,保持SiC纤维力学强度,也会保证SiCf/SiC复合材料的力学性能。

Description

一种低温SiC纤维表面石墨界面的制备方法
技术领域
本发明涉及一种低温SiC纤维表面石墨界面的制备方法,属于核燃料包壳管制备领域。
背景技术
对于SiCf/SiC复合材料,界面相理论上应采用具有各项异性的、层状结构的石墨,以达到偏转裂纹的效果。石墨层间以范德华力结合,当裂纹尖端扩展与其相遇时,会在弱结合的原子层之间发生偏转,从而使SiCf/SiC材料呈现非线性断裂。但是在界面相实际制备中,常使用热解碳(PyC)界面代替石墨,现有的采用化学气相渗透法(CVI)制备的核级SiCf/SiC材料多采用单层PyC或多层PyC/SiC作为材料界面层,界面层厚度通常为20~500nm。PyC界面通常以气态碳氢化合物作为前体,通过化学气相沉积(CVD)工艺沉积在纤维预制体表面。尽管PyC具有较小的中子吸收截面,但是作为核级SiCf/SiC复合材料的界面已被证明在高剂量中子辐照条件下,PyC界面会受到严重的辐射损伤,使得SiCf/SiC复合材料难以保持优异的机械性能和断裂韧性。例如,Nozawa等通过纤维顶出实验(Push-out test)研究了中子辐照(1073K,7.7dpa)对分别具有单层PyC及多层(PyC/SiC)n界面相的CVI Hi-NicalonType S SiCf/SiC复合材料界面剪切强度的影响规律,发现了辐照后SiCf/(PyC/SiC)n/SiC复合材料界面剪切强度下降幅度大于SiCf/PyC/SiC复合材料。Ozawa等分别研究了FCVITSA3SiCf/SiC和HNLS SiCf/SiC复合材料在辐照温度为740~750℃、中子通量分别为3.1×1025n/m2及1.2×1026n/m2时的力学性能变化规律。结果表明:复合材料纤维/基体界面滑移应力均显著下降。Katoh和Bergquist等研究了辐照温度为300℃、500℃及800℃,辐照剂量为71~74dpa时,CVI Hi-Nicalon Type S SiCf/SiC复合材料的微观结构及宏观性能变化:发现复合材料PyC界面处产生裂缝,界面结合强度降低,力学性能呈不同程度下降。Koyanagi和Nozawa等研究了辐照导致的CVI SiCf/SiC复合材料机械性能衰退机理,当辐照剂量为100dpa、辐照温度为319℃和629℃时,复合材料PyC界面结合强度分别变强及变弱,导致前者呈脆性断裂、后者断口有大量纤维拔出,材料强度均大幅下降。现有的结果表明在经高剂量(>70dpa)中子辐照后PyC退化,由乱层石墨结构演变为高度富碳的无定形C/Si混合物,界面相性能衰退,产生应力,引起界面脱粘,进而影响SiCf/SiC复合材料在高剂量中子辐照环境下的力学及导热性能。
上述采用化学气相沉积法制备的PyC界面,均为具有一定取向的、非连续的“类石墨烯”结构,为“短程有序”状态,因此具有一定的导电性,能对磁场的作用做出一定的响应。经强磁场处理后,“类石墨烯”结构会沿磁场方向取向,堆叠成的纳米石墨片层与磁场方向平行,从而使PyC发生石墨化转变。
而石墨具有较高的散射截面和极低的热中子吸收截面,其抗辐照性能极好,常作为高温气冷堆的支撑体首选材料,且相比于PyC,石墨材料的导热性能也更为优异。与此同时,石墨为层状结构结晶度高,作为SiCf/SiC复合材料界面能得到良好的裂纹偏转效果。一般来说,通过1600℃以上高温热处理可以实现PyC材料的石墨化,但1500℃以上的高温会引起SiC纤维中的晶粒长大,从而导致SiC纤维的力学性能下降。而若将石墨作为SiCf/SiC复合材料的界面层,需解决以下问题:一、降低PyC材料石墨化的温度(不高于1300℃),以免损坏SiC纤维的力学,保证纤维化学性能不变;二、防止界面层氧化,保证界面层的完整性。因此如何实现较低温度下在SiC纤维表面制备石墨界面,对提高SiCf/SiC复合材料的抗辐照性能、热导性能及力学性能至关重要。
发明内容
本发明的目的是为了解决现有制备SiCf/SiC复合材料采用的PyC界面在高剂量中子辐照后,界面发生退化,界面处产生裂缝,导致材料力学性能和导热性能降低等问题,提供一种低温SiC纤维表面石墨界面的制备方法;该方法首先在SiC纤维预制体表面沉积PyC界面,然后通过磁场及加热实现PyC界面的石墨化,在维持SiC纤维原有力学性能的同时提高SiCf/SiC复合材料的高温抗中子辐照能力。
本发明的目的是通过下述技术方案实现的。
一种低温条件下在SiC纤维表面制备石墨界面的方法,具体步骤如下:
步骤1、PyC界面的制备:采用化学气相沉积法在SiC纤维预制体中引入界面层,制备出SiC纤维预制体;所述界面层为热解碳PyC层;
步骤2、SiC纤维预制体的清洗:对SiC纤维预制体进行超声清洗并烘干;
步骤3、石墨界面的制备:采用强磁场辅助加热的方式使PyC界面石墨化;
步骤4、SiC纤维预制体的清洗:对SiC纤维预制体进行超声清洗并烘干,得到石墨界面。
所述步骤3中磁场强度为5~10特斯拉,磁场方向为沿纤维径向方向,加热温度为1000℃~1300℃,时间为30min~90min。
所述SiC纤维直径为12~14μm。
所述PyC界面的厚度为60~250nm。
所述石墨界面层的厚度为50~200nm。
有益效果
1、本发明的一种低温条件下在SiC纤维表面制备石墨界面的方法,在SiC纤维预制体表面引入一层PyC界面,通过调节磁场强度降低PyC界面的石墨化温度,从而获得厚度为50~200nm的石墨界面,提高SiCf/SiC复合材料的抗中子辐照能力。
2、同时,利用磁场辅助加热使PyC界面石墨化,可避免高温加热对SiC纤维的损伤,防止SiC纤维晶粒长大,保持SiC纤维力学强度,也会保证SiCf/SiC复合材料的力学性能。
附图说明
图1为采用该方法所制备的石墨界面的扫描电镜照片;
图2为采用该方法所制备的石墨界面处的EDS点扫描图;
图3为石墨层EDS元素成分分析;
图4为SiC纤维的EDS点扫描图;
图5为SiC纤维EDS元素成分分析;
图6为采用该方法所制备的含有石墨界面SiC纤维预制体的XRD图;
图7为采用该方法所制备的含有石墨界面SiC纤维预制体的TEM衍射图。
具体实施方式
现结合实施例与附图对本发明作进一步说明。
实施例1:
一种低温条件下在SiC纤维表面制备石墨界面的方法,石墨层厚度为50~200nm。采用化学气相沉积法在SiC纤维表面引入PyC界面,通过磁场下加热方式使PyC界面完全石墨化。
一种低温条件下在SiC纤维表面制备石墨界面的方法,具体步骤如下:
1、采用学气相沉积法,在SiC纤维预制体中引入一层PyC界面,沉积温度为900℃,厚度约为150nm,SiC纤维为厦门大学Amosic-3碳化硅纤维;
2、将SiC纤维预制体表面清洗干净,烘干;
3、将刷完表面带有PyC界面的SiC纤维预制体直接放入磁场加热设备中,氩气气氛保护下,调节磁场强度为6.0特斯拉,温度为1000℃,时间为30min,原位将PyC石墨化,得到石墨界面为120μm;
4、将SiC纤维预制体再次进行超声清洗并烘干,得到力学性能良好且完全包覆石墨界面的SiC纤维预制体;
5、对石墨界面进行SEM和EDS表征,图1-5表明石墨层均匀包覆SiC纤维表面;
6、对包覆石墨层SiC纤维进行XRD表征,无非晶石墨峰出现,且可观察到明显的石墨及SiC特征峰(图6),PyC层在原位经过磁场加热后可完全石墨化;
7、对包覆120μm石墨界面的SiC纤维进行单丝拉伸强度测量,纤维单丝拉伸强度为2.98GPa,对比原始SiC纤维,其单丝拉伸强度未下降;
8、对包覆120μm石墨界面的SiC纤维进行TEM表征(图7),对比原始SiC纤维,其平均晶粒尺寸未发生明显改变。
实施例2
一种低温SiC纤维表面石墨界面的制备方法,石墨层厚度为50~200nm。采用化学气相沉积法在SiC纤维表面引入PyC界面,通过磁场下加热方式使PyC界面完全石墨化。
一种低温SiC纤维表面石墨界面的制备方法,具体实施方法:
1、采用学气相沉积法,在SiC纤维预制体中引入一层PyC界面,沉积度为850℃,厚度约为60nm,SiC纤维为厦门大学Amosic-3碳化硅纤维;
2、将SiC纤维预制体表面清洗干净,烘干;
3、将刷完表面带有PyC界面的SiC纤维预制体直接放入磁场加热设备中,氩气气氛保护下,调节磁场强度为5.0特斯拉,温度为1100℃,时间为40min,原位将PyC石墨化,得到石墨界面为50μm;
4、将SiC纤维预制体再次进行超声清洗并烘干,得到力学性能良好且完全包覆石墨界面的SiC纤维预制体;
5、对石墨界面进行SEM和EDS表征,图片显示石墨层均匀包覆SiC纤维表面;
6、对包覆石墨层SiC纤维进行XRD表征,无非晶石墨峰出现,且可观察到明显的石墨及SiC特征峰,PyC层在原位经过磁场加热后可完全石墨化;
7、对包覆50μm石墨界面的SiC纤维进行单丝拉伸强度测量,纤维单丝拉伸强度为3.02GPa,对比原始SiC纤维,其单丝拉伸强度未下降;
8、对包覆50μm石墨界面的SiC纤维进行TEM表征,对比原始SiC纤维,其平均晶粒尺寸未发生明显改变。
实施例3
一种低温SiC纤维表面石墨界面的制备方法,石墨层厚度为50~200nm。采用化学气相沉积法在SiC纤维表面引入PyC界面,通过磁场下加热方式使PyC界面完全石墨化。
一种低温SiC纤维表面石墨界面的制备方法,具体实施方法:
1、采用学气相沉积法,在SiC纤维预制体中引入一层PyC界面,沉积度为950℃,厚度约为250nm,SiC纤维为厦门大学Amosic-3碳化硅纤维;
2、将SiC纤维预制体表面清洗干净,烘干;
3、将刷完表面带有PyC界面的SiC纤维预制体直接放入磁场加热设备中,氩气气氛保护下,调节磁场强度为8.0特斯拉,温度为1300℃,时间为70min,原位将PyC石墨化,得到石墨界面为200μm;
4、将SiC纤维预制体再次进行超声清洗并烘干,得到力学性能良好且完全包覆石墨界面的SiC纤维预制体;
5、对石墨界面进行SEM和EDS表征,图片显示石墨层均匀包覆SiC纤维表面;
6、对包覆石墨层SiC纤维进行XRD表征,无非晶石墨峰出现,且可观察到明显的石墨及SiC特征峰,PyC层在原位经过磁场加热后可完全石墨化;
7、对包覆200μm石墨界面的SiC纤维进行单丝拉伸强度测量,纤维单丝拉伸强度为2.94GPa,对比原始SiC纤维,其单丝拉伸强度未下降;
8、对包覆200μm石墨界面的SiC纤维进行TEM表征,对比原始SiC纤维,其平均晶粒尺寸未发生明显改变。
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种低温条件下在SiC纤维表面制备石墨界面层的方法,其特征在于:具体步骤如下:
采用化学气相沉积法在SiC纤维预制体中引入界面层,制备出SiC纤维预制体;所述界面层为热解碳PyC层;
超声清洗并烘干;
采用磁场辅助加热的方式使PyC界面层石墨化,所述磁场强度为5~10特斯拉,磁场方向为沿纤维径向方向,加热温度为1000℃~1300℃,时间为30min~90min。
2.如权利要求1所述的一种低温条件下在SiC纤维表面制备石墨界面层的方法,其特征在于:所述PyC界面层的厚度为60~250nm。
3.如权利要求1所述的一种低温条件下在SiC纤维表面制备石墨界面层的方法,其特征在于:石墨界面层的厚度为50~200nm。
4.如权利要求1所述的一种低温条件下在SiC纤维表面制备石墨界面层的方法,其特征在于:使PyC界面层石墨化时处于惰性气体保护下进行。
CN201910971091.6A 2019-10-14 2019-10-14 一种低温SiC纤维表面石墨界面的制备方法 Active CN110563467B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910971091.6A CN110563467B (zh) 2019-10-14 2019-10-14 一种低温SiC纤维表面石墨界面的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910971091.6A CN110563467B (zh) 2019-10-14 2019-10-14 一种低温SiC纤维表面石墨界面的制备方法

Publications (2)

Publication Number Publication Date
CN110563467A CN110563467A (zh) 2019-12-13
CN110563467B true CN110563467B (zh) 2020-06-30

Family

ID=68784852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910971091.6A Active CN110563467B (zh) 2019-10-14 2019-10-14 一种低温SiC纤维表面石墨界面的制备方法

Country Status (1)

Country Link
CN (1) CN110563467B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113087533B (zh) * 2021-03-31 2022-09-02 西北工业大学 利用SiC纳米晶粒在SiC纤维表面原位合成Ti3SiC2界面相的制备方法
CN113402304B (zh) * 2021-07-08 2023-05-16 中国人民解放军国防科技大学 在连续纤维上制备连续热解炭涂层的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710617A (zh) * 2009-05-12 2010-05-19 大连丽昌新材料有限公司 一种锂离子电池用高能硅碳复合负极材料及其制造工艺
CN104651981A (zh) * 2013-11-25 2015-05-27 大连惟康科技有限公司 一种碳纤维表面缺陷的修补方法
CN110204332A (zh) * 2019-06-12 2019-09-06 北京理工大学 一种电场辅助下低温快速固化核素的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050276961A1 (en) * 2003-08-04 2005-12-15 Sherwood Walter J Materials and methods for making ceramic matrix composites

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710617A (zh) * 2009-05-12 2010-05-19 大连丽昌新材料有限公司 一种锂离子电池用高能硅碳复合负极材料及其制造工艺
CN104651981A (zh) * 2013-11-25 2015-05-27 大连惟康科技有限公司 一种碳纤维表面缺陷的修补方法
CN110204332A (zh) * 2019-06-12 2019-09-06 北京理工大学 一种电场辅助下低温快速固化核素的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Wear behavior of SiC/PyC composite materials prepared by electromagnetic-field-assisted CVI;Chuan-jun TU等;《Trans. Nonferrous Met. Soc. China》;20150406;第25卷(第3期);第856-862页 *
反应堆用SiC陶瓷基复合包壳材料研究进展;陆浩然等;《核电技术》;20161231;第9卷(第4期);第306-312页 *

Also Published As

Publication number Publication date
CN110563467A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
Huang et al. Ablation behavior and thermal conduction mechanism of 3D ZrC–SiC-modified carbon/carbon composite having high thermal conductivity using mesophase-pitch-based carbon fibers and pyrocarbon as heat transfer channels
Li et al. Fabrication and characterization of carbon-bonded carbon fiber composites with in-situ grown SiC nanowires
He et al. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites
Xin et al. Ablative property and mechanism of C/C-ZrB2-ZrC-SiC composites reinforced by SiC networks under plasma flame
Gu et al. Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration
Xu et al. Mechanical enhancement of lightweight ZrB2-modified carbon-bonded carbon fiber composites with self-grown carbon nanotubes
Li et al. Fabrication of 2D C/ZrC–SiC composite and its structural evolution under high-temperature treatment up to 1800° C
He et al. Microstructure, mechanical and anti-ablation properties of SiCnw/PyC core-shell networks reinforced C/C–ZrC–SiC composites fabricated by a multistep method of chemical liquid-vapor deposition
Chen et al. The mechanical properties and thermal conductivity of carbon/carbon composites with the fiber/matrix interface modified by silicon carbide nanofibers
Chu et al. SiC coating toughened by SiC nanowires to protect C/C composites against oxidation
Fu et al. Carbon nanotube-toughened interlocking buffer layer to improve the adhesion strength and thermal shock resistance of SiC coating for C/C–ZrC–SiC composites
Fang et al. Design and optimization of the coating thickness on chopped carbon fibers and sintering temperature for ZrB2-SiC-Cf composites prepared by hot pressing
CN110563467B (zh) 一种低温SiC纤维表面石墨界面的制备方法
Zhu et al. Effect of BNNTs/matrix interface tailoring on toughness and fracture morphology of hierarchical SiC f/SiC composites
CN102330328A (zh) 一种三维纤维/碳纳米管多级增强体及其制备方法
Li et al. Preparation and ablation resistance of ZrC nanowires-reinforced CVD-ZrC coating on sharp leading edge C/C composites
Xu et al. Influence of graphitization temperature on microstructure and mechanical property of C/C-SiC composites with highly textured pyrolytic carbon
Lu et al. Oxidation behavior of C/C composites with the fibre/matrix interface modified by carbon nanotubes grown in situ at low temperature
Zhao et al. Fabrication of C/SiC composites by siliconizing carbon fiber reinforced nanoporous carbon matrix preforms and their properties
Gaab et al. Effects of thermal and thermomechanical induced mechanical changes of C/C composites
Li et al. In-situ synthesis and growth mechanism of silicon nitride nanowires on carbon fiber fabrics
Zhang et al. Ablation-resistant Ta0. 78Hf0. 22C solid solution ceramic modified C/C composites for oxidizing environments over 2200° C
Nguyen et al. Synthesis of sea urchin-like particles of carbon nanotubes directly grown on stainless steel cores and their effect on the mechanical properties of polymer composites
He et al. Carbon fiber/SiC composites modified SiC nanowires with improved strength and toughness
Zhao et al. Fast-diffusion joining of SiC-coated three-dimensional C/SiC composites with a Mo-W-Mo interlayer by spark plasma sintering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant