CN110562955B - Reed-based carbon dots, CDs-Cu2O/CuO composite material and preparation method thereof - Google Patents
Reed-based carbon dots, CDs-Cu2O/CuO composite material and preparation method thereof Download PDFInfo
- Publication number
- CN110562955B CN110562955B CN201910723008.3A CN201910723008A CN110562955B CN 110562955 B CN110562955 B CN 110562955B CN 201910723008 A CN201910723008 A CN 201910723008A CN 110562955 B CN110562955 B CN 110562955B
- Authority
- CN
- China
- Prior art keywords
- reed
- cds
- based carbon
- composite material
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 235000014676 Phragmites communis Nutrition 0.000 title claims abstract description 56
- 239000002131 composite material Substances 0.000 title claims abstract description 28
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 16
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 title description 7
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims abstract description 46
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 39
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 28
- 229910052799 carbon Inorganic materials 0.000 claims description 25
- 239000000243 solution Substances 0.000 claims description 25
- 239000007864 aqueous solution Substances 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 239000008367 deionised water Substances 0.000 claims description 15
- 229910021641 deionized water Inorganic materials 0.000 claims description 15
- 229910000366 copper(II) sulfate Inorganic materials 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 11
- 239000006228 supernatant Substances 0.000 claims description 11
- 238000001291 vacuum drying Methods 0.000 claims description 9
- 239000011259 mixed solution Substances 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 7
- 239000000047 product Substances 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000000835 electrochemical detection Methods 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 6
- 238000003763 carbonization Methods 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 5
- 230000032683 aging Effects 0.000 claims description 4
- 238000009210 therapy by ultrasound Methods 0.000 claims description 4
- 239000012295 chemical reaction liquid Substances 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 7
- 230000003647 oxidation Effects 0.000 abstract description 4
- 238000007254 oxidation reaction Methods 0.000 abstract description 4
- 239000002154 agricultural waste Substances 0.000 abstract description 3
- 239000003638 chemical reducing agent Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 239000002699 waste material Substances 0.000 abstract description 3
- 239000007772 electrode material Substances 0.000 abstract description 2
- 239000010949 copper Substances 0.000 description 28
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 15
- 238000003786 synthesis reaction Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000003760 magnetic stirring Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910021397 glassy carbon Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000005751 Copper oxide Substances 0.000 description 2
- 244000273256 Phragmites communis Species 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 240000006497 Dianthus caryophyllus Species 0.000 description 1
- 235000009355 Dianthus caryophyllus Nutrition 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 235000004789 Rosa xanthina Nutrition 0.000 description 1
- 241000109329 Rosa xanthina Species 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 235000015205 orange juice Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G3/00—Compounds of copper
- C01G3/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/65—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pathology (AREA)
- Electrochemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Analytical Chemistry (AREA)
- Catalysts (AREA)
Abstract
The invention provides reed-based carbon dots, CDs-Cu2The invention relates to an O/CuO composite material, a preparation method and application thereof. The obtained reed-based carbon dots have good reducibility, and are used as reducing agents to control and synthesize CDs-Cu by using an ecological-friendly, economic and effective ultrasonic method2O/CuO,CDs‑Cu2And (3) an O composite material. Prepared CDs-Cu2The O/CuO composite material has a remarkable enhancement effect on the electrocatalytic oxidation of hydrazine. The invention not only makes full use of agricultural wastes and provides a new way for the utilization of reed wastes, but also can replace expensive electrode materials and provide a new idea for simplifying the process.
Description
Technical Field
The invention relates to a preparation method of a carbon dot and an electric detection material, in particular to a reed-based carbon dot and CDs-Cu2An O/CuO composite material, a preparation method and an application thereof.
Background
Fluorescent carbon quantum dots, Carbon Dots (CDs) for short, are carbon nanomaterials which are emerging in recent years. CDs are widely derived from natural biomass such as roses, bamboo leaf cellulose, carnation, orange juice, grasses, soybeans, and the like. Many sustainable carbon-based materials are used for CDs synthesis because these materials are environmentally friendly, economically viable materials. Most CDs are used for fluorescent ion detection, cell imaging, etc., and are also reported as reducing agents for synthesizing new complexes. Achyut et al prepared CDs from tea leaves and used for reducing graphene oxide, and applied the composite material to high-elasticity cotton-based conductive fabric.
The reed is one of the main plants for wetland growth, and has important ecological function in the aspect of environmental protection. It is called "second forest" and has many ecological functions, such as climate regulation, sewage purification and biological diversity maintenance. However, the current utilization form is single, and the reed can not be effectively utilized, which leads to serious waste of reed resources. Ban et al prepared a unique porous layer of activated carbon (RHC) using natural reed membrane as a precursor, and prepared graphene-like RHC by hydrothermal treatment and carbonization. At present, the research of synthesizing CDs by using reed as a raw material has not been reported.
Disclosure of Invention
The invention aims to provide a preparation method of reed-based carbon dots, which is used for obtaining carbon dots with excellent reducibility and providing a new way for utilizing reeds.
The purpose of the invention is realized as follows:
a preparation method of reed-based carbon dots comprises the following steps: adding reed raw materials and deionized water into an autoclave, carrying out hydrothermal carbonization, carrying out centrifugal separation on the obtained reaction liquid to obtain a reed-based carbon dot supernatant, and carrying out vacuum drying on the supernatant to obtain reed-based carbon dot solid powder (CDs). The reed is prepared from dry reed (whole reed) picked from white lake in winter, and by pulverizing or cutting into blocks.
The mass ratio of the reed raw material to the deionized water is 1:10-1: 20; the hydrothermal carbonization temperature is 120-200 ℃ and the time is 2-5 h. Preferably, the mass ratio is 1: 12; the hydrothermal carbonization temperature is 180 ℃ and the time is 3 h; the centrifugal speed is 10000 rpm, and the centrifugal time is 5 min; the vacuum drying temperature of the supernatant is 50 ℃, and the time is 48 h.
The invention also provides CDs-Cu2Preparation of O/CuO composite materialThe method comprises the following steps: under the conditions of stirring and ultrasonic treatment, adding NaOH aqueous solution dropwise into CuSO4Adding PVP solution into the aqueous solution after dripping to obtain a mixed solution; then, under the conditions of stirring and ultrasonic treatment, dripping the reed-based carbon dot solution into the mixed solution, and carrying out aging treatment for 24 hours; washing the obtained product with deionized water and absolute ethyl alcohol, and drying in vacuum to obtain CDs-Cu2An O/CuO composite; the reed-based carbon dot solution is prepared by mixing the obtained reed-based carbon dots with the volume of 1.2-2.5 mu g/mL-1(preferably 2. mu. gmL)-1) Is dispersed in deionized water.
The concentration of NaOH aqueous solution is 1M, CuSO4The concentration of the aqueous solution is 0.1M, and the concentration of the PVP aqueous solution is 50 g/L; aqueous NaOH solution and CuSO4The volume ratio of the aqueous solution is 1 to (0.5-1), and the dropping speed of the NaOH aqueous solution is 0.1-3 mL min-1(ii) a The amount of PVP added and CuSO4The volume ratio of (1) to (7.5-30); adding amount of reed-based carbon dot solution and CuSO4The volume ratio of (1) to (4-7.5) and the dropping speed of 0.1-3 mL min-1. The vacuum drying temperature is 60 ℃, and the drying time is 3 h.
The invention takes the reed as a carbon source and adopts a one-step hydrothermal method to synthesize the reed-based carbon dots, thereby fully utilizing agricultural wastes and providing a new way for utilizing the reed wastes. Meanwhile, the obtained reed-based carbon dots have good reducibility, and are used as reducing agents to control and synthesize CDs-Cu by using an ecological-friendly, economic and effective ultrasonic method2O/CuO composite material. Prepared CDs-Cu2The O/CuO composite material has a remarkable enhancement effect on the electrocatalytic oxidation of hydrazine due to the synergistic effect of CDs and copper oxide. Mixing CDs-Cu2The electrochemical sensor prepared from the O/CuO composite material has good analysis and detection effects, low detection limit (0.024 mu M), and high sensitivity (4.45 mu A mM)-1) And the linear range is wide (0.99-5903 mu M).
The preparation method is simple, rapid, nontoxic, green and environment-friendly, wide in raw material source and low in cost, can fully utilize agricultural wastes, can replace expensive electrode materials, and provides a new idea for complex processes.
Drawings
FIG. 1 is a CV curve of hydrazine, in which A represents that the electrochemical sensor used is GCE (bare glassy carbon electrode), B represents that the electrochemical sensor used is CDs-GCE, and C represents that the electrochemical sensor used is CDs-Cu2O-GCE, D represents the electrochemical sensor used is CDs-Cu2O/CuO-GCE。
FIG. 2 shows CDs-Cu with different hydrazine concentrations2Current-time curves for O/CuO-GCE.
FIG. 3 shows hydrazine and CDs-Cu in different concentrations2The linear relationship between the current responses of O/CuO-GCE.
FIG. 4 shows the results of electrochemical detection of hydrazine by the material obtained in example 5.
FIG. 5 shows the results of electrochemical detection of hydrazine by the material obtained in example 6.
Detailed Description
The present invention is further illustrated by the following examples in which the procedures and methods not described in detail are conventional and well known in the art, and the starting materials or reagents used in the examples are commercially available, unless otherwise specified, and are commercially available.
In the following examples, the reed material used was dry reed (whole reed) picked from white lake in winter, ground into powder by a pulverizer, or cut into pieces.
Example 1: synthesis of reed-based carbon dots
Adding 10g of reed powder and 120mL of deionized water into an autoclave, heating the autoclave in an oven to 180 ℃ and keeping the temperature for 3h, centrifuging the obtained reaction solution at 10000 rpm for 5min to remove precipitates, and obtaining a reed-based carbon dot supernatant; and finally, drying the supernatant in vacuum at 50 ℃ for 48 hours to obtain reed-based carbon dot solid powder.
The obtained reed-based carbon dot solid powder is added in an amount of 2 mu gmL-1Is dispersed in deionized water to obtain a CDs solution for further use.
Example 2: synthesis of reed-based carbon dots
Adding 10g of blocky reeds and 100mL of deionized water into an autoclave, heating the autoclave in an oven to 120 ℃, keeping the temperature for 5 hours, centrifuging the obtained reaction solution at 10000 rpm for 5min, and removing precipitates to obtain a reed-based carbon dot supernatant; and finally, drying the supernatant in vacuum at 50 ℃ for 48 hours to obtain reed-based carbon dot solid powder.
Example 3: synthesis of reed-based carbon dots
Adding 10g of reed powder and 200 mL of deionized water into an autoclave, heating the autoclave in an oven to 200 ℃ and keeping for 2h, centrifuging the obtained reaction solution at 10000 rpm for 5min to remove precipitates, and obtaining a reed-based carbon dot supernatant; and finally, drying the supernatant in vacuum at 50 ℃ for 48 hours to obtain reed-based carbon dot solid powder.
Example 4: CDs-Cu2Synthesis of O/CuO composite material
Under the condition of magnetic stirring, the dropping speed is 0.1-3 mL min -130 mL of NaOH (1M) aqueous solution was slowly dropped into 30 mL of CuSO4(0.1M) aqueous solution, 3 mL of PVP aqueous solution (50 g/L) was then added thereto, sonicated (150W, 40 KHz) for 60 min, magnetic stirring was continued and 40 mL of the CDs solution obtained in example 1 was slowly dropped into the above-obtained mixture solution at a rate of 0.1-3 mL min-1After dropping, the mixed solution was aged for 24 hours (without stirring and sonication, only during aging). Washing the obtained product with deionized water and anhydrous ethanol, and vacuum drying at 60 deg.C for 3 hr to obtain CDs-Cu2And the relative content of the copper oxide in the O/CuO composite material can be calculated through the peak height of an XRD (X-ray diffraction) pattern.
Example 5: CDs-Cu2Synthesis of O/CuO composite material
In the same manner as in example 4, the dropwise addition rate was 0.1-3 mL min under magnetic stirring-130 mL of NaOH (1M) aqueous solution was slowly dropped into 30 mL of CuSO4(0.1M) aqueous solution, then 1 mL of PVP aqueous solution (50 g/L) was added thereto, sonicated for 60 min, magnetic stirring was continued and 40 mL of the CDs solution obtained in example 1 was slowly dropped into the resulting mixture solution at a rate of 0.1-3 mL min-1Aging the mixed solution 24 after droppingh (without stirring and sonication, only aging process). Washing the obtained product with deionized water and anhydrous ethanol, and vacuum drying at 60 deg.C for 3 hr to obtain CDs-Cu2O/CuO composite material.
Example 6: CDs-Cu2Synthesis of O/CuO composite material
In the same manner as in example 4, the dropwise addition rate was 0.1-3 mL min under magnetic stirring-130 mL of NaOH (1M) aqueous solution was slowly dropped into 30 mL of CuSO4(0.1M) aqueous solution, 4 mL of PVP aqueous solution (50 g/L) was then added thereto, sonicated for 60 min, magnetic stirring was continued and 40 mL of the CDs solution obtained in example 1 was slowly dropped into the resulting mixture solution at a rate of 0.1-3 mL min-1After dropping, the mixed solution was aged for 24 hours. Washing the obtained product with deionized water and anhydrous ethanol, and vacuum drying at 60 deg.C for 3 hr to obtain CDs-Cu2O/CuO composite material.
Example 7: CDs-Cu2Synthesis of O composite
In the same manner as in example 4, the dropwise addition rate was 0.1-3 mL min under magnetic stirring-130 mL of NaOH (1M) aqueous solution was slowly dropped into 30 mL of CuSO4(0.1M) in water, then sonicated for 60 min, magnetic stirring was continued and 40 mL of the CDs solution from example 1 was slowly added dropwise to the resulting mixture solution at a rate of 0.1-3 mL min-1After dropping, the mixed solution was aged for 24 hours. Washing the obtained product with deionized water and anhydrous ethanol, and vacuum drying at 60 deg.C for 3 hr to obtain CDs-Cu2And (3) an O composite material.
Example 8
The products obtained in examples 1, 4 and 7 were respectively combined with GCE (bare glassy carbon electrode) to prepare electrochemical sensors (the preparation method is conventional), which are CDs-GCE and CDs-Cu, respectively2O/CuO-GCE and CDs-Cu2O-GCE. Mixing GCE, CDs-GCE, CDs-Cu2O-GCE and CDs-Cu2And performing electrochemical detection on hydrazine by using O/CuO-GCE.
GCE,CDs-GCE,CDs-Cu2O-GCE and CDs-Cu2CV Curve score for hydrazine on O/CuO-GCEAs shown in fig. 1. It can be seen from figure 1 that the electrochemical response of CDs-GCE to hydrazine is higher than that of GCE, indicating that the addition of CDs can improve the electrochemical response of hydrazine oxidation. CDs-Cu2O-GCE and CDs-Cu2CDs-Cu compared to O/CuO-GCE2O/CuO-GCE has a higher electrochemical response current to hydrazine in the figure. This indicates that CDs-Cu2The O/CuO-GCE has excellent electrochemical response of hydrazine oxidation. Thus, CDs-Cu2O/CuO-GCE is an excellent sensor for electrochemical detection of hydrazine.
Continuously increasing the concentration of hydrazine hydrate to obtain CDs-Cu with different concentrations of hydrazine2Current-time curves for O/CuO-GCE, as shown in FIG. 2, different concentrations of hydrazine and CDs-Cu2The linear relationship between the current responses of O/CuO-GCE is shown in FIG. 3.
Evidence of CDs-Cu from changes in current response2O/CuO-GCE is an excellent hydrazine detection sensor. As can be seen from FIGS. 2 and 3, upon addition of hydrazine at various concentrations to the NaOH solution, the current response of hydrazine changed immediately, showing a good linear relationship, ranging from 0.99 to 5903. mu.M, with a sensitivity of 4.45. mu.A mM-1. The detection limit was 0.024. mu.M. The current response at lower concentrations of hydrazine is inset a in FIG. 2, indicating that CDs-Cu2O/CuO-GCE has high current response to hydrazine in NaOH solution, and the sensor with excellent comprehensive performance is obtained.
The composite materials obtained in examples 5 and 6 were combined with GCE (bare glassy carbon electrode) to prepare electrochemical sensors, and electrochemical detection of hydrazine was performed, and the results are shown in fig. 4 and 5, respectively.
Claims (6)
1. CDs-Cu2The preparation method of the O/CuO composite material is characterized by comprising the following steps: under the conditions of stirring and ultrasonic treatment, adding NaOH aqueous solution dropwise into CuSO4Adding PVP solution into the aqueous solution after dripping to obtain a mixed solution; then, under the conditions of stirring and ultrasonic treatment, dripping the reed-based carbon dot solution into the mixed solution, and after dripping, carrying out aging treatment; washing the obtained product with deionized water and absolute ethyl alcohol, and drying in vacuum to obtain CDs-Cu2An O/CuO composite; the reed-based carbon dot solution is prepared by dispersing reed-based carbon dot solid powder in deionized water, wherein the reed-based carbon dot solid powder is prepared according to the following steps: adding reed raw materials and deionized water into a high-pressure kettle, carrying out hydrothermal carbonization, carrying out centrifugal separation on the obtained reaction liquid to obtain a reed-based carbon dot supernatant, and carrying out vacuum drying on the supernatant to obtain reed-based carbon dot solid powder.
2. The CDs-Cu of claim 12The preparation method of the O/CuO composite material is characterized in that PVP and CuSO are used4The mass ratio of (5-20) to (48); the reed-based carbon dots and CuSO4The mass ratio of the reed-based carbon dot solution is (0.015-0.008) to 160, and the dropping speed of the reed-based carbon dot solution is 0.1-3 mL/min-1The concentration of the reed-based carbon dot solution is 1.2-2.5 mu gmL-1。
3. The CDs-Cu of claim 12The preparation method of the O/CuO composite material is characterized in that NaOH and CuSO4The mass ratio of (2.5-5) to 1, and the dropping speed of the NaOH aqueous solution is 0.1-3 mL min-1。
4. The CDs-Cu of claim 12The preparation method of the O/CuO composite material is characterized in that the vacuum drying temperature is 60 ℃, and the drying time is 3 hours.
5. CDs-Cu obtained by the production method according to any one of claims 1 to 42O/CuO composite material.
6. CDs-Cu obtained by the production method according to any one of claims 1 to 42The application of the O/CuO composite material in the electrochemical detection of hydrazine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910723008.3A CN110562955B (en) | 2019-08-06 | 2019-08-06 | Reed-based carbon dots, CDs-Cu2O/CuO composite material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910723008.3A CN110562955B (en) | 2019-08-06 | 2019-08-06 | Reed-based carbon dots, CDs-Cu2O/CuO composite material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110562955A CN110562955A (en) | 2019-12-13 |
CN110562955B true CN110562955B (en) | 2020-12-18 |
Family
ID=68774696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910723008.3A Expired - Fee Related CN110562955B (en) | 2019-08-06 | 2019-08-06 | Reed-based carbon dots, CDs-Cu2O/CuO composite material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110562955B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112536034B (en) * | 2020-11-22 | 2023-03-21 | 重庆交通大学 | CQDS/CuO@Cu 2 Preparation method of O-micron balls |
CN113546616B (en) * | 2021-07-13 | 2022-10-11 | 湖南师范大学 | Carbohydrate and biomass derived functionalized carbon dot-metal hybrid catalytic material and application thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101332999A (en) * | 2008-07-30 | 2008-12-31 | 江南大学 | Method for preparing Cu2O or CuO hollow submicrospheres with particle diameter controllable by water phase soft template method |
US7785392B2 (en) * | 2006-07-06 | 2010-08-31 | Samsung Electro-Mechanics Co., Ltd. | Method for manufacturing metal nanoparticles |
JP2012096935A (en) * | 2010-10-29 | 2012-05-24 | Murata Mfg Co Ltd | Method for manufacturing copper oxide quantum dot |
CN103466682A (en) * | 2013-09-07 | 2013-12-25 | 安徽工程大学 | Preparation method of Cu2O-CuO composite oxide |
CN104014341A (en) * | 2014-06-12 | 2014-09-03 | 淮北师范大学 | Method for preparing Cu2O/Ca(OH)2 nano composite photocatalyst by interface reduction method |
CN104437548A (en) * | 2013-09-12 | 2015-03-25 | 华东师范大学 | Visible light photocatalytic film and preparation method thereof and lighting lamp with visible light photocatalytic film |
CN106241797A (en) * | 2016-07-29 | 2016-12-21 | 句容市百诚活性炭有限公司 | A kind of preparation method of phragmites communis matrix activated carbon |
CN106238050A (en) * | 2015-06-12 | 2016-12-21 | 中国科学院苏州纳米技术与纳米仿生研究所 | Copper oxide/Red copper oxide composite photocatalyst material and preparation method thereof |
CN106571473A (en) * | 2016-10-26 | 2017-04-19 | 济南大学 | Preparation method of Cu/Cu2O/CuO three-dimensional composite material having hierarchical pore structure |
CN107732172A (en) * | 2017-09-25 | 2018-02-23 | 中国计量大学 | A kind of lithium ion battery negative material and preparation method thereof |
-
2019
- 2019-08-06 CN CN201910723008.3A patent/CN110562955B/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7785392B2 (en) * | 2006-07-06 | 2010-08-31 | Samsung Electro-Mechanics Co., Ltd. | Method for manufacturing metal nanoparticles |
CN101332999A (en) * | 2008-07-30 | 2008-12-31 | 江南大学 | Method for preparing Cu2O or CuO hollow submicrospheres with particle diameter controllable by water phase soft template method |
JP2012096935A (en) * | 2010-10-29 | 2012-05-24 | Murata Mfg Co Ltd | Method for manufacturing copper oxide quantum dot |
CN103466682A (en) * | 2013-09-07 | 2013-12-25 | 安徽工程大学 | Preparation method of Cu2O-CuO composite oxide |
CN104437548A (en) * | 2013-09-12 | 2015-03-25 | 华东师范大学 | Visible light photocatalytic film and preparation method thereof and lighting lamp with visible light photocatalytic film |
CN104014341A (en) * | 2014-06-12 | 2014-09-03 | 淮北师范大学 | Method for preparing Cu2O/Ca(OH)2 nano composite photocatalyst by interface reduction method |
CN106238050A (en) * | 2015-06-12 | 2016-12-21 | 中国科学院苏州纳米技术与纳米仿生研究所 | Copper oxide/Red copper oxide composite photocatalyst material and preparation method thereof |
CN106241797A (en) * | 2016-07-29 | 2016-12-21 | 句容市百诚活性炭有限公司 | A kind of preparation method of phragmites communis matrix activated carbon |
CN106571473A (en) * | 2016-10-26 | 2017-04-19 | 济南大学 | Preparation method of Cu/Cu2O/CuO three-dimensional composite material having hierarchical pore structure |
CN107732172A (en) * | 2017-09-25 | 2018-02-23 | 中国计量大学 | A kind of lithium ion battery negative material and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
"Growth and Stabilization of Silver Nanoparticles on Carbon Dots and Sensing Application";Liming Shen et al;《Langmuir》;20131206;第29卷;第16135-16140页 * |
"Reed-derived fluorescent carbon dots as highly selective probes for detecting Fe3+ and excellent cell-imaging agents";Guili Wei et al;《RSC Advances》;20190712;第9卷;第21716页第2.2部分 * |
"化学法制备Cu2O及其粒径形貌控制机理研究";雷丹 等;《粉末冶金工业》;20140815;第24卷(第4期);第20-24页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110562955A (en) | 2019-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Synthesis, formation mechanisms and applications of biomass-derived carbonaceous materials: a critical review | |
Zhang et al. | Hydrothermal carbonization for hydrochar production and its application | |
CN108117073B (en) | Method for preparing porous carbon material by using water hyacinth and application | |
CA2895630C (en) | Process for the hydrothermal treatment of high molar mass biomaterials | |
CN106881059B (en) | A kind of preparation method of iron/carbon composite | |
CN110562955B (en) | Reed-based carbon dots, CDs-Cu2O/CuO composite material and preparation method thereof | |
CN106967442B (en) | Soil cadmium passivator and preparation method and application thereof | |
KR101048410B1 (en) | Preparation of superfine purified silica, and fibers simultaneously | |
Dessalle et al. | Recent progress in the development of efficient biomass-based ORR electrocatalysts | |
CN103525870A (en) | Microbial flocculant as well as preparation method and application thereof | |
CN109701493A (en) | A kind of preparation method of N doping charcoal | |
CN105879838A (en) | Method for preparing efficient heavy metal adsorbent from modified cotton stalk biomass charcoal | |
CN111847530B (en) | Method for preparing nickel oxide nano particles from water hyacinth and application of nickel oxide nano particles | |
US20080227972A1 (en) | Decomposition method of cellulose and production method of glucose | |
CN101306813A (en) | Method for preparing smooth cord-grass active carbon for treating cadmium-containing waste water | |
CN109369972A (en) | Tuna collagen-chitosan complex film frequency sweep ultrasonic preparation method | |
CN106904591B (en) | A kind of preparation method and application of step hole tobacco rod carbon | |
CN113083246B (en) | TEMPO oxidation modified straw fiber material, and preparation method and application thereof | |
CN103435145A (en) | Deep treatment method for waste water generated in production of tobacco sheets by adopting paper-making process | |
CN109201002A (en) | Transition metal carbide composite material, preparation method and its absorption purposes of a kind of charcoal package | |
CN108892157A (en) | A method of efficiently preparing lithium carbonate | |
CN113004902A (en) | Method for preparing biochar by co-pyrolyzing bentonite and metal | |
CN110229670A (en) | Multi-functional acid edaphon modifying agent of one kind and preparation method thereof | |
CN101701338B (en) | Method for depolymerizing cellulose | |
CN107055506A (en) | A kind of preparation method and application of additives of filter tip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201218 |