CN110560028A - 一种金红石相二氧化钛/石墨烯薄膜的制备方法 - Google Patents

一种金红石相二氧化钛/石墨烯薄膜的制备方法 Download PDF

Info

Publication number
CN110560028A
CN110560028A CN201910691222.5A CN201910691222A CN110560028A CN 110560028 A CN110560028 A CN 110560028A CN 201910691222 A CN201910691222 A CN 201910691222A CN 110560028 A CN110560028 A CN 110560028A
Authority
CN
China
Prior art keywords
tio
solution
graphene
graphene film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910691222.5A
Other languages
English (en)
Other versions
CN110560028B (zh
Inventor
王安义
刘进
张威虎
田丰
王树奇
吕媛媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Science and Technology
Original Assignee
Xian University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Science and Technology filed Critical Xian University of Science and Technology
Priority to CN201910691222.5A priority Critical patent/CN110560028B/zh
Publication of CN110560028A publication Critical patent/CN110560028A/zh
Application granted granted Critical
Publication of CN110560028B publication Critical patent/CN110560028B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种金红石相二氧化钛/石墨烯薄膜的制备方法,包括如下步骤:将20 ml的四丁基钛酸盐加入15 ml的无水乙醇中搅拌1小时形成A溶液;将1.8 ml乙酰丙酮和2 ml去离子水加入15 ml无水乙醇中混合搅拌1小时形成B溶液;将B溶液缓慢注入A溶液中,室温搅拌1小时,在60℃烘箱中陈化得到TiO2溶胶;在Cu衬底/graphene薄膜层上旋涂4层TiO2溶胶,每旋涂1层,在110℃的烘箱中烘干15分钟,随后在流量为200 sccm的Ar气氛围下退火。本发明通过溶胶‑凝胶法在Cu衬底和TiO2薄膜之间插入graphene层,有效提高了TiO2薄膜对亚甲蓝(MB)染料溶液的光催化活性。

Description

一种金红石相二氧化钛/石墨烯薄膜的制备方法
技术领域
本发明涉及光催化材料领域,具体涉及一种金红石相二氧化钛/石墨烯薄膜的制备方法。
背景技术
环境污染和能源问题是世界各国普遍关注的问题。特别是近年来,随着城市污水处理量的增加和各种工业的快速发展,导致生态系统的失衡和危险,水污染问题日益受到人们的广泛关注,产生的工业废水主要包括盐类、固化剂、洗涤剂、有机物和活性染料等,对人体健康和其他生物构成了严重威胁 。因此,作为清洁可再生能源并具备降解污染物能力的先进智能半导体材料的研究受到各国越来越多的关注。
TiO2是一种典型的宽禁带半导体材料,由于其无毒、无能源需求、对环境友好、光氧化能力强、化学和生物稳定性好、光耐久性好、光催化性能高等优点,引起了人们的研究兴趣,被广泛应用于气体传感器、光催化、自洁涂料和生物医学材料等领域。在不同的衬底上沉积TiO2薄膜的方法有很多,如溶胶-凝胶法、脉冲激光沉积、化学气相沉积和电沉积等。TiO2主要具有锐钛矿型、板钛矿型和金红石型三种相结构,金红石相相对于其他相具有更好的折射率、介电常数和化学稳定性。然而,TiO2由于其固有的缺点,如光生电子-空穴对的复合速度快、太阳能利用效率低而受到很大的限制。为了克服这一问题,人们进行了多种尝试,如表面增敏、掺杂、金属沉积和与其他材料的复合材料等。
由于碳原子的二维sp2结构,graphene在催化、纳米电子器件等许多应用领域的研究备受关注,具有许多独特的电学和光学性质。近年来,人们发现通过引入graphene可以提高TiO2的电荷分离率。例如,Anandan通过自旋涂覆技术合成了超亲水性graphene负载TiO2薄膜,并报道了TiO2导带向graphene的电子注入增强光催化活性。Zhang课题组研制的TiO2-graphene多孔微球异质结构,对亚甲基蓝的降解具有较强的光催化活性。为了获得高效的光催化性能,Thirugnanam制备了graphene包覆多孔管状金红石型TiO2纳米纤维,结果表明,金红石型TiO2在这些相中具有更强的光催化活性。然而,溶胶-凝胶法制备金红石型TiO2和TiO2/graphene薄膜及其相关光催化性能的研究报道较少。
发明内容
为解决上述问题,本发明提供了一种金红石相TiO2/graphene薄膜的制备方法,通过溶胶-凝胶法在Cu衬底和TiO2薄膜之间插入graphene层,有效提高了TiO2薄膜对亚甲蓝(MB)染料溶液的光催化活性。
为实现上述目的,本发明采取的技术方案为:
一种金红石相二氧化钛/石墨烯薄膜的制备方法,包括如下步骤:
S1、将20 ml的四丁基钛酸盐加入15 ml的无水乙醇中混合搅拌1小时形成A溶液;
S2、将1.8 ml乙酰丙酮和2 ml去离子水加入15 ml无水乙醇中混合搅拌1小时形成B溶液;
S3、将B溶液缓慢注入A溶液中,在室温下搅拌1小时,在60 ℃烘箱中陈化得到TiO2溶胶;
S4、在Cu衬底/graphene薄膜层上以转速4000转/分,持续15秒的速度反复旋涂4层TiO2溶胶,每旋涂1层,在110℃的烘箱中烘干15分钟,随后,将样品放置在流量为200 sccm的Ar气氛围下,以800-900 ℃温度下退火120分钟。
优选地,以900℃温度下退火120分钟。
本发明具有以下有益效果:
通过溶胶-凝胶法在铜(Cu)衬底和二氧化钛(TiO2)薄膜之间插入石墨烯(graphene)层,经不同温度退火后,使TiO2/graphene薄膜具有不同的相结构以及分散性较好的TiO2颗粒,尤其在graphene薄膜层引入后,经900 ℃退火,加速并完成了TiO2由锐钛矿向金红石的相变,有效提高了TiO2薄膜的光催化活性、结晶质量,并提供了更大的吸附和光催化反应表面积。最终,促使TiO2/graphene薄膜作为催化剂对亚甲蓝(MB)染料溶液的光降解率达到最高。
附图说明
图1为不同退火温度下的薄膜XRD;
图中: (a) 为TiO2 ;(b)为TiO2/graphene。
图2为TiO2和TiO2/graphene薄膜在700 ℃、800 ℃和900 ℃退火温度下,graphene薄膜在铜衬底上的表面形貌;
图中:(a) (b) (c)为TiO2;(d) (e) (f)为TiO2/graphene。
图3为退火温度900 ℃时XPS谱(a)、TiO2/graphene薄膜C1s XPS谱(b)、O1s XPS谱(c)、Ti2p XPS谱(d)。
图4为退火温度900 ℃ 时(a)graphene、(b)TiO2和TiO2/graphene薄膜的拉曼谱,其中,上曲线为TiO2/graphene,下曲线为TiO2
图5(a)和(b)分别显示了TiO2和TiO2/graphene薄膜在紫外-可见光照射下,MB溶液降解速率随时间变化的吸收光谱。
图6为TiO2和TiO2/graphene薄膜在700 ℃、800 ℃、900 ℃退火温度下C/C0值随辐照时间的变化。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例
TiO2和TiO2/graphene薄膜的制备
采用低压化学气相沉积(CVD)法在1×1 cm2的铜衬底上制备graphene薄膜。随后采用溶胶-凝胶法制备TiO2和TiO2/graphene薄膜。首先,将20 ml的四丁基钛酸盐加入15 ml的无水乙醇中混合搅拌1小时形成A溶液;再将1.8 ml乙酰丙酮和2 ml去离子水加入15 ml无水乙醇中混合搅拌1小时形成B溶液;随后,将B溶液缓慢注入A溶液中,在室温下搅拌1小时,在60 ℃烘箱中陈化得到TiO2溶胶;最后,分别在没有graphene薄膜层和有graphene薄膜层的Cu衬底上以转速4000转/分,持续15秒的速度反复旋涂4层TiO2溶胶,每旋涂1层,在110℃的烘箱中烘干15分钟,随后,将样品放置在流量为200 sccm的Ar气氛围下,分别以700 ℃、800℃、900 ℃温度下退火120分钟。
表征
通过X射线衍射(XRD,6100,日本岛津公司,),在40 kV、30 mA对薄膜的晶体结构和相变进行表征;X射线衍射图(图1(a)和(b))显示了TiO2和TiO2/graphene样品在700 ℃、800 ℃、900 ℃退火后的锐钛矿相(JCPDF 21-1272)和金红石相(JCPDF 21-1276)。结果表明,在700 ℃下,得到的为锐钛矿与金红石混合相的TiO2和TiO2/graphene样品。随着退火温度的升高,金红石的反射峰变得更加强烈和尖锐,锐钛矿衍射峰的强度降低或消失,这是由于晶粒的生长、相变和晶体质量的提高造成的。在900 ℃退火温度下,TiO2和TiO2/graphene薄膜中存在纯金红石相。这表明,随着退火温度的升高,薄膜由锐钛矿相转变为金红石相,在900 ℃退火时,锐钛矿相转变为金红石相过程完成。
此外,XRD图中样品锐钛矿相及金红石相的 ()、 ()由下式计算,如表1所示。
为锐钛矿和金红石相的峰强, 为锐钛矿相和金红石相的占比。可见,在800 ℃下,由锐钛矿相和金红石相混合而成的TiO2薄膜以及纯金红石相的TiO2/graphene薄膜,由于graphene薄膜层的引入,可以加速锐钛矿向金红石的相变,主要原因是受TiO2薄膜与Cu衬底之间graphene薄膜层的影响。
表1 锐钛矿相和金红石相的占比及TiO2和TiO2/graphene薄膜的晶粒尺寸
退火温度(℃) graphene薄膜层 (%) (%) ( nm) ( nm) FWHM<sub>R(110)</sub>
700 -- 74.00 26.00 21.41 23.56 0.663
800 -- 23.08 76.92 34.92 30.26 0.516
900 -- 0 100 -- 38.38 0.407
700 graphene 45.36 54.64 25.05 25.03 0.624
800 graphene 0 100 -- 31.68 0.493
900 graphene 0 100 -- 40.04 0.390
对应锐钛矿相(101)峰和金红石相(110)峰的晶粒度(),可用德拜·谢乐公式进行计算:
式中 为XRD的波长1.54046 Å,为TiO2的布拉格衍射角,为半峰宽(FWHM)。FWHMR(110)以及计算锐钛矿相、金红石相TiO2和TiO2/graphene薄膜晶粒度的结果,如表1所示。随着退火温度由700 ℃提高到900 ℃,薄膜晶粒尺寸增大,金红石相(110) FWHM减小,说明TiO2和TiO2/graphene薄膜的晶体质量增强。在900 ℃退火温度下,TiO2/graphene薄膜的晶粒尺寸较大,金红石相(110)FWHM小于TiO2薄膜,说明graphene薄膜层的引入确实提高了结晶质量。
用扫描电镜(SEM, Zeiss ΣIGMA/VP)对薄膜的形貌进行研究;图2为TiO2和TiO2/graphene薄膜在700 ℃、800 ℃和900 ℃退火温度下,graphene薄膜在铜衬底上的表面形貌。700 ℃退火后的薄膜表面光滑致密,但存在裂纹和缝隙。从图2(b)和(e)可以看出,当退火温度达到800 ℃时,TiO2/graphene薄膜的纳米颗粒呈现均匀分散,而TiO2薄膜的纳米颗粒由于锐钛矿和金红石的混合相而聚集分散;随着退火温度升高到900 ℃,纳米颗粒的尺寸明显增大,其形状变得不规则,这是由于晶粒的生长和相变随退火温度的升高而发生的;在退火过程中,由于薄膜和衬底的应力、收缩和膨胀热系数的不同,导致了薄膜的裂纹和间隙的形成。
利用XPS分析进一步验证了TiO2/graphene薄膜中元素的化学成分和化学键合性质。样品的XPS谱如图3(a)所示,检测到C、O、Ti的存在。图3(b)为高分辨率C1s XPS谱,很好地拟合了两个高斯峰分量。结合能为284.8 eV时的峰为C-C,C=C键(sp2),以287.9 eV为中心的弱峰为C=O(羧基)。O1s如图3(c)所示,Ti-O键处530.6 eV处的峰值对应TiO2晶格。如图3(d)所示,薄膜的Ti2p XPS谱主要以459.1 eV和464.5 eV为中心,分别对应于Ti2p3/2和Ti2p1/2,这与Ti4+ 状态下电子自旋轨道分裂的成键能值一致。
为了进一步确定制备薄膜的结构,采用激发波长为514 nm的拉曼光谱仪进行表征,由图可知,退火温度为900 ℃时,graphene的结晶质量及TiO2和TiO2/graphene薄膜的晶相,样品的拉曼谱如图4所示。graphene薄膜的拉曼光谱(图4a),在1584.5 cm-1和2703.3cm-1处观察到两个强峰,对应于graphene的G和2D。由于内部结构缺陷、边缘缺陷和悬挂键对对称六角形graphene晶格的破坏,D峰的强度非常低,表明制备出了高结晶度的graphene。这两个位于442 cm-1和609 cm-1的峰分别为金红石相TiO2的Eg和A1g,如图4b所示。此外,在241 cm-1处观测到一个宽而低的带,这是由于二阶振动模式,也表明为金红石晶体结构。综上,拉曼谱结果均表明,在900 ℃退火温度下制备的薄膜为金红石相,即使引入graphene薄膜层,金红石相仍然保持良好。
光催化性能
用15w紫外灯对亚甲基蓝(MB)进行照射,并对紫外光照射下的光降解过程进行监测,表征制备样品的光催化活性。过程如下:体积为30 ml,初始浓度为4 mg/l的MB溶液,辐照前,将TiO2和TiO2/graphene样品放入MB溶液中,在暗箱中搅拌30 分钟,以确定薄膜表面吸附-解吸平衡;持续照射和搅拌条件下,每30分钟收集3毫升的MB悬浮溶液,持续180分钟。随后,用紫外可见光谱仪(,UV-Vis,U-3310)对收集溶液样品的浓度进行测定,观察其变化。根据朗伯-比尔定律,计算出MB ()与辐照时间并作图,观察光催化降解结果,利用公式计算MB分子的降解率。
其中,M为MB分子的降解速率, 为MB溶液的初始浓度, 为MB悬浮液在一定辐照时间内的浓度。
将TiO2和TiO2/graphene薄膜光催化分解MB溶液的过程作为研究对象,验证了在退火温度为900 ℃时,TiO2和TiO2/graphene薄膜作为催化剂的活性。图5(a)和(b)分别显示了TiO2和TiO2/graphene薄膜在紫外-可见光照射下,MB溶液降解速率随时间变化的吸收光谱(图中,曲线与时间由上至下逐一对应)。观察到,TiO2/graphene薄膜作为催化剂表现非常活跃,在反应180 min时,约64%的MB染料溶液被去除,MB溶液的可见光吸收峰均由665 nm蓝移至651 nm;而在可见光照射180 min时,随着MB染料溶液48.6%的降解,TiO2薄膜对MB的吸收降低,结果表明,与TiO2薄膜相比,TiO2/graphene薄膜具有更好的光催化降解性能。图6为TiO2和TiO2/graphene薄膜在700 ℃、800 ℃、900 ℃退火温度下C/C0值随辐照时间的变化。研究表明,TiO2薄膜在700 ℃、800 ℃、900 ℃退火温度下,MB降解效率在180 min内分别为18.4%、20%和48.6%。说明金红石相的存在和良好的结晶度对TiO2的光催化活性有较强的影响,TiO2颗粒的分散性越好,可以提供更大的吸附和光催化反应表面积。TiO2/graphene薄膜退火温度为700 ℃、800 ℃、900 ℃时,MB的光催化降解效率在180 min内分别达到21.6%、28%、64%。与TiO2薄膜相比,在相同退火温度下,TiO2/graphene薄膜均表现出更强的光催化活性。这些结果表明,graphene薄膜的引入有效提高了TiO2薄膜的光催化活性,加速了相变,提高了结晶质量。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (2)

1.一种金红石相二氧化钛/石墨烯薄膜的制备方法,其特征在于:
S1、将20 ml的四丁基钛酸盐加入15 ml的无水乙醇中混合搅拌1小时形成A溶液;
S2、将1.8 ml乙酰丙酮和2 ml去离子水加入15 ml无水乙醇中混合搅拌1小时形成B溶液;
S3、将B溶液缓慢注入A溶液中,在室温下搅拌1小时,在60 ℃烘箱中陈化得到TiO2溶胶;
S4、在Cu衬底/graphene薄膜层上以转速4000转/分,持续15秒的速度反复旋涂4层TiO2溶胶,每旋涂1层,在110℃的烘箱中烘干15分钟,随后,将样品放置在流量为200 sccm的Ar气氛围下,以800-900 ℃温度下退火120分钟。
2.如权利要求1所述的一种金红石相二氧化钛/石墨烯薄膜的制备方法,其特征在于:所述步骤S4中,以900 ℃温度下退火120分钟。
CN201910691222.5A 2019-07-29 2019-07-29 一种金红石相二氧化钛/石墨烯薄膜的制备方法 Active CN110560028B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910691222.5A CN110560028B (zh) 2019-07-29 2019-07-29 一种金红石相二氧化钛/石墨烯薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910691222.5A CN110560028B (zh) 2019-07-29 2019-07-29 一种金红石相二氧化钛/石墨烯薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN110560028A true CN110560028A (zh) 2019-12-13
CN110560028B CN110560028B (zh) 2022-04-29

Family

ID=68773575

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910691222.5A Active CN110560028B (zh) 2019-07-29 2019-07-29 一种金红石相二氧化钛/石墨烯薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN110560028B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105465899A (zh) * 2014-09-26 2016-04-06 福建省辉锐材料科技有限公司 一种空气杀菌净化器及其使用的光催化薄膜制备方法
CN107890861A (zh) * 2017-11-30 2018-04-10 新疆维吾尔自治区产品质量监督检验研究院 一种具有{001}晶面的二氧化钛片层/石墨烯复合薄膜的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105465899A (zh) * 2014-09-26 2016-04-06 福建省辉锐材料科技有限公司 一种空气杀菌净化器及其使用的光催化薄膜制备方法
CN107890861A (zh) * 2017-11-30 2018-04-10 新疆维吾尔自治区产品质量监督检验研究院 一种具有{001}晶面的二氧化钛片层/石墨烯复合薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭超: "金红石TiO2阵列薄膜的制备、掺杂及其性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Also Published As

Publication number Publication date
CN110560028B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
Demirci et al. Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances
Sepahvand et al. Photocatalytic overall water splitting by Z-scheme g-C3N4/BiFeO3 heterojunction
Tseng et al. Visible-light-responsive nano-TiO2 with mixed crystal lattice and its photocatalytic activity
Zhao et al. Sol–gel assisted hydrothermal synthesis of ZnO microstructures: morphology control and photocatalytic activity
Hu et al. Preparation of La1− xSrxMnO3/graphene thin films and their photocatalytic activity
Zhao et al. Unique bar-like sulfur-doped C3N4/TiO2 nanocomposite: excellent visible light driven photocatalytic activity and mechanism study
Lu et al. Preparation of boron-doped TiO2 films by autoclaved-sol method at low temperature and study on their photocatalytic activity
Lee et al. Hydrothermal synthesis and photocatalytic characterizations of transition metals doped nano TiO2 sols
Sheshmani et al. Modification of TiO2 with graphene oxide and reduced graphene oxide; enhancing photocatalytic activity of TiO2 for removal of remazol Black B
Liu et al. Preparation of α-Fe2O3–TiO2/fly ash cenospheres photocatalyst and its mechanism of photocatalytic degradation
Kumar et al. Rapid microwave synthesis of reduced graphene oxide-supported TiO2 nanostructures as high performance photocatalyst
Umar et al. Effect of NH3 concentration on the performance of nitrogen doped TiO2 photoelectrochemical cell
Lu et al. Plasmonic AgX nanoparticles-modified ZnO nanorod arrays and their visible-light-driven photocatalytic activity
CN108579768B (zh) 少层MoS2修饰Ag-TiO2纳米复合薄膜的制备方法
Jun et al. Hydrophilic and photocatalytic activities of Nd-doped titanium dioxide thin films
Fang et al. Advanced Bi 2 O 2.7/Bi 2 Ti 2 O 7 composite film with enhanced visible-light-driven activity for the degradation of organic dyes
Yang et al. Synthesis, characterization and computational simulation of visible-light irradiated fluorine-doped titanium oxide thin films
Aljawrneh et al. Cellulose acetate membranes treated with titanium dioxide and cerium dioxide nanoparticles and their nanocomposites for enhanced photocatalytic degradation activity of methylene blue
Raub et al. Structural and optical properties investigation of graphene oxide coated ZnO nanorods for enhanced photocatalytic effect
CN110560028B (zh) 一种金红石相二氧化钛/石墨烯薄膜的制备方法
Kusiak-Nejman et al. The photocatalytic performance of benzene-modified TiO2 photocatalysts under UV-vis light irradiation
Ge et al. Fabrication, characterization and photocatalytic activities of TiO2 thin films from autoclaved-sol
Baglov et al. Photocatalytic activity of nanostructured titania coatings on aluminum substrates
Atay et al. The effect of spinning cycle on structural, optical, surface and photocatalytic properties of sol–gel derived ZnO films
Atay et al. Structural, optical, surface, and photocatalytic properties of SnO2 films produced by ultrasonic spray pyrolysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant