CN110559887A - Preparation method for preparing ultrathin composite membrane by interfacial microfluidization method - Google Patents

Preparation method for preparing ultrathin composite membrane by interfacial microfluidization method Download PDF

Info

Publication number
CN110559887A
CN110559887A CN201910810788.5A CN201910810788A CN110559887A CN 110559887 A CN110559887 A CN 110559887A CN 201910810788 A CN201910810788 A CN 201910810788A CN 110559887 A CN110559887 A CN 110559887A
Authority
CN
China
Prior art keywords
hollow fiber
membrane
ultrafiltration membrane
fiber ultrafiltration
ultrathin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910810788.5A
Other languages
Chinese (zh)
Other versions
CN110559887B (en
Inventor
张国亮
李洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201910810788.5A priority Critical patent/CN110559887B/en
Publication of CN110559887A publication Critical patent/CN110559887A/en
Application granted granted Critical
Publication of CN110559887B publication Critical patent/CN110559887B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/122Separate manufacturing of ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

the invention discloses a preparation method for preparing an ultrathin composite membrane by an interfacial microfluidization method, which comprises the following steps: dipping a pretreated hollow fiber ultrafiltration membrane in an aqueous solution containing piperazine, introducing an n-hexane solution of trimesoyl chloride into the hollow fiber ultrafiltration membrane, continuously introducing for 15-180 s to generate a polymerization reaction, generating an ultrathin polyamide layer on the inner surface of the hollow fiber ultrafiltration membrane, cleaning the inner surface of the hollow fiber ultrafiltration membrane covered with the polyamide layer by using an n-hexane solvent, and drying to obtain the ultrathin composite membrane. The invention does not place piperazine and acyl chloride on one side of the membrane in sequence, but places the piperazine and the acyl chloride on the inner side and the outer side of the membrane, so that an ultrathin polyamide layer is synthesized at the interface of the membrane, the water flux is greatly improved, the transfer of the membrane is avoided, no obvious defect exists when the ultrathin membrane is prepared, the raw materials can be recycled, and the waste is reduced.

Description

Preparation method for preparing ultrathin composite membrane by interfacial microfluidization method
Technical Field
The invention relates to a device for preparing an ultrathin composite membrane by an interfacial microfluidics method and application, belonging to the technical field of functional membrane preparation and separation application.
Background
In 1972, Cadotte firstly applies an interfacial polymerization method to prepare a high-performance reverse osmosis composite membrane NS100, the salt rejection rate and the water flux of the membrane are greatly improved compared with those of the membrane prepared by the L-S method, and 90 percent of the current reverse osmosis/nanofiltration membranes worldwide are produced by the interfacial polymerization method. The general method is to reduce the thickness of the membrane, reduce the mass transfer resistance of the membrane and simultaneously greatly improve the water treatment efficiency, and the composite nanofiltration membrane with the ultrathin polyamide layer is prepared by polymerizing two-phase liquid at the interface of the ultrafiltration membrane, so that the method avoids the transfer of the membrane, has no obvious defect while preparing the ultrathin membrane, can recover raw materials and reduces the waste. Compared with the traditional interfacial polymerization membrane, the flux of the membrane is increased under the condition of not adding new materials, and another way is provided for preparing a new generation of high-flux membrane.
Disclosure of Invention
in order to overcome the defects in the prior art, the invention aims to provide a novel method for preparing an ultrathin composite membrane by using an interfacial microfluidization method to realize high-efficiency water treatment, and the method is applied to seawater desalination.
The technical scheme adopted by the invention is as follows:
A method for preparing an ultrathin composite membrane by an interfacial microfluid method comprises the following steps:
Dipping a pretreated hollow fiber ultrafiltration membrane in an aqueous solution containing piperazine, introducing an n-hexane solution of trimesoyl chloride into the hollow fiber ultrafiltration membrane, continuously introducing for 15-180 s to generate a polymerization reaction, generating an ultrathin polyamide layer on the inner surface of the hollow fiber ultrafiltration membrane, cleaning the inner surface of the hollow fiber ultrafiltration membrane covered with the polyamide layer by using an n-hexane solvent, and drying to obtain an ultrathin composite membrane; the mass fraction of the piperazine aqueous solution is 0.05-5%, and the mass fraction of the n-hexane solution of trimesoyl chloride is 0.01-1%.
Further, the pretreatment process of the hollow fiber ultrafiltration membrane comprises the following steps: the hollow fiber ultrafiltration membrane is cleaned by mixed solution of water and methanol with the volume ratio of 1:1, then soaked in deionized water for one day, and then dried for standby.
Furthermore, the ultrafiltration membrane is made of polyvinylidene fluoride, polypropylene, polyacrylonitrile, polyethylene, polyvinyl chloride, polysulfone, polyether sulfone, polyimide and the like.
Further, the drying temperature is 60-90 ℃, and the drying time is 5-20 min.
The normal hexane solution of trimesoyl chloride is pumped into the hollow fiber ultrafiltration membrane by connecting a peristaltic pump with a flow pipeline.
The normal hexane flow pipeline is externally connected with the flow pipeline and used for introducing normal hexane into the hollow fiber ultrafiltration membrane to clean the inner wall after the reaction is finished, and the flow pipeline of the normal hexane solution of trimesoyl chloride and the normal hexane flow pipeline are connected in parallel through a Y-shaped or T-shaped connecting pipeline and then connected with the hollow fiber ultrafiltration membrane in series.
Furthermore, the joints of the ports at the two ends of the hollow fiber ultrafiltration membrane are sealed by epoxy resin glue.
Further, the flow rate of the n-hexane solution of trimesoyl chloride is 20-200 mu L/hr.
Furthermore, the length of the hollow fiber membrane is 5-20 cm, and the number of the hollow fiber membrane is 10-30.
Compared with the prior art, the invention has the advantages that: the invention does not place piperazine and acyl chloride on one side of the membrane in sequence, but places the piperazine and the acyl chloride on the inner side and the outer side of the membrane, so that an ultrathin polyamide layer is synthesized at the interface of the membrane, the water flux is greatly improved, the transfer of the membrane is avoided, no obvious defect exists when the ultrathin membrane is prepared, the raw materials can be recycled, and the waste is reduced.
The invention is further illustrated by the following examples.
Drawings
Figure 1 SEM image of composite nanofiltration membrane surface inside hollow fiber membrane.
FIG. 2 is a diagram of an experimental device, 1 is a n-hexane liquid storage tank, 2 is a n-hexane solution storage tank of trimesoyl chloride, 3 is a Y-shaped connecting pipeline, 4 is a piperazine aqueous solution, 5 is a hollow fiber ultrafiltration membrane, 6 is a collecting device, 7 is a peristaltic pump.
Detailed Description
The present invention will be described in detail below with reference to specific examples, but the present invention is not limited to the following examples, and various modifications and implementations are included within the technical scope of the present invention without departing from the content and scope of the present invention.
materials and reagents required in the preparation of the composite membrane:
Polysulfone (PSF) shanghai eosino photochemical plant, polyvinylidene fluoride (PVDF) shanghai eosino photochemical plant, Polyethersulfone (PES) shanghai eosino photochemical plant, polypropylene (PP) shanghai eosino photochemical plant, Polyacrylonitrile (PAN) shanghai eosino photochemical plant, polyvinyl chloride (PVC) shanghai eosino photochemical plant, anhydrous methanol alatin reagent (shanghai) limited, trimesoyl chloride (TMC), anhydrous piperazine (PIP) alatin reagent (shanghai) limited, sodium sulfate (Na)2SO4) Magnesium sulfate (MgSO)4) Magnesium chloride (MgCl)2) Sodium nitrate (NaNO)3) Sodium chloride (NaCl), N-Dimethylformamide (DMF), N-methylpyrrolidone (NMP), Dimethylacetamide (DMAC) by national medicine group chemical reagent Co.
example 1
Pretreatment of a base film: cutting the hollow fiber polysulfone ultrafiltration membrane into small sections with the length of 20cm, and mixing the small sections with water and methanol water 1: the solution of 1 is washed for three times respectively, soaked in water for one day and then dried for standby.
The device is built: prepare diameter 2.5cm, long 18 cm's glass long tube, glass long tube both ends opening, be equipped with inlet and liquid outlet and the inside intercommunication of glass long tube on the lateral wall, arrange the glass long tube in with the hollow fiber membrane group that 10 hollow fiber membranes constitute to seal the gap of port department between with epoxy with between the glass long tube and between glass long tube and the hollow fiber membrane, the glass long tube in constitute inclosed space, treat to guarantee the inside unblocked of each hollow fiber membrane in the hollow fiber membrane group after the glue is done, then with the normal hexane solution liquid storage pot and the normal hexane liquid storage pot connection peristaltic pump of trimesoyl chloride, then be connected with hollow fiber membrane group one end after parallelly connected through Y type connecting tube.
Preparing a nanofiltration membrane: preparing a piperazine aqueous solution with the mass fraction of 2% as an A solution, and preparing a trimesoyl chloride n-hexane solution with the mass fraction of 0.05% as a B solution. Closing the liquid outlet of the glass long tube, introducing the solution A into the glass long tube through the liquid inlet until the whole glass long tube is fully distributed, closing the liquid inlet, keeping the liquid for 30s, injecting the solution B into the glass long tube through a peristaltic pump at the speed of 141 mu L/hr, stopping the operation after 2min, changing the direction of the inner part of the hollow fiber membrane, introducing normal hexane to remove the redundant solution B, discharging the solution A in the glass long tube through the liquid outlet, taking out the hollow fiber membrane, placing the hollow fiber membrane into the air, keeping the hollow fiber membrane for 3min, then placing the hollow fiber membrane into an oven at 80 ℃ for drying for 5min, and placing the.
And (3) performance testing: the water flux of the membrane is 17.6L/(m) under 0.6MPa and 25L/h2H.bar) with a sodium sulfate rejection of 95.5%.
Example 2
Pretreatment of a base film: cutting the hollow fiber polysulfone ultrafiltration membrane into small sections with the length of 20cm, and mixing the small sections with water and methanol water 1: the solution of 1 is washed for three times respectively, soaked in water for one day and then dried for standby.
The device is built:
Preparing a glass long tube with the diameter of 2.5cm and the length of 18cm, opening two ends and opening two openings at the column side, arranging a hollow fiber membrane group consisting of 10 hollow fiber membranes in the glass long tube, sealing gaps at the port parts between the glass long tubes and between the glass long tube and the hollow fiber membranes by using epoxy resin, forming a closed space in the glass long tube, ensuring the smoothness of the interior of each hollow fiber membrane in the hollow fiber membrane group after glue is dried, connecting a n-hexane solution storage tank and a n-hexane solution storage tank of trimesoyl chloride with a peristaltic pump, and connecting the n-hexane solution storage tank and the n-hexane solution storage tank of trimesoyl chloride with one end of the hollow fiber membrane group after the n-hexane solution storage tank.
Preparing a nanofiltration membrane:
Preparing a piperazine aqueous solution with the mass fraction of 2% as an A solution, and preparing a trimesoyl chloride n-hexane solution with the mass fraction of 0.05% as a B solution. Closing the liquid outlet of the glass long tube, introducing the solution A into the glass long tube through the liquid inlet until the whole glass long tube is fully distributed, closing the liquid inlet, keeping the liquid for 30s, injecting the solution B into the glass long tube through a peristaltic pump at the speed of 141 mu L/hr, stopping the operation after 30s, changing the direction of the inner part of the hollow fiber membrane, introducing normal hexane to remove the redundant solution B, discharging the solution A in the glass long tube through the liquid outlet, taking out the hollow fiber membrane, keeping the hollow fiber membrane in the air for 3min, then placing the hollow fiber membrane into an oven at 80 ℃ for drying for 5min, and placing the obtained ultrathin composite membrane in a.
and (3) performance testing: the water flux of the membrane is 19.8L/(m) under 0.6MPa and 25L/h2H.bar) with a sodium sulfate rejection of 95.5%.
Example 3
Pretreatment of a base film: cutting the hollow fiber polysulfone ultrafiltration membrane into small sections with the length of 20cm, and mixing the small sections with water and methanol water 1: the solution of 1 is washed for three times respectively, soaked in water for one day and then dried for standby.
The device is built:
Preparing a glass long tube with the diameter of 2.5cm and the length of 18cm, opening two ends and opening two openings at the column side, arranging a hollow fiber membrane group consisting of 10 hollow fiber membranes in the glass long tube, sealing gaps at the port parts between the glass long tubes and between the glass long tube and the hollow fiber membranes by using epoxy resin, forming a closed space in the glass long tube, ensuring the smoothness of the interior of each hollow fiber membrane in the hollow fiber membrane group after glue is dried, connecting a n-hexane solution storage tank and a n-hexane solution storage tank of trimesoyl chloride with a peristaltic pump, and connecting the n-hexane solution storage tank and the n-hexane solution storage tank of trimesoyl chloride with one end of the hollow fiber membrane group after the n-hexane solution storage tank.
preparing a nanofiltration membrane:
Preparing a piperazine aqueous solution with the mass fraction of 2% as an A solution, and preparing a trimesoyl chloride n-hexane solution with the mass fraction of 0.1% as a B solution. Closing the liquid outlet of the glass long tube, introducing the solution A into the glass long tube through the liquid inlet until the whole glass long tube is fully distributed, closing the liquid inlet, keeping the liquid for 30s, injecting the solution B into the glass long tube through a peristaltic pump at the speed of 141 mu L/hr, stopping the operation after 2min, changing the direction of the inner part of the hollow fiber membrane, introducing normal hexane to remove the redundant solution B, discharging the solution A in the glass long tube through the liquid outlet, taking out the hollow fiber membrane, placing the hollow fiber membrane into the air, keeping the hollow fiber membrane for 3min, then placing the hollow fiber membrane into an oven at 80 ℃ for drying for 5min, and placing the.
Performance ofAnd (3) testing: the water flux of the membrane is 15.6L/(m) under 0.6MPa and 25L/h2h.bar) with a sodium sulfate rejection of 95.5%.

Claims (8)

1. A method for preparing an ultrathin composite film by an interfacial microfluidization method is characterized in that: the method comprises the following steps:
Dipping a pretreated hollow fiber ultrafiltration membrane in an aqueous solution containing piperazine, introducing an n-hexane solution of trimesoyl chloride into the hollow fiber ultrafiltration membrane, continuously introducing for 15-180 s to generate a polymerization reaction, generating an ultrathin polyamide layer on the inner surface of the hollow fiber ultrafiltration membrane, cleaning the inner surface of the hollow fiber ultrafiltration membrane covered with the polyamide layer by using an n-hexane solvent, and drying to obtain an ultrathin composite membrane; the mass fraction of the piperazine aqueous solution is 0.05-5%, and the mass fraction of the n-hexane solution of trimesoyl chloride is 0.01-1%.
2. The method of claim 1, wherein: the pretreatment process of the hollow fiber ultrafiltration membrane comprises the following steps: the hollow fiber ultrafiltration membrane is cleaned by mixed solution of water and methanol with the volume ratio of 1:1, then soaked in deionized water for one day, and then dried for standby.
3. The method of claim 1, wherein: the ultrafiltration membrane is made of polyvinylidene fluoride, polypropylene, polyacrylonitrile, polyethylene, polyvinyl chloride, polysulfone, polyether sulfone or polyimide.
4. The method of claim 1, wherein: the drying temperature is 60-90 ℃, and the drying time is 5-20 min.
5. The method of claim 1, wherein: and the normal hexane solution of trimesoyl chloride is pumped into the hollow fiber ultrafiltration membrane by connecting a peristaltic pump with a flow pipeline.
6. The method of claim 5, wherein: the flow pipeline is externally connected with a normal hexane flow pipeline, the flow pipeline of the normal hexane solution of trimesoyl chloride and the normal hexane flow pipeline are connected in parallel through a Y-shaped or T-shaped connecting pipeline and then connected with the hollow fiber ultrafiltration membrane in series, and the connection part of the ports passes through.
7. The method of claim 1, wherein: the flow rate of the n-hexane solution of trimesoyl chloride is 20-200 mu L/hr.
8. The method of claim 1, wherein: the length of the hollow fiber membrane is 5-20 cm, and the number of the hollow fiber membrane is 10-30.
CN201910810788.5A 2019-08-29 2019-08-29 Preparation method for preparing ultrathin composite membrane by interfacial microfluidization method Active CN110559887B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910810788.5A CN110559887B (en) 2019-08-29 2019-08-29 Preparation method for preparing ultrathin composite membrane by interfacial microfluidization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910810788.5A CN110559887B (en) 2019-08-29 2019-08-29 Preparation method for preparing ultrathin composite membrane by interfacial microfluidization method

Publications (2)

Publication Number Publication Date
CN110559887A true CN110559887A (en) 2019-12-13
CN110559887B CN110559887B (en) 2022-05-24

Family

ID=68776840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910810788.5A Active CN110559887B (en) 2019-08-29 2019-08-29 Preparation method for preparing ultrathin composite membrane by interfacial microfluidization method

Country Status (1)

Country Link
CN (1) CN110559887B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111871231A (en) * 2020-07-29 2020-11-03 泰州禾益新材料科技有限公司 Polyamide composite membrane modified by interfacial polymerization
CN111871232A (en) * 2020-07-29 2020-11-03 泰州禾益新材料科技有限公司 Double-layer composite reverse osmosis membrane
CN112844070A (en) * 2020-12-02 2021-05-28 宁波诺丁汉大学 Method for preparing polyvinylidene fluoride hollow film by microfluidics
CN113522035A (en) * 2021-07-02 2021-10-22 北京碧水源膜科技有限公司 High-performance hollow nanofiltration membrane based on compact hydrophobic PVDF (polyvinylidene fluoride) and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103041713A (en) * 2013-01-28 2013-04-17 天津膜天膜科技股份有限公司 Preparation method of hollow fiber nanofiltration membrane
CN103223300A (en) * 2013-04-12 2013-07-31 清华大学 Hollow fiber type composite nano-filtration membrane and preparation method thereof
US20160051939A1 (en) * 2012-12-27 2016-02-25 Gwangju Institute Of Science And Technology Nanocomposite ultra-thin separation membrane and method for manufacturing the same
CN106621847A (en) * 2016-10-19 2017-05-10 天津膜天膜科技股份有限公司 Preparation method for hollow fibrous membrane
CN108465381A (en) * 2018-03-12 2018-08-31 长兴科创科技咨询有限公司 A kind of band both sexes charge polyacrylonitrile hollow fiber composite nanometer filtering film and preparation method thereof
CN108786483A (en) * 2018-06-05 2018-11-13 四川大学 The method of laminated film and its laminated film of preparation are prepared by microvia interface convection current polymerization
CN109304107A (en) * 2017-07-28 2019-02-05 中国科学院宁波材料技术与工程研究所 A kind of positive permeable hollow fibers film of big flux and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160051939A1 (en) * 2012-12-27 2016-02-25 Gwangju Institute Of Science And Technology Nanocomposite ultra-thin separation membrane and method for manufacturing the same
CN103041713A (en) * 2013-01-28 2013-04-17 天津膜天膜科技股份有限公司 Preparation method of hollow fiber nanofiltration membrane
CN103223300A (en) * 2013-04-12 2013-07-31 清华大学 Hollow fiber type composite nano-filtration membrane and preparation method thereof
CN106621847A (en) * 2016-10-19 2017-05-10 天津膜天膜科技股份有限公司 Preparation method for hollow fibrous membrane
CN109304107A (en) * 2017-07-28 2019-02-05 中国科学院宁波材料技术与工程研究所 A kind of positive permeable hollow fibers film of big flux and preparation method thereof
CN108465381A (en) * 2018-03-12 2018-08-31 长兴科创科技咨询有限公司 A kind of band both sexes charge polyacrylonitrile hollow fiber composite nanometer filtering film and preparation method thereof
CN108786483A (en) * 2018-06-05 2018-11-13 四川大学 The method of laminated film and its laminated film of preparation are prepared by microvia interface convection current polymerization

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111871231A (en) * 2020-07-29 2020-11-03 泰州禾益新材料科技有限公司 Polyamide composite membrane modified by interfacial polymerization
CN111871232A (en) * 2020-07-29 2020-11-03 泰州禾益新材料科技有限公司 Double-layer composite reverse osmosis membrane
CN111871232B (en) * 2020-07-29 2021-10-26 深圳市双源包装材料有限公司 Double-layer composite reverse osmosis membrane
CN111871231B (en) * 2020-07-29 2022-01-25 中煤(北京)环保工程有限公司 Polyamide composite membrane modified by interfacial polymerization
CN112844070A (en) * 2020-12-02 2021-05-28 宁波诺丁汉大学 Method for preparing polyvinylidene fluoride hollow film by microfluidics
CN112844070B (en) * 2020-12-02 2022-03-29 宁波诺丁汉大学 Method for preparing polyvinylidene fluoride hollow film by microfluidics
CN113522035A (en) * 2021-07-02 2021-10-22 北京碧水源膜科技有限公司 High-performance hollow nanofiltration membrane based on compact hydrophobic PVDF (polyvinylidene fluoride) and preparation method thereof
CN113522035B (en) * 2021-07-02 2023-02-24 北京碧水源膜科技有限公司 High-performance hollow nanofiltration membrane based on compact hydrophobic PVDF (polyvinylidene fluoride) and preparation method thereof

Also Published As

Publication number Publication date
CN110559887B (en) 2022-05-24

Similar Documents

Publication Publication Date Title
CN110559887B (en) Preparation method for preparing ultrathin composite membrane by interfacial microfluidization method
Singh Membrane technology and engineering for water purification: application, systems design and operation
Abdullah et al. Membranes and membrane processes: fundamentals
Strathmann Introduction to membrane science and technology
US4756835A (en) Permeable membranes having high flux-density and low fouling-propensity
Singh Hybrid membrane systems for water purification: technology, systems design and operations
Cardew Membrane processes: a technology guide
Aptel et al. Categories of membrane operations
US20140131281A1 (en) Membrane filtration method and membrane filtration device
CN103240005B (en) Tubular composite nanofiltration membrane and preparation method thereof
Yang et al. Membrane distillation: Now and future
Pal Membrane-based technologies for environmental pollution control
CN104548975A (en) Tubular composite nanofiltration membrane
KR20140082532A (en) Method for composite membrane module
Wu et al. Ultrastable sandwich graphene oxide hollow fiber membranes with confined interlayer spacing
Han et al. Preparation and performance of SPPES/PPES hollow fiber composite nanofiltration membrane with high temperature resistance
CN109289553A (en) Continuously prepare the device and method of hollow fiber composite membrane
CN205773801U (en) A kind of inorganic salt draws liquid indirect regeneration
Ding et al. The enhancement of separation performance of hollow fiber membrane modules: From the perspective of membranes and membrane modules structural optimization design
Wang et al. Understand the basics of membrane filtration
Chaoui et al. Evaluation of fo membranes performance using a modelling approach
CN112007513A (en) Preparation method of meta-aramid-based polyamide composite nanofiltration membrane
CN115055061A (en) Preparation method of polyamide composite nanofiltration membrane with high osmotic selectivity
Liu et al. Membranes: technology and applications
CN111644072A (en) Preparation method of ultra-low pressure reverse osmosis membrane

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant