CN110557629A - 固体摄像元件、摄像装置、及固体摄像元件的控制方法 - Google Patents

固体摄像元件、摄像装置、及固体摄像元件的控制方法 Download PDF

Info

Publication number
CN110557629A
CN110557629A CN201910388139.0A CN201910388139A CN110557629A CN 110557629 A CN110557629 A CN 110557629A CN 201910388139 A CN201910388139 A CN 201910388139A CN 110557629 A CN110557629 A CN 110557629A
Authority
CN
China
Prior art keywords
request
test
arbiter
circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910388139.0A
Other languages
English (en)
Inventor
榊原雅树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Publication of CN110557629A publication Critical patent/CN110557629A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/68Noise processing, e.g. detecting, correcting, reducing or removing noise applied to defects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/68Noise processing, e.g. detecting, correcting, reducing or removing noise applied to defects
    • H04N25/69SSIS comprising testing or correcting structures for circuits other than pixel cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明提供固体摄像元件、摄像装置及固体摄像元件的控制方法。在判优器协调请求的固体摄像元件中确定故障部位。多个像素在检测到规定的事件的情况下,生成要求发送规定的检测信号的请求。测试电路在未指示测试的情况下将多个像素各自的请求作为输出请求来输出,在指示测试的情况下,生成新的多个请求并将各个请求作为所述输出请求来输出。判优器协调输出请求。通信电路根据判优器的协调结果发送所述检测信号。故障判定部在指示测试的情况下根据所述检测信号来判定所述判优器是否故障。

Description

固体摄像元件、摄像装置、及固体摄像元件的控制方法
技术领域
本技术涉及固体摄像元件、摄像装置及固体摄像元件的控制方法。具体来说,涉及将亮度的变化量超过阈值的情况作为地址事件检测的固体摄像元件、摄像装置及固体摄像元件的控制方法。
背景技术
目前,与垂直同步信号等同步信号同步并拍摄图像数据(帧)的同步型固体摄像元件用于摄像装置等。此种一般的同步型固体摄像元件中,只能按照同步信号的每个周期(例如1/60秒)来获取图像数据。因此,在与自动驾驶或可穿戴设备的用户接口等相关的领域,难以适应要求更高速处理的情况。因此,提出了设有将亮度的变化量超过阈值的情况作为地址事件实时检测并发送请求的多个像素、和协调这些请求的判优器的非同步型固体摄像元件(例如参照专利文献1)。作为对此种固体摄像元件的动作进行测试的方法,例举有载置照射脉冲光的调制光源并分析该脉冲光照射时的检测结果的测试方法。
现有技术文献
专利文献1:日本专利特表2016-533140号公报
在上述非同步型的测试方法中,通过分析脉冲光照射时的检测结果,确定存在异常的缺陷像素。但是,该检测结果由于经由对来自像素的请求进行协调的判优器输出,故而即便检测到缺陷像素,还存在难以确定是像素内的电路和判优器中的哪一个发生了故障的问题。
发明内容
本技术鉴于此种状况提出,目的在于在判优器协调请求的固体摄像元件中确定故障部位。
本技术为解决上述问题,其第一方面是一种固体摄像元件及其控制方法,所述固体摄像元件包括:多个像素,在检测到规定的事件的情况下,生成要求发送规定的检测信号的请求;测试电路,在未指示测试的情况下,将上述多个像素各自的上述请求作为输出请求来输出,在指示上述测试的情况下,生成新的多个请求并将各个请求作为上述输出请求来输出;判优器,协调上述输出请求;通信电路,根据上述判优器的协调结果发送上述检测信号;故障判定部,在指示上述测试的情况下根据上述检测信号来判定上述判优器是否故障。由此,具有判定判优器是否故障的作用。
此外,在该第一方面中,上述测试电路包括晶体管,在指示了上述测试的情况下所述晶体管向连接于上述判优器的信号线供给规定电位,上述请求经由上述信号线输出。由此,具有强制输出规定电位请求的作用。
此外,在该第一方面中,上述测试电路包括逻辑与门,所述逻辑与门将上述请求和指示上述测试的控制信号的逻辑与作为上述输出请求输出。由此,具有防止传送请求的信号线和接地端子之间短路的作用。
此外,在该第一方面中,对上述多个像素分别分配相互不同的地址,上述测试电路使与上述地址中一部分对应的上述新的请求作为上述输出请求输出。由此,具有进一步确定判优器内的故障部位的作用。
此外,在该第一方面中,排列有上述多个像素的像素阵列部分割成规定数量的区域,上述判优器在每个上述区域包括判优器块,上述故障判定部根据上述检测信号确定上述判优器块中发生了故障的判优器块。由此,具有进一步确定判优器内的故障部位的作用。
此外,在该第一方面中,上述像素的一部分配置于感光片,上述像素的其余部分配置于电路片,上述感光片层叠于上述电路片。由此,具有抑制片面积增大的作用。
此外,本技术的第二方面是一种摄像装置,包括:多个像素,在检测到规定的事件的情况下,生成要求发送规定的检测信号的请求;测试电路,在未指示测试的情况下,将上述多个像素各自的上述请求作为输出请求来输出,在指示上述测试的情况下,生成新的多个请求并将各个请求作为上述输出请求来输出;判优器,协调上述输出请求;通信电路,根据上述判优器的协调结果发送上述检测信号;故障判定部,在指示上述测试的情况下根据上述检测信号来判定上述判优器是否故障;信号处理部,对上述检测信号执行规定的处理。由此,具有判定判优器是否故障并执行规定处理的作用。
此外,本技术的第三方面是一种固体摄像元件的控制方法,其包括:请求生成步骤,在多个像素检测到规定的事件的情况下,生成要求发送规定的检测信号的请求;测试步骤,在未指示测试的情况下,将所述多个像素各自的所述请求作为输出请求来输出,在指示所述测试的情况下,生成新的多个请求并将各个请求作为所述输出请求来输出;协调步骤,协调所述输出请求;通信步骤,根据所述判优器的协调结果发送所述检测信号;故障判定步骤,在指示所述测试的情况下根据所述检测信号来判定所述判优器是否故障。
根据本技术,在由判优器协调请求的固体摄像元件中,能够实现判断判优器有无故障的优良效果。另外,此处记载的效果并非限定,也可以是本发明中记载的任一效果。
附图说明
图1是表示本技术的第一实施方式中的摄像装置的一结构例的框图。
图2是表示本技术的第一实施方式中的固体摄像元件的层叠构造的一例的图。
图3是表示本技术的第一实施方式中的固体摄像元件的一结构例的框图。
图4是表示本技术的第一实施方式中的像素的一结构例的电路图。
图5是表示本技术的第一实施方式中的比较器的输入输出特性的一例的图表。
图6是表示本技术的第一实施方式中的AER(Address Event Representation)逻辑电路的一结构例的框图。
图7是表示本技术的第一实施方式中的行测试电路的一结构例的电路图。
图8是表示本技术的第一实施方式中的行测试电路的动作一例的图。
图9是表示本技术的第一实施方式中的列测试电路的一结构例的电路图。
图10是表示本技术的第一实施方式中的行AER电路的一结构例的框图。
图11是表示本技术的第一实施方式中的行AER块的一结构例的电路图。
图12是表示本技术的第一实施方式中的列AER电路的一结构例的框图。
图13是表示本技术的第一实施方式中的列AER块的一结构例的框图。
图14是表示本技术的第一实施方式中的行判优器的一结构例的框图。
图15是表示本技术的第一实施方式中的握手一例的时序图。
图16是表示本技术的第一实施方式中的固体摄像元件的动作一例的流程图。
图17是表示本技术的第一实施方式的第一变形例中的行测试电路的一结构例的电路图。
图18是表示本技术的第一实施方式的第一变形例中的AND(逻辑与)门的一结构例的电路图。
图19是表示本技术的第一实施方式的第一变形例中的行测试电路的动作一例的图。
图20是表示本技术的第一实施方式的第一变形例中的列测试电路的一结构例的电路图。
图21是表示本技术的第一实施方式的第二变形例中的像素的一结构例的电路图。
图22是表示本技术的第一实施方式的第二变形例中的直至缓冲器配置于感光片的像素的一结构例的电路图。
图23是表示本技术的第一实施方式的第二变形例中的直至比较器配置于感光片的像素的一结构例的电路图。
图24是表示本技术的第一实施方式的第二变形例中的连接接地位的像素的一结构例的电路图。
图25是表示本技术的第二实施方式中的测试控制电路的一结构例的框图。
图26是表示本技术的第二实施方式中的行测试电路的一结构例的电路图。
图27是表示本技术的第二实施方式中的行侧解码器的动作一例的图。
图28是表示本技术的第二实施方式中的列测试电路的一结构例的电路图。
图29是表示用于说明本技术的第二实施方式中的测试方法的图。
图30是用于说明本技术的第二实施方式中的进一步分割区域并缩小故障部位的方法的图。
图31是表示本技术的第二实施方式中的故障部位的检测例的图。
图32是表示车辆控制系统的概略结构例的框图。
图33是表示摄像部的设置位置一例的说明图。
附图标记说明
100 摄像装置
110 光学部
120 DSP电路
130 显示部
140 操作部
150 总线
160 帧存储器
170 存储部
180 电源部
200 固体摄像元件
201 感光片
202 电路片
213 列判优器
214 列地址编码器
215 状态机
216 行地址编码器
220 列AER电路
221 列AER块
222 H侧列AER块
223 L侧列AER块
224、415、417、426 OR(逻辑或)门
260 行AER电路
270 行AER块
271、324、331、332、342、344、351、353、364、369、422-1、422-2、422-3 pMOS晶体管
272、273、321、323、345、352、354、361~363、365~368、370、371、411、412、421、422-4、422-5、422-6 nMOS晶体管
274、275、601、602 反相器
276 NOR(逻辑或非)门
300 像素阵列部
310 像素
320 对数响应部
322 光电二极管
330 缓冲器
340 微分电路
341、343、372 电容
350 比较器
360 AER逻辑电路
410 列测试电路
413、414、422 AND(逻辑与)门
416、418 列侧解码器
420 行测试电路
427 行侧解码器
430 测试控制电路
431、433 控制信号供给部
432、434 故障判定部
600 行判优器
610、650~654 判优器块
12031 摄像部
具体实施方式
下面,对用于实施本技术的方式(以下称为实施方式)进行说明。
说明按下面顺序进行。
1.第一实施方式(测试时向测试电路输出请求的例子)
2.第二实施方式(测试时将特定地址的请求向测试电路输出的例子)
3.对移动体的应用例
<1.第一实施方式>
[摄像装置的结构例]
图1是表示本技术的第一实施方式中的摄像装置100的一结构例的框图。该摄像装置100是用于拍摄图像数据的装置,包括:光学部110、固体摄像元件200及DSP(DigitalSignal Processing:数字信号处理)电路120。而且摄像装置100还包括:显示部130、操作部140、总线150、帧存储器160、存储部170及电源部180。作为摄像装置100设想为工业用机器人上搭载的照相机、车载照相机等。
光学部110对来自被摄体的光进行集光并导向固体摄像元件200。固体摄像元件200按照每个像素将亮度的变化量的绝对值超过阈值的绝对值的情况检测为地址事件。该固体摄像元件200按每个像素生成表示有无地址事件的检测信号,并经由信号线209供给至DSP电路120。
DSP电路120对由检测信号组成的图像数据执行规定的信号处理。该DSP电路120将处理后的图像数据、及事件数据经由总线150输出到帧存储器160等。另外,DSP电路120是权利要求中所记载的信号处理部的一例。
显示部130显示图像数据及事件数据。作为显示部130例如假设为液晶面板或有机EL(Electro Luminescence:电致发光)面板。操作部140按照用户的操作来生成操作信号。
总线150是光学部110、固体摄像元件200、DSP电路120、显示部130、操作部140、帧存储器160、存储部170及电源部180用于相互交换数据的共用的路径。
帧存储器160保持图像数据。存储部170存储图像数据等各种数据。电源部180向固体摄像元件200、DSP电路120或显示部130等供给电源。
[固体摄像元件的结构例]
图2是表示本技术的第一实施方式中的固体摄像元件200的层叠构造一例的图。该固体摄像元件200包括:感光片201、层叠于该感光片201的电路片202。
图3是表示本技术的第一实施方式中的固体摄像元件200的一结构例的框图。该固体摄像元件200包括:列判优器213、列AER电路220、列地址编码器214、像素阵列部300及状态机215。此外,固体摄像元件200包括:行地址编码器216、行AER电路260、行判优器600、列测试电路410、行测试电路420及测试控制电路430。测试控制电路430包括控制信号供给部431及故障判定部432。此外,像素阵列部300以二维栅格状排列有多个像素310。下面,将像素阵列部300中按规定方向排列的像素的集合称为“行”,以与行垂直的方向排列的像素的集合称为“列”。
像素310生成表示与光电流相应的电压变化量的微分信号,并将该信号的电平与规定的阈值进行比较。其比较结果表示地址事件的检测结果。在此,用于与微分信号进行比较的阈值包括相互不同的两个阈值,其中较大的一个阈值设为上限阈值,较小的一个阈值设为下限阈值。此外,地址事件包括开启事件及关闭事件,其检测结果包括1位的开启事件的检测结果和1位的关闭事件的检测结果。在微分信号超过上限阈值时检测开启事件,在其微分信号低于下限阈值时检测关闭事件。
像素310在检测到地址事件时与行测试电路420之间进行请求及响应的收发(以下称为“握手(handshake)”)。在此,请求是用于向状态机215要求地址事件的检测信号的外部发送的信号。接下来,像素310与列测试电路410之间进行握手。
列测试电路410与列AER电路220之间收发请求及响应。该列测试电路410在来自测试控制电路430的控制信号未指示测试的情况下,将来自全部行的请求原状输出到列AER电路220。另一方面,在指示了测试的情况下,列测试电路410对全部列新生成请求并输出到列AER电路220。此外,列测试电路410将来自列AER电路220的响应原状输出到像素310。
行测试电路420与行AER电路260之间收发请求及响应。该行测试电路420在来自测试控制电路430的控制信号未指示测试的情况下,将来自全部行的请求原状输出到行AER电路260。另一方面,在指示了测试的情况下,行测试电路420对全部行新生成请求并输出到行AER电路260。此外,行测试电路420将来自行AER电路260的响应原状输出到像素310。
另外,包括列测试电路410及行测试电路420的电路是权利要求中记载的测试电路的一例。
列判优器213对来自列AER电路220的请求进行协调并根据协调结果将响应发送到列AER电路220。
列AER电路220与各个列、列判优器213、状态机215之间收发请求及响应(握手)。
列地址编码器214将发生了地址事件的列的地址进行编码并发送到状态机215。
行地址编码器216将发生了地址事件的行的地址进行编码并发送到状态机215。
行判优器600对来自行AER电路260的请求进行协调并根据协调结果将响应发送到行AER电路260。另外,列判优器213及行判优器600是权利要求中记载的判优器的一例。
行AER电路260与各个行、行判优器600、状态机215之间收发请求及响应(握手)。
状态机215根据列判优器213及行判优器600的协调结果发送检测信号。当该状态机215从列AER电路220及行AER电路260接收请求时,对来自列地址编码器214及行地址编码器216的数据进行解码,并确定检测到地址事件的地址。通过将每个像素的地址事件的检测信号排列成二维栅格状,生成图像数据。状态机215将其图像数据发送到DSP电路120及故障判定部432。另外,状态机215是权利要求中记载的通信电路的一例。
控制信号供给部431在由模式信号MODE指示测试的情况下,向列测试电路410及行测试电路420分别供给控制信号。在此,模式信号MODE是表示进行固体摄像元件200的测试的测试模式和不进行测试的通常模式中的任一种的信号。该模式信号MODE由用户的操作、或规定应用的执行来生成。
故障判定部432在指示进行测试的情况下根据来自状态机215的检测信号判定列判优器213或行判优器600有无故障。在测试时,利用列测试电路410及行测试电路420,对于全部行及全部列即全部像素输出请求。因此,若状态机215没有故障,且列判优器213或行判优器600也没有故障,则从状态机215发送全部像素的检测信号。另一方面,在状态机215没有故障、且列判优器213或行判优器600存在故障的情况下,有可能未输出一部分像素的检测信号。因此,故障判定部432能够通过是否发送了全部像素的检测信号来判定列判优器213或行判优器600有无故障。
此外,若载置对全部像素照射脉冲光的调制光源,并与对该脉冲光照射时的检测结果进行分析的测试方法相组合,能够确定像素及判优器中哪个存在故障。
或者,不使用调制光源,也可以在后述图4的对数响应部320、缓冲器330或微分电路340的后段追加选择器进行测试,该选择器选择测试信号和来自前段的信号并向后段输出。若与该测试方法相组合,则能够确定像素内的各电路和判优器中哪个存在故障。
另外,将测试控制电路430配置在固体摄像元件200内,但也可以将测试控制电路430内的电路的一部分或全部配置在固体摄像元件200的外部(DSP电路120等)。
[像素的结构例]
图4是表示本技术的第一实施方式中的像素310的一结构例的电路图。该像素310包括:对数响应部320、缓冲器330、微分电路340、比较器350及AER逻辑电路360。
对数响应部320包括:nMOS(negative channel MOS)晶体管321及323、光电二极管322、pMOS(positive channel MOS)晶体管324。
光电二极管322利用对入射光的光电转换来生成光电流。pMOS晶体管324及nMOS晶体管323在电源与接地端子之间串联连接。此外,nMOS晶体管321的栅极连接在pMOS晶体管324及nMOS晶体管323的连接点,源极连接在光电二极管322,漏极连接在电源端子。而且,在pMOS晶体管324的栅极施加偏置电压Vblog。通过如此连接,流向光电二极管322的光电流对数地转换为电压Vp。
此外,光电二极管322配置在感光片201,除此以外的电路配置在电路片202。此外,感光片201的接地与电路片202的接地为了避免干扰而相互分离。
此外,缓冲器330包括在电源及接地端子之间串联连接的pMOS晶体管331及332。接地侧的pMOS晶体管332的栅极连接在对数响应部320,并在电源侧的pMOS晶体管331的栅极施加偏置电压Vbsf。此外,pMOS晶体管331及332的连接点连接于微分电路340。利用此连接,进行相对于Vp的阻抗转换。
微分电路340包括:电容341及343、pMOS晶体管342及344、nMOS晶体管345。
电容341的一端连接于缓冲器330,另一端连接在电容343的一端与pMOS晶体管344的栅极。向pMOS晶体管342的栅极输入重置信号xrst,源极及漏极连接在电容343的两端。pMOS晶体管344及nMOS晶体管345在电源与接地端子之间串联连接。此外,电容343的另一端连接在pMOS晶体管344及nMOS晶体管345的连接点。在接地侧的nMOS晶体管345的栅极施加偏置电压Vba,pMOS晶体管344及nMOS晶体管345的连接点还连接于比较器350。通过如此连接,生成微分信号并输出到比较器350。此外,微分信号由重置信号xrst初始化。
比较器350包括:pMOS晶体管351及353和nMOS晶体管352及354。pMOS晶体管351及nMOS晶体管352在电源与接地端子之间串联连接,pMOS晶体管353及nMOS晶体管354在电源与接地端子之间也串联连接。此外,pMOS晶体管351及353的栅极连接于微分电路340。在nMOS晶体管352的栅极施加规定的上限阈值Von,在nMOS晶体管354的栅极施加规定的下限阈值Voff。
pMOS晶体管351及nMOS晶体管352的连接点连接于AER逻辑电路360,该连接点的电压作为比较结果VCH输出。pMOS晶体管353及nMOS晶体管354的连接点也连接于AER逻辑电路360,且该连接点的电压作为比较结果VCL输出。通过如此连接,在微分信号超过上限阈值Von的情况下,比较器350输出高电平的比较结果VCH,在微分信号低于下限阈值Voff的情况下输出低电平的比较结果VCL。该比较结果VCH表示开启事件的检测结果,比较结果VCL表示关闭事件的检测结果。
另外,比较器350检测开启事件及关闭事件两者,但也可仅检测其中一个。例如,在仅检测开启事件时,仅配置对应的pMOS晶体管351及nMOS晶体管352。
AER逻辑电路360根据比较结果VCH及VCL进行握手。该AER逻辑电路360在发生了地址事件的情况下,与行AER电路260之间进行握手。接着,AER逻辑电路360与列AER电路220之间进行握手,并利用重置信号xrst来重置微分电路340。
图5是表示本技术的第一实施方式中的比较器350的输入输出特性一例的图表。该图中的纵轴表示比较器350的输出信号(VCH或VCL)的电平,横轴表示比较器350的输入信号(微分信号)的电平。此外,实线表示比较结果VCH的轨迹,单点划线表示比较结果VCL的轨迹。
若与亮度相应的电压的变化量(即微分信号)超过上限阈值Von,则比较结果VCH从低电平变为高电平,检测开启事件。另一方面,若微分信号低于下限阈值Voff,则比较结果VCL从高电平变为低电平,检测关闭事件。
[AER逻辑电路的结构例]
图6是表示本技术的第一实施方式中的AER逻辑电路360的一结构例的框图。该AER逻辑电路360包括:nMOS晶体管361至363、365至368、370及371、pMOS晶体管364及369、电容372。
nMOS晶体管361及362串联连接。向nMOS晶体管362及363的栅极输入比较结果VCH,向nMOS晶体管361的栅极输入响应AckYp1。此外,nMOS晶体管362及363的源极接地,从nMOS晶体管361的漏极向列测试电路410输出请求ReqHXp1。从nMOS晶体管363的漏极向行测试电路420输出请求ReqYp1。
pMOS晶体管364及nMOS晶体管365在电源与接地端子之间串联连接。此外,向pMOS晶体管364的栅极输入比较结果VCL,在nMOS晶体管365的栅极施加偏置电压Vbaer。
nMOS晶体管366及367串联连接。nMOS晶体管367及368的栅极连接在pMOS晶体管364及nMOS晶体管365的连接点。向nMOS晶体管366的栅极输入响应AckYp1。此外,nMOS晶体管367及368的源极接地,从nMOS晶体管366的漏极向列测试电路410输出请求ReqLXp1。从nMOS晶体管368的漏极向行测试电路420输出请求ReqYp1。
pMOS晶体管369与nMOS晶体管370及371在电源与接地端子之间串联连接。此外,在pMOS晶体管369的栅极施加偏置电压Vbrst。向nMOS晶体管370的栅极输入响应AckYp1,向nMOS晶体管371的栅极输入响应AckXp1。电容372的一端连接于电源,另一端连接在pMOS晶体管369及nMOS晶体管370的连接点。此外,pMOS晶体管369及nMOS晶体管370的连接点的电压作为重置信号xrst向微分电路340输出。
根据上述结构,当输入高电平的比较结果VCH(即检测开启事件)时,AER逻辑电路360将低电平的请求ReqYp1向行AER电路260发送。而且,当从行测试电路420接收高电平的响应AckYp1时,AER逻辑电路360将低电平的请求ReqHXp1向列AER电路410发送。接下来,当从列测试电路410接收高电平的响应AckXp1时,AER逻辑电路360将低电平的重置信号xrst输出到微分电路340。
此外,当输入低电平的比较结果VCL(即,检测关闭事件)时,AER逻辑电路360将低电平的请求ReqYp1向行测试电路420发送。而且,当从行测试电路420接收高电平的响应AckYp1时,AER逻辑电路360将低电平的请求ReqLXp1向列测试电路410发送。接下来,当从列测试电路410接收高电平的响应AckXp1时,AER逻辑电路360将低电平的重置信号xrst输出到微分电路340。
图7是表示本技术的第一实施方式中的行测试电路420的一结构例的电路图。在该行测试电路420按行配置nMOS晶体管421。
nMOS晶体管421按照来自测试控制电路430的控制信号T_ReqY向用于传送对应的行的请求的信号线供给规定电位。作为请求传送低电平信号的情况下,向信号线供给低电平(接地电位等)。
在指示了测试的情况下,测试控制电路430发送高电平的控制信号T_ReqY。由此,不管像素阵列部300的第1行的请求ReqYp1如何,信号线被强制地控制为低电平,且低电平的请求ReqYq1输出到行AER电路260。对于第2行以后也是相同。另外,请求ReqYp1是权利要求中记载的输出请求的一例。
另一方面,在未指示测试的情况下,测试控制电路430发送低电平的控制信号T_ReqY。由此,像素阵列部300的第1行的请求ReqYp1原状作为请求ReqYq1输出到行AER电路260。对于第2行以后也是相同。
此外,来自行AER电路260的第1行的响应AckYp1原状供给到像素阵列部300。对于第2行以后也是相同。
图8是表示本技术的第一实施方式中的行测试电路420的工作的一例的图。在控制信号T_ReqY为低电平的情况下,行测试电路420将请求ReqYp1原状作为请求ReqYq1直接输出。
另一方面,在控制信号T_ReqY为高电平的情况下,行测试电路420不管请求ReqYp1如何,将表示具有请求的低电平的请求ReqYq1强制输出。
[列测试电路的结构例]
图9是表示本技术的第一实施方式中的列测试电路410的一结构例的电路图。在该列测试电路410按行配置nMOS晶体管411及412。
nMOS晶体管411按照来自测试控制电路430的控制信号T_ReqLXp向用于传送对应的列的请求的信号线供给规定电位(接地电位等)。nMOS晶体管412按照来自测试控制电路430的控制信号T_ReqHXp向用于传送对应的列的请求的信号线供给规定电位。
在指示了测试的情况下,测试控制电路430将控制信号T_ReqLXp及T_ReqHXp中的一个设为高电平,将另一个设为低电平。在输出开启事件的检测信号的情况下,控制信号T_ReqHXp控制为高电平,在输出关闭事件的检测信号的情况下,控制信号T_ReqLXp控制为高电平。利用这些控制信号,低电平的请求ReqLXq1、或低电平的ReqHXq1输出到列AER电路220。对于第2行以后也相同。另外,请求ReqLXq1及ReqHXq1是权利要求中记载的输出请求的一例。
另一方面,在未指示测试的情况下,测试控制电路430发送低电平的控制信号T_ReqLXp及T_ReqHXp。由此,像素阵列部300的第1行的请求ReqLXp1及ReqHXp1原状作为请求ReqLXq1及ReqHXq1输出到列AER电路220。第2行以后也相同。
另外,如上所述,列测试电路410及行测试电路420在传送请求的信号线不是低电平的情况下也强制地将其电位设为低电平。若此时返回响应(AckYp1等),则尽管原本未发送请求,但是为了返回响应成为意想不到的像素状态,有可能成为死锁等状态。因此,在测试模式下,优选测试控制电路430将全部像素设为重置状态。例如,测试控制电路430在图6例示的AER逻辑电路360中通过输入高电平的偏置电压Vbrst设为重置状态。
[行AER电路的结构例]
图10是表示本技术的第一实施方式中的行AER电路260的一结构例的框图。该行AER电路260按行包括行AER块270。行AER块270与对应的行、行判优器600和状态机215之间进行握手。
[行AER块的结构例]
图11是表示本技术的第一实施方式中的行AER块270的一结构例的电路图。该行AER块270包括:pMOS晶体管271、nMOS晶体管272及273、NOR(逻辑或非)门276、反相器274及275。
pMOS晶体管271、nMOS晶体管272及273在电源与接地端子之间串联连接。此外,向pMOS晶体管271及nMOS晶体管272的栅极输入来自状态机215的控制信号LOAD。该控制信号LOAD是指示读出地址事件的检测结果的信号。此外,向nMOS晶体管273的栅极输入将来自状态机215的响应CHIP_ACK反转后的xCHIP_ACK。
NOR门276将两个输入值的逻辑或非作为请求ReqYa1输出到行判优器600。向NOR门276的输入端子的一个输入来自状态机215的响应CHIP_ACK。NOR门276的输入端子的另一个连接在pMOS晶体管271及nMOS晶体管272的连接点、和传送来自行测试电路420的请求ReqYq1的信号线。
反相器275将来自行判优器600的响应AckYa1反转并输出到反相器274。反相器274将来自反相器275的信号反转并作为响应AckYp1向行测试电路420输出。
通过上述结构,行AER块270在输入低电平的请求ReqYq1时,若响应CHIP_ACK为高电平,则输出低电平的请求ReqYa1。此外,行AER块270使高电平的响应AckYa1延迟并作为响应AckYp1输出。
[列AER电路的结构例]
图12是表示本技术的第一实施方式中的列AER电路220的一结构例的框图。该列AER电路220按列包括列AER块221。列AER块221与对应的列、状态机215、列判优器213之间进行握手。
[列AER块的结构例]
图13是表示本技术的第一实施方式中的列AER块221的一结构例的框图。该列AER块221包括:H侧列AER块222、L侧列AER块223及OR(逻辑或)门224。
H侧列AER块222在输入低电平的请求ReqHXq1时进行握手。该H侧列AER块222向OR门224输出使高电平的响应AckHXa1延迟的信号。L侧列AER块223在输入低电平的请求ReqLXq1时进行握手。该L侧列AER块223向OR门224输出使高电平的响应AckLXa1延迟的信号。此外,利用H侧列AER块222及L侧列AER块223将来自像素阵列部300的低电平的请求反转。上述H侧列AER块222及L侧列AER块223的结构与图11例示的行AER块270相同。另外,上述行或列的AER块的结构只要能够进行握手即可,并不限于图12例示的电路。
OR门224将来自H侧列AER块222及L侧列AER块223的信号的逻辑或作为响应AckXp1输出。
[行判优器的结构例]
图14是表示本技术的第一实施方式中的行判优器600的一结构例的框图。该行判优器600包括:判优器块610、650至654和反相器601及602。另外,该图是将垂直的事件驱动的像素数设为7像素时的图。例如,若垂直的事件驱动的像素数为1000像素,则设置覆盖至2^10阶(=1024像素量)的10阶判优器。
判优器块610对来自第1行的请求和来自第2行的请求进行协调。该判优器块610与判优器块652之间进行握手,并根据协调结果将响应输出到第1行或第2行。
判优器块650对来自第3行的请求和来自第4行的请求进行协调。该判优器块650与判优器块652之间进行握手,并根据协调结果将响应输出到第3行或第4行。
判优器块651对来自第5行的请求和来自第6行的请求进行协调。该判优器块651与判优器块653之间进行握手,并根据协调结果将响应输出到第5行或第6行。
判优器块652对来自判优器块610的请求和来自判优器块650的请求进行协调。该判优器块652与判优器块654之间进行握手,并根据协调结果将响应输出到判优器块610或650。
判优器块653对来自判优器块651的请求和来自第7行的请求进行协调。该判优器块653与判优器块654之间进行握手,并根据协调结果将响应输出到判优器块651或第7行。
判优器块654对来自判优器块652的请求和来自判优器块653的请求进行协调。该判优器块654利用反相器601及602使对于较早的请求的响应延迟并供给至判优器块652或653。
另外,列判优器213的结构与行判优器600相同。此外,上述判优器的结构只要能够对请求进行协调即可,并不限于该图例示的结构。
图15是表示本技术的第一实施方式中的握手一例的时序图。若像素310输出低电平的请求ReqYp1,则行AER块270在响应CHIP_ACK为高电平时返回高电平的响应AckYp1。
若接收到响应AckYp1,则像素310在发生了开启事件的情况下输出低电平的请求ReqHXp1。另外,在发生了关闭事件的情况下,输出低电平的请求ReqLXp1。
若接收到请求ReqHXp1,则列AER块221在响应CHIP_ACK为高电平时返回高电平的响应AckXp1。若接收到响应AckXp1,则像素310生成低电平的重置信号xrst并将请求ReqYp1及ReqHXp1初始化为高电平。
此外,若输出响应AckXp1,则列AER块221输出低电平的请求CHIP_REQ。若接收到请求CHIP_REQ,则状态机215将地址事件的检测结果传送到DSP电路120,并返回低电平的响应CHIP_ACK。
若接收到响应CHIP_ACK,则行AER块270在请求ReqYp1为高电平时将响应AckYp1初始化为低电平。此外,若接收到响应CHIP_ACK,则列AER块221在请求ReqHXp1为高电平时将响应AckXp1初始化为低电平。
若响应AckXp1被初始化,则像素310将重置信号xrst初始化为高电平,列AER块221将请求CHIP_REQ初始化为高电平。此外,状态机215将响应CHIP_ACK初始化为高电平。
[固体摄像元件的动作例]
图16是表示本技术的第一实施方式中的固体摄像元件200的动作一例的流程图。该动作例如在由模式信号MODE指示测试时开始。
固体摄像元件200内的测试控制电路430控制列测试电路410及行测试电路420对全部行及全部列强制地输出请求(步骤S901)。而且,列判优器213及行判优器600协调这些请求(步骤S902)。
状态机215根据协调结果对每个像素发送检测信号(步骤S903)。测试控制电路430根据上述检测信号判定列判优器213及行判优器600有无故障(步骤S904)。在步骤S904之后,固体摄像元件200停止用于测试的动作。
如此,根据本技术的第一实施方式,由于测试时列测试电路410及行测试电路420生成请求并供给至判优器,因此根据基于判优器的请求的协调结果能够判定有无该判优器的故障。由此,能够判断像素及判优器中的哪个故障,因此能够确定包括它们的固体摄像元件内的故障部位。
[第一变形例]
在上述第一实施方式中,测试控制电路430通过在测试时使nMOS晶体管411及421转移为开启状态而输出低电平的请求。但是,在该结构中,由于传送请求的信号线与接地端子在测试时短路,因此耗电有可能增大。该第一实施方式的第一变形例在代替nMOS晶体管411等而配置AND门而抑制耗电增大的方面与第一实施方式不同。
图17是表示本技术的第一实施方式的第一变形例中的行测试电路420的一结构例的电路图。该第一实施方式的变形例的行测试电路420代替nMOS晶体管421而配置AND(逻辑与)门422的方面与第一实施方式不同。
AND门422将来自像素阵列部300内的对应的行的请求(ReqYp1等)和来自测试控制电路430的控制信号T_ReqY的逻辑与,向行AER电路260输出。
图18是表示本技术的第一实施方式的第一变形例中的AND门422的一结构例的电路图。该AND门422包括:pMOS晶体管422-1至422-3、nMOS晶体管422-4至422-6。pMOS晶体管422-1与nMOS晶体管422-4及422-5在电源端子与接地端子之间串联连接。此外,pMOS晶体管422-3与nMOS晶体管422-6在电源端子与接地端子之间串联连接。nMOS晶体管422-2的源极连接于电源端子。nMOS晶体管422-2的漏极连接在pMOS晶体管422-1及nMOS晶体管422-4的连接点和pMOS晶体管422-3及nMOS晶体管422-6的栅极。
此外,向nMOS晶体管422-4及pMOS晶体管422-2的栅极输入来自像素阵列部300内的对应的行的请求(ReqYp1等)。向pMOS晶体管422-1及nMOS晶体管422-5的栅极输入来自测试控制电路430的控制信号T_ReqY。从pMOS晶体管422-3及nMOS晶体管422-6的连接点输出对应的行的请求(ReqYq1等)。
图19是表示本技术的第一实施方式的第一变形例中的行测试电路420的动作一例的图。在控制信号T_ReqY为低电平的情况下,行测试电路420不管请求ReqYp1如何,强制输出低电平的请求ReqYq1。
另一方面,在控制信号T_ReqY为高电平的情况下,行测试电路420将请求ReqYp1原状作为请求ReqYq1直接输出。
如图18及图19例示,在测试时利用低电平的控制信号T_ReqY使nMOS晶体管425成为关闭状态。因此,不需要在测试时对传送请求的信号线和接地端子进行充放电,与第一实施方式相比能够抑制耗电的增大。
图20是表示本技术的第一实施方式的第一变形例中的列测试电路410的一结构例的电路图。该第一实施方式的第一变形例的列测试电路410中代替nMOS晶体管411及412而配置AND门413及414的方面与第一实施方式不同。上述AND门413及414的电路结构与AND门422相同。
如此,在本技术的第一实施方式的第一变形例中,由于AND门422等输出请求(ReqYp1等)与控制信号T_ReqY的逻辑与,因此能够防止传送请求的信号线与接地端子之间的短路。由此,能够抑制耗电的增大。
[第二变形例]
在上述的第一实施方式中,将光电二极管322以外的元件配置在电路片202,但随着像素数的增大,电路片202内的电路的电路规模有可能增大。该第一实施方式的第二变形例的固体摄像元件200在将nMOS晶体管321及323设置于感光片201这方面与第一实施方式不同。
图21是表示本技术的第一实施方式的第二变形例中的像素310的一结构例的电路图。该第一实施方式的第二变形例的像素310在感光片201上除了光电二极管322以外进一步配置nMOS晶体管321及323这方面与第一实施方式不同。
通过将nMOS晶体管321及323配置在感光片201,能够减少与上述晶体管相应的电路片202的电路规模。此外,通过将感光片201内的晶体管仅设为N型,与使N型晶体管及P型晶体管混杂的情况相比,能够减少形成晶体管时的工序数。由此,能够减少感光片201的制造成本。
另外,将对数响应部320的一部分配置在感光片201,除此以外配置在电路片202,但向各个片配置的电路并不限定于此。例如,如图22例示,也能够将对数响应部320及缓冲器330配置在感光片201,除此以外配置在电路片202。此外,如图23例示,也能够将对数响应部320、缓冲器330、微分电路340及比较器350配置在感光片201,除此以外配置在电路片202。
此外,在图21例示的层叠构造中,如图24例示也能够将感光片201的接地与电路片202的接地不分离地连接。在图4及图23例示的结构中也同样地能够接地。
如此,根据本技术的第一实施方式的第二变形例,除了光电二极管322以外,由于还将nMOS晶体管321及323配置在感光片201,因此能够减小电路片202的电路规模。
<2.第二实施方式>
在上述的第一实施方式中,判断像素及判优器中哪一个存在故障,并确定固体摄像元件200内的故障部位。但是,在第一实施方式中,固体摄像元件200对于判优器内的多个判优器块的哪一个存在故障无法进一步确定故障部位。该第二实施方式的固体摄像元件200使特定的行或列输出请求并进一步确定故障部位的方面与第一实施方式不同。
图25是表示本技术的第二实施方式中的测试控制电路430的一结构例的框图。该第二实施方式的测试控制电路430包括控制信号供给部433及故障判定部434。
控制信号供给部433在当指示测试时利用控制信号使全部行及全部列强制输出请求。
另一方面,故障判定部434在当指示测试时将像素阵列部300分割为多个区域,并按区域将地址事件的检测频度作为统计量计算出。此外,故障判定部434计算各区域的检测频度的平均值。而且,故障判定部434将检测频度不足平均值的区域作为与存在故障的判优器块对应的区域提取出来,并将该区域的地址范围供给至控制信号供给部433。
控制信号供给部433使由故障判定部434提取的区域的行及列强制地输出请求。
而且,故障判定部434将提取的区域进一步分割为多个区域,并按区域计算检测频度。而且,故障判定部434提取检测频度不足平均值的区域,并将该区域的地址范围供给至控制信号供给部433。以下,故障判定部434及控制信号供给部433重复同样的控制并缩小与存在故障的判优器块对应的区域。而且,但缩小到可以检测故障的最小单位的区域(例如,2行×2列的区域)时,故障判定部434将与该区域对应的判优器块作为故障部位表示的故障信号输出到DSP电路120。
在此,判优器可以分类为平等判优器和非平等判优器。平等判优器是能够将同时刻输入的信号作为内部状态保持并优先处理的电路。优先处理之后,再输入的信号的优先度下降,其他的优先度高的部位的处理结束之后接收输入。另一方面,非平等判优器由于不保持同时输入的内部状态,所以响应迅速。但是,处理结束后,若立刻再输入请求,则不管优先顺序如何都进行处理,由于制造不均等导致能够高速响应的电路优先进行处理。因此,在平等判优器中,使全部像素输出请求时,地址事件的检测部位不集中在特定的行、列或像素而分散。另一方面,在非平等判优器中,有可能使检测部位集中在特定的行或列。在缩小故障部位时,优选检测部位不集中,因此,作为第二实施方式的列判优器213及行判优器600优选使用平等判优器。
图26是表示本技术的第二实施方式中的行测试电路420的一结构例的电路图。该第二实施方式的行测试电路420在还包括OR(逻辑或)门426及行侧解码器427这方面与第一实施方式不同。上述OR门426及行侧解码器427按行设置。此外,在全部行的行侧解码器427输入来自测试控制电路430的控制信号Y_Ctrl。该控制信号Y_Ctrl将输出请求的行地址和模式信号MODE编码化。
行侧解码器427将控制信号Y_Ctrl解码。该行侧解码器427根据解码后的行地址及模式信号MODE生成控制信号T_ReqY及EN,并将控制信号T_ReqY向nMOS晶体管421的栅极供给,将控制信号EN向OR门426供给。
OR门426将控制信号EN与对应的行的请求(ReqYp1等)的逻辑或,向行AER电路260输出。
图27是表示本技术的第二实施方式中的行侧解码器427的动作一例的图。在模式信号MODE是表示通常模式的值(例如,逻辑值“0”)的情况下,行侧解码器427输出低电平的控制信号T_ReqY及EN。
另一方面,在模式信号MODE是表示测试模式的值(例如,逻辑值“1”)的情况下,行侧解码器427判断解码后的行地址与自身所对应的行地址是否一致。
在一致的情况下,行侧解码器427输出高电平的控制信号T_ReqY和低电平的控制信号EN。由此,从该行强制地输出低电平的请求。此外,在不一致的情况下,行侧解码器427输出低电平的控制信号T_ReqY和高电平的控制信号EN。由此,从该行强制地输出高电平,并阻断请求。
如此,测试控制电路430通过控制信号Y_Ctrl能够仅输出特定的行地址的请求,并阻断其余的行地址的请求。对于列地址也相同。
图28是表示本技术的第二实施方式中的列测试电路410的一结构例的电路图。该第二实施方式的列测试电路410在还按列包括OR门415及417、列侧解码器416及418这方面与第一实施方式不同。
列侧解码器416及418结构与行侧解码器427相同。但是,列侧解码器416解码控制信号X_CtrlL,列侧解码器418解码控制信号X_CtrlH。上述控制信号将列地址及模式信号MODE编码化。在输出开启事件的检测信号的情况下,测试控制电路430利用控制信号X_CtrlH从特定的列地址输出请求,并利用控制信号X_CtrlL阻断全部的列地址的请求。另一方面,在输出关闭事件的检测信号的情况下,测试控制电路430利用控制信号X_CtrlL从特定的列地址输出请求,并利用控制信号X_CtrlH阻断全部的列地址的请求。
OR门415及417的结构与OR门426相同。
图29是用于说明本技术的第二实施方式中的测试方法的图。同图中的纵轴表示地址事件的检测频度,横轴表示地址。同图中的a表示区域B1的检测结果的一例,同图中的b表示与区域B1相邻的区域B2的检测结果的一例。同图中的c表示与区域B2相邻的区域B3的检测结果的一例。
故障判定部434在被指示测试时,如同图中的a所例示那样计算出区域B1的检测频度。此外,故障判定部434如同图中的b及c所例示那样计算出区域B2及B3的检测频度。对于区域B1至B3以外的各个区域也同样地按区域计算检测频度。
在此,区域B3的检测频度低于全部地址的平均值。在该情况下故障判定部434将该区域提取为与存在故障的判优器块对应的区域。控制信号供给部433使提取的区域B3的行及列强制地输出请求,对于其余区域阻断请求。
图30是用于说明本技术的第二实施方式中的进一步分割区域并缩小故障部位的方法的图。同图中的a表示将区域B3分割后的区域中区域B31的检测结果的一例。同图中的b表示将区域B3分割后的区域中与区域B31相邻的区域B32的检测结果的一例。同图中的c表示将区域B32分割后的区域中任一个的检测结果的一例。
故障判定部434如同图中的a及b例示那样计算将提取的区域B3进一步分割得到的多个区域中区域B31及B32各自的检测频度。
在此,区域B32的检测频度低于平均值。在该情况下故障判定部434将该区域提取为与存在故障的判优器块相对应的区域。控制信号供给部433使提取到的区域B32的行及列强制地输出请求,并对其余行及列阻断请求。
故障判定部434如同图中的c例示那样计算将提取到的区域B32进一步分割后的多个区域中的任一个的检测频度。固体摄像元件200重复图29及图30例示的处理,将区域细化,缩小故障部位。
图31是表示本技术的第二实施方式中的故障部位的检测例的图。在将区域B32细化后的区域的一部分,检测频度变得非常小。故障判定部434判定与该区域对应的块判优器存在故障。
如此,根据本技术的第二实施方式,测试控制电路430能够使与全部地址中的一部分对应的请求输出,并缩小使请求输出的地址,能够确定判优器内的故障部位。
<3.对移动体的应用例>
本发明涉及的技术(本技术)能够应用于各种产品。例如,本发明涉及的技术也可以作为搭载在汽车、电动汽车、混合电动汽车、自动两轮车、自行车、个人移动设备、飞机、无人机、船舶、机器人等任一种移动体上的装置来实现。
图32是表示可应用本发明涉及的技术的移动体控制系统的一例即车辆控制系统的概略结构例的框图。
车辆控制系统12000包括经由通信网络12001连接的多个电子控制单元。在图32所示的例子中,车辆控制系统12000包括:驱动系统控制单元12010、车身系统控制单元12020、车外信息检测单元12030、车内信息检测单元12040、及综合控制单元12050。此外,作为综合控制单元12050的功能结构图示了微型计算机12051、声音图像输出部12052、及车载网络I/F12053。
驱动系统控制单元12010按照各种程序来控制与车辆的驱动系统相关的装置的动作。例如,驱动系统控制单元12010作为内燃机或驱动用马达等用于产生车辆的驱动力的驱动力产生装置、用于将驱动力向车轮传递的驱动力传递机构、调节车辆舵角的操纵机构、及产生车辆的制动力的制动装置等的控制装置来发挥作用。
车身系统控制单元12020按照各种程序来控制装配在车体的各种装置的动作。例如,车身系统控制单元12020作为无钥匙进入系统、智能钥匙系统、电动车窗装置、或者大灯、尾灯、刹车灯、转向灯或雾灯等各种灯的控制装置来发挥作用。在该情况下,可向车身系统控制单元12020输入由代替钥匙的便携机发出的电波或各种开关的信号。车身系统控制单元12020接收上述电波或信号的输入,并控制车辆的门锁装置、电动车窗装置、灯等。
车外信息检测单元12030对搭载有车辆控制系统12000的车辆的外部信息进行检测。例如,在车外信息检测单元12030连接摄像部12031。车外信息检测单元12030使摄像部12031拍摄车外的图像,并接收拍摄到的图像。车外信息检测单元12030也可根据接收的图像来进行人、车、障碍物、标识或路面上文字等的物体检测处理或距离检测处理。
摄像部12031是接收光并输出与该光的感光量相应的电信号的光传感器。摄像部12031能够将电信号作为图像输出,还能够作为测距的信息输出。此外,摄像部12031接收的光既可以是可见光,也可以是红外线等非可见光。
车内信息检测单元12040检测车内的信息。车内信息检测单元12040连接例如检测驾驶员的状态的驾驶员状态检测部12041。驾驶员状态检测部12041包括例如拍摄驾驶员的照相机,车内信息检测单元12040也可根据从驾驶员状态检测部12041输入的检测信息,计算驾驶员的疲劳程度或集中程度,也可判断驾驶员是否困顿。
微型计算机12051根据由车外信息检测单元12030或车内信息检测单元12040获取的车内外的信息,能够运算驱动力发生装置、操纵机构或制动装置的控制目标值,并向驱动系统控制单元12010输出控制指令。例如,微型计算机12051可以进行以实现包括车辆的回避冲撞或者缓和冲击、根据车间距离的追随行驶、维持车速行驶、车辆的冲撞警告或车辆脱线警告等的ADAS(Advanced Driver Assistance System:先进驾驶辅助系统)功能为目的的协调控制。
此外,微型计算机12051根据由车外信息检测单元12030或车内信息检测单元12040获取的车辆的周围信息来控制驱动力发生装置、操纵机构或制动装置等,由此能够不依赖于驾驶员的操作而进行以自发行驶的自动驾驶等为目的的协调控制。
此外,微型计算机12051根据由车外信息检测单元12030获取的车外信息,能够向车身系统控制单元12020输出控制指令。例如,微型计算机12051根据车外信息检测单元12030检测到的前车或对面车的位置来控制大灯,并能够进行以实现将远光灯切换为近光灯等防眩为目的的协调控制。
声音图像输出部12052向输出装置发送声音及图像中的至少一个输出信号,该输出装置对于车辆的搭乘者或车外能够以视觉或听觉方式通知信息。在图32的例子中,作为输出装置例示了扬声器12061、显示部12062及安装面板12063。显示部12062也可包含例如车载显示器及抬头显示器中的至少一个。
图33是表示摄像部12031的设置位置一例的图。
图33中,作为摄像部12031具有摄像部12101、12102、12103、12104、12105。
摄像部12101、12102、12103、12104、12105例如设置在车辆12100的前鼻、外后视镜、后保险杠、后门及车室内的前玻璃的上部等位置。前鼻上安装的摄像部12101及车室内的前玻璃上部安装的摄像部12105主要获取车辆12100前方的图像。外后视镜上安装的摄像部12102、12103主要获取车辆12100侧方的图像。后保险杠或后门上安装的摄像部12104主要获取车辆12100后方的图像。车室内的前玻璃上部安装的摄像部12105主要用于检测前方车辆或行人、障碍物、信号灯、交通标识或车线等。
另外,图33表示摄像部12101至12104的拍摄范围的一例。拍摄范围12111表示前鼻上设置的摄像部12101的拍摄范围,拍摄范围12112、12113分别表示外后视镜上设置的摄像部12102、12103的拍摄范围,拍摄范围12114表示后保险杠或后门上设置的摄像部12104的拍摄范围。例如,通过使摄像部12101至12104拍摄的图像数据重合,得到从上方观察车辆12100的俯瞰图像。
摄像部12101至12104的至少一个也可具有获取距离信息的功能。例如,摄像部12101至12104的至少一个既可以是由多个摄像元件构成的立体照相机,也可以是具有相位差检测用的像素的摄像元件。
例如,微型计算机12051基于由摄像部12101至12104得到的距离信息,求得拍摄范围12111至12114内与各立体物之间的距离、和该距离的时间变化(与车辆12100的相对速度),由此尤其能够将位于车辆12100行驶路上最近的立体物,且与车辆12100向大致相同方向以规定的速度(例如,0km/h以上)行驶的立体物作为前车提取出来。而且,微型计算机12051设定在前车跟前应预先确保的车间距离,并能够进行自动刹车控制(也包括跟随停止控制)或自动加速控制(也包括跟随启动控制)等。如此,能够不依赖驾驶员的操作而进行以自发行驶的自动驾驶等为目的的协调控制。
例如,微型计算机12051基于由摄像部12101至12104得到的距离信息,能够将与立体物相关的立体物数据分类为两轮车、普通车辆、大型车辆、行人、电线杆等其他立体物并提取出来,并用于障碍物的自动回避。例如,微型计算机12051能够将车辆12100周边的障碍物识别为车辆12100的驾驶员可辨识的障碍物和难以辨识的障碍物。而且,微型计算机12051判断表示与各障碍物冲撞的危险度的冲撞风险,当冲撞风险为设定值以上存在冲撞可能性的状况时,经由扬声器12061或显示部12062向驾驶员输出警报,或经由驱动系统控制单元12010进行强制减速或回避操舵,从而能够进行用于回避冲撞的驾驶辅助。
摄像部12101至12104中的至少一个也可以是检测红外线的红外线照相机。例如,微型计算机12051通过判定在摄像部12101至12104的拍摄图像中是否存在行人,从而能够识别行人。上述行人的识别由如下步骤进行:提取例如作为红外线照相机的摄像部12101至12104的拍摄图像中的特征点的步骤、对表示物体轮廓的一系列特征点进行图案匹配处理来判别是否为行人的步骤。当微型计算机12051判定在摄像部12101至12104的拍摄图像中存在行人并识别行人时,声音图像输出部12052以在该识别出的行人上重叠显示用于强调的方形轮廓线的方式来控制显示部12062。此外,声音图像输出部12052以将表示行人的图标等显示在期望位置的方式来控制显示部12062也可。
以上,对可应用本发明涉及的技术的车辆控制系统的一例进行了说明。本发明涉及的技术可应用于以上说明的结构中的摄像部12031。具体来说,例如,图1的摄像装置100可用于摄像部12031。通过在摄像部12031应用本发明涉及的技术,能够确定其故障部位,因此能够提高系统的安全性和可靠性。
另外,上述实施方式表示用于将本技术具体实现的一例,实施方式中的要素与权利要求的发明特定要素分别具有对应关系。同样,权利要求中的发明特定要素和与其标注同一名称的本技术的实施方式中的要素分别具有对应关系。但是,本技术并不限于实施方式,在不脱离其主要思想的范围内通过对实施方式进行各种变形能够具体实现。
另外,本说明书记载的效果只不过是例示,并非用于限定,此外,也可以有其他效果。
另外,本技术可以形成以下结构。
(1)一种固体摄像元件,其包括:
多个像素,在检测到规定的事件的情况下,生成要求发送规定的检测信号的请求;
测试电路,在未指示测试的情况下,将所述多个像素各自的所述请求作为输出请求来输出,在指示所述测试的情况下,生成新的多个请求并将各个请求作为所述输出请求来输出;
判优器,协调所述输出请求;
通信电路,根据所述判优器的协调结果发送所述检测信号;
故障判定部,在指示所述测试的情况下根据所述检测信号来判定所述判优器是否故障。
(2)在上述(1)记载的固体摄像元件中,
所述测试电路包括晶体管,在指示了所述测试的情况下所述晶体管向连接于所述判优器的信号线供给规定电位,
所述请求经由所述信号线输出。
(3)在上述(1)记载的固体摄像元件中,所述测试电路包括逻辑与门,所述逻辑与门将所述请求和指示所述测试的控制信号的逻辑与作为所述输出请求输出。
(4)在上述(1)~(3)记载的固体摄像元件中,
对所述多个像素分别分配相互不同的地址,
所述测试电路使与所述地址中一部分对应的所述新的请求作为所述输出请求输出。
(5)在上述(4)记载的固体摄像元件中,排列有所述多个像素的像素阵列部分割成规定数量的区域,
所述判优器在每个所述区域包括判优器块,
所述故障判定部根据所述检测信号确定所述判优器块中发生了故障的判优器块。
(6)在上述(1)~(5)记载的固体摄像元件中,
所述像素的一部分配置于感光片,
所述像素的其余部分配置于电路片,
所述感光片层叠于所述电路片。
(7)一种摄像装置,其包括:
多个像素,在检测到规定的事件的情况下,生成要求发送规定的检测信号的请求;
测试电路,在未指示测试的情况下,将所述多个像素各自的所述请求作为输出请求来输出,在指示所述测试的情况下,生成新的多个请求并将各个请求作为所述输出请求来输出;
判优器,协调所述输出请求;
通信电路,根据所述判优器的协调结果发送所述检测信号;
故障判定部,在指示所述测试的情况下根据所述检测信号来判定所述判优器是否故障;
信号处理部,对所述检测信号执行规定的处理。
(8)一种固体摄像元件的控制方法,其包括:
请求生成步骤,在多个像素检测到规定的事件的情况下,生成要求发送规定的检测信号的请求;
测试步骤,在未指示测试的情况下,将所述多个像素各自的所述请求作为输出请求来输出,在指示所述测试的情况下,生成新的多个请求并将各个请求作为所述输出请求来输出;
协调步骤,协调所述输出请求;
通信步骤,根据所述判优器的协调结果发送所述检测信号;
故障判定步骤,在指示所述测试的情况下根据所述检测信号来判定所述判优器是否故障。

Claims (8)

1.一种固体摄像元件,其特征在于,包括:
多个像素,在检测到规定的事件的情况下,生成要求发送规定的检测信号的请求;
测试电路,在未指示测试的情况下,将所述多个像素各自的所述请求作为输出请求来输出,在指示所述测试的情况下,生成新的多个请求并将各个请求作为所述输出请求来输出;
判优器,协调所述输出请求;
通信电路,根据所述判优器的协调结果发送所述检测信号;
故障判定部,在指示所述测试的情况下根据所述检测信号来判定所述判优器是否故障。
2.根据权利要求1所述的固体摄像元件,其特征在于,
所述测试电路包括晶体管,在指示了所述测试的情况下所述晶体管向连接于所述判优器的信号线供给规定电位,
所述请求经由所述信号线输出。
3.根据权利要求1所述的固体摄像元件,其特征在于,所述测试电路包括逻辑与门,所述逻辑与门将所述请求和指示所述测试的控制信号的逻辑与作为所述输出请求输出。
4.根据权利要求1所述的固体摄像元件,其特征在于,
对所述多个像素分别分配相互不同的地址,
所述测试电路使与所述地址中一部分对应的所述新的请求作为所述输出请求输出。
5.根据权利要求4所述的固体摄像元件,其特征在于,
排列有所述多个像素的像素阵列部分割成规定数量的区域,
所述判优器在每个所述区域包括判优器块,
所述故障判定部根据所述检测信号确定所述判优器块中发生了故障的判优器块。
6.根据权利要求1所述的固体摄像元件,其特征在于,
所述像素的一部分配置于感光片,
所述像素的其余部分配置于电路片,
所述感光片层叠于所述电路片。
7.一种摄像装置,其特征在于,包括:
多个像素,在检测到规定的事件的情况下,生成要求发送规定的检测信号的请求;
测试电路,在未指示测试的情况下,将所述多个像素各自的所述请求作为输出请求来输出,在指示所述测试的情况下,生成新的多个请求并将各个请求作为所述输出请求来输出;
判优器,协调所述输出请求;
通信电路,根据所述判优器的协调结果发送所述检测信号;
故障判定部,在指示所述测试的情况下根据所述检测信号来判定所述判优器是否故障;
信号处理部,对所述检测信号执行规定的处理。
8.一种固体摄像元件的控制方法,其特征在于,包括:
请求生成步骤,在多个像素检测到规定的事件的情况下,生成要求发送规定的检测信号的请求;
测试步骤,在未指示测试的情况下,将所述多个像素各自的所述请求作为输出请求来输出,在指示所述测试的情况下,生成新的多个请求并将各个请求作为所述输出请求来输出;
协调步骤,协调所述输出请求;
通信步骤,根据所述判优器的协调结果发送所述检测信号;
故障判定步骤,在指示所述测试的情况下根据所述检测信号来判定所述判优器是否故障。
CN201910388139.0A 2018-06-01 2019-05-10 固体摄像元件、摄像装置、及固体摄像元件的控制方法 Pending CN110557629A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-105731 2018-06-01
JP2018105731 2018-06-01

Publications (1)

Publication Number Publication Date
CN110557629A true CN110557629A (zh) 2019-12-10

Family

ID=68697473

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910388139.0A Pending CN110557629A (zh) 2018-06-01 2019-05-10 固体摄像元件、摄像装置、及固体摄像元件的控制方法
CN201920671818.4U Active CN210781138U (zh) 2018-06-01 2019-05-10 固体摄像元件和摄像装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201920671818.4U Active CN210781138U (zh) 2018-06-01 2019-05-10 固体摄像元件和摄像装置

Country Status (7)

Country Link
US (1) US11076148B2 (zh)
EP (1) EP3806451B1 (zh)
JP (1) JP7280874B2 (zh)
KR (1) KR102626770B1 (zh)
CN (2) CN110557629A (zh)
TW (1) TWI789523B (zh)
WO (1) WO2019230217A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210000985A (ko) * 2019-06-26 2021-01-06 삼성전자주식회사 비전 센서, 이를 포함하는 이미지 처리 장치 및 비전 센서의 동작 방법
CN112732612A (zh) * 2019-10-28 2021-04-30 天津大学青岛海洋技术研究院 一种双边读出的地址事件表示传输协议电路
US11496728B2 (en) 2020-12-15 2022-11-08 Waymo Llc Aperture health monitoring mode
JP2022156089A (ja) * 2021-03-31 2022-10-14 ソニーセミコンダクタソリューションズ株式会社 撮像素子及び撮像装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6253161B1 (en) * 1997-07-10 2001-06-26 Universite Laval Integrated motion vision sensor
US6115305A (en) 1999-06-15 2000-09-05 Atmel Corporation Method and apparatus for testing a video display chip
US20090066793A1 (en) 2005-05-11 2009-03-12 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device, camera, automobile and monitoring device
US7915056B2 (en) * 2008-03-20 2011-03-29 International Business Machines Corporation Image sensor monitor structure in scribe area
US8566515B2 (en) * 2009-01-12 2013-10-22 Maxim Integrated Products, Inc. Memory subsystem
EP3047647B1 (en) 2013-09-16 2020-05-27 Prophesee Dynamic, single photodiode pixel circuit and operating method thereof
JP6496562B2 (ja) 2014-04-11 2019-04-03 ルネサスエレクトロニクス株式会社 半導体装置、診断テスト方法及び診断テスト回路
KR102523136B1 (ko) 2015-09-01 2023-04-19 삼성전자주식회사 이벤트 기반 센서 및 이벤트 기반 센서의 픽셀

Also Published As

Publication number Publication date
EP3806451A4 (en) 2021-05-19
TWI789523B (zh) 2023-01-11
JPWO2019230217A1 (ja) 2021-07-15
JP7280874B2 (ja) 2023-05-24
KR20210015744A (ko) 2021-02-10
US20210084288A1 (en) 2021-03-18
WO2019230217A1 (ja) 2019-12-05
TW202013953A (zh) 2020-04-01
CN210781138U (zh) 2020-06-16
US11076148B2 (en) 2021-07-27
EP3806451B1 (en) 2022-06-01
EP3806451A1 (en) 2021-04-14
KR102626770B1 (ko) 2024-01-17

Similar Documents

Publication Publication Date Title
US11876933B2 (en) Event image sensor, imaging device, and method of controlling event image sensor
CN210781138U (zh) 固体摄像元件和摄像装置
EP3576404B1 (en) Solid-state image pickup element
US11632505B2 (en) Solid-state image sensor and imaging device
US11297268B2 (en) Solid-state imaging element, imaging apparatus, and method of controlling solid-state imaging element
WO2021117350A1 (ja) 固体撮像素子、および、撮像装置
US11153519B2 (en) Solid-state imaging element, imaging device, and control method for solid-state imaging element
WO2019135304A1 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
US20220394206A1 (en) Imaging circuit, imaging device, and imaging method
WO2021131831A1 (ja) 固体撮像素子、および、撮像装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination