CN110557011B - 一种交直流混合配电网的llc系统谐振参数计算方法 - Google Patents

一种交直流混合配电网的llc系统谐振参数计算方法 Download PDF

Info

Publication number
CN110557011B
CN110557011B CN201910848413.8A CN201910848413A CN110557011B CN 110557011 B CN110557011 B CN 110557011B CN 201910848413 A CN201910848413 A CN 201910848413A CN 110557011 B CN110557011 B CN 110557011B
Authority
CN
China
Prior art keywords
voltage
llc
disturbance
voltage side
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910848413.8A
Other languages
English (en)
Other versions
CN110557011A (zh
Inventor
何晓琼
韩鹏程
曾理
龚子
赵智钦
舒泽亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Tuoje Xingtong Technology Co ltd
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201910848413.8A priority Critical patent/CN110557011B/zh
Publication of CN110557011A publication Critical patent/CN110557011A/zh
Application granted granted Critical
Publication of CN110557011B publication Critical patent/CN110557011B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种交直流混合配电网的LLC系统谐振参数计算方法,属于配电控制技术领域。所述多LLC并联模块的高压侧采用全控整流桥,高压侧接电容Cin实现稳压,低压侧采用对称全控逆变桥,所述LLC控制电路包括与LLC模块、非线性电源负载连接的电压、电流传感器,所述电压传感器输入端接高压侧直流母线电源侧,输出端通过数模转换器、检测电路与主控CPU连接;所述电流传感器的输入端分别接高压侧直流母线、低压侧非线性电源负载与高压侧谐振电感,输出侧通过数模转换器、检测电路与主控CPU连接,所述主控CPU与驱动电路相连。利用LLC系统精确计算谐振参数的方法,构建精确电路等效模型;确定谐振参数解空间与初始解。

Description

一种交直流混合配电网的LLC系统谐振参数计算方法
技术领域
本发明属于配电控制技术领域。
背景技术
近年来,我国铁路系统的技术升级提出了新需求。铁路配电系统是铁路沿线除牵引外其他负荷的供电电源,传统铁路配电系统通过外部35kV或10kV电力系统取电,由于线路自身原因,向电网注入较多无功和谐波成分,对电网电能质量存在一定的影响。新型铁路智能配电系统在此基础上加入了交直流混合电源系统,LLC变换器作为一种高效的直直变换设备,可以实现系统内直流母线与大功率储能电源的电能转换,逐渐成为工程领域争相研究的热门方案。因此,在LLC的结构及实现方面展开深入研究,对LLC的推广应用有一定的积极意义。
有学者提出一种基波近似的谐振参数分析计算方法,忽略高次谐波,只考虑基波分量构建LLC系统等效模型,并根据工程经验值计算谐振参数与直流增益曲线,这种分析计算方法已经在UPS不间断电源、LED驱动电源等小功率电力电子应用场合得到了广泛应用。这种方法将变压器高压侧开关网络等效为理想交流电源,变压器低压侧开关网络等效为理想阻感负载。在等效的过程中,部分参数对能量传输的影响被忽略,导致计算所得谐振参数的直流增益与理想值有偏差,大大降低了LLC系统的传输电压精度及准确性,增大了LLC系统控制部分的难度,也限制了LLC系统在大功率工业场合的推广应用。
发明内容
本发明的目的是提供一种交直流混合配电网的LLC系统谐振参数计算方法,它能有效地解决系统内寄生参数对LLC系统等效模型精度计算的技术问题。
本发明的目的是通过以下技术方案来实现,一种交直流混合配电网的LLC系统,包括非线性电源负载、多LLC并联模块及其控制电路;所述非线性电源负载采用蓄电池作为储能装置,通过开关K0、K1和电阻R0实现软启动保护;所述多LLC并联模块的高压侧采用全控整流桥,高压侧接电容Cin实现稳压,谐振电路采用谐振电容C1-Cn、谐振电感L1-Ln、励磁电感Lm1-Lmn、中高频变压器MFT,低压侧采用对称全控逆变桥,并利用低压侧电容Co稳压;所述LLC控制电路包括与LLC模块、非线性电源负载连接的电压、电流传感器,所述电压传感器输入端接高压侧直流母线电源侧,输出端通过数模转换器、检测电路与主控CPU连接;所述电流传感器的输入端分别接高压侧直流母线、低压侧非线性电源负载与高压侧谐振电感,输出侧通过数模转换器、检测电路与主控CPU连接,所述主控CPU与驱动电路相连。
所述主控CPU采用FPGA EP4CH14F7。所述主控CPU与驱动电路相连,驱动电路输出开关信号G1-G8,与全控整流器和全控逆变器的各个功率开关器件相连。所述一种交直流混合配电网的LLC系统的功能实现需要通过谐振参数计算与控制来实现。
所述的LLC系统谐振参数计算方法,LLC系统的电路结构为交直流混合配电网的LLC系统,其谐振参数计算方法步骤如下:
步骤1:采用电压电流传感器、LCR测量仪采集LLC系统输入侧直流电压、器件自身参数,构建考虑器件自身参数的精确电路等效模型;将单模块LLC系统高压侧的全控整流桥等效为AC电源,低压侧的全控逆变桥等效为两个等效电阻负载Reqs和Req
步骤2:根据步骤1所述的精确电路等效模型,确定谐振参数解空间R与初始解空间R1-R20;步骤2.1:精确电路等效模型
将等效电路的输入侧与输出侧的电压相除,得到等效电路的电压增益M,如式(1)中所示:
Figure GDA0002923831010000021
式(1)中M为电压增益,Req为等效储能负载,s为拉普拉斯算子,L1为谐振电感,RL1为谐振电感电阻,RLm1为励磁电感电阻,Lm1为励磁电感,Rs和Reqs为等效开关负载,RC1为谐振电容电阻,C1为谐振电容,Cs为开关器件寄生电容。
步骤2.2:解空间与初始解空间
解空间R包含谐振电容C1、谐振电感L1、励磁电感Lm1、励磁电阻RLm1、谐振电容电阻RC1、谐振电感电阻RL1、开关器件寄生电容Cs、等效储能负载Req、等效开关负载Rs和Reqs;初始解空间中的谐振电容C1、谐振电感L1、励磁电感Lm1由传统计算方法得到,初始解空间的其余参数采用固定参数;计算过程如下:首先计算特征阻抗Z如式(2)所示:
Z=Q·Req (2)
式(2)中Q为LLC系统品质因数,为工程经验常数,通常取0.8左右,其次计算谐振电容C1、谐振电感L1、励磁电感Lm1;如式(3)-(5)所示,k始终为电感系数,工程经验取4左右,fr为开关频率,为系统构建时确定的指标;
Figure GDA0002923831010000022
Figure GDA0002923831010000023
Lm1=k·L1 (5)
通过上述方法,得到初始解空间R1-R20
步骤3:将步骤2中所计算的初始解空间,代入小变量扰动的迭代求解算法;对初始解空间中部分变量进行随机小变量扰动,根据增益优化判据确定扰动后的变化方向,根据增益稳定性判据确定扰动后结果的适用性,迭代多次直至变化方向稳定后输出最终解;将初始解空间代入小变量扰动的迭代求解算法的具体方式为:
步骤3.1:定义小信号扰动的精确谐振参数计算方法中代价函数fi
Figure GDA0002923831010000024
式(6)中,M1-M20为代入初始解下电压增益,Mref为电压增益的理想值,i为求解的数量,取20,计算结果为f1-f20
步骤3.2:进行一次小信号扰动的迭代求解
通过对解空间R内任意一个变量δ的扰动量
Figure GDA0002923831010000031
产生新解R’1-R’20,并计算相应的电压增益M’1-M’20和代价函数f’1-f’20:
Figure GDA0002923831010000032
计算扰动后代价函数fi’和代价函数差Δfi
Δfi=fi’-fi (8)
步骤3.3:小信号扰动迭代求解判据
将扰动后产生的增益与扰动前产生的增益进行对比,采用增益优化对其进行筛选,当Δf<0时接受新解,反之则以新解与当前解的目标函数差定义接受概率:
Figure GDA0002923831010000033
其中,P为新解的接受概率,T为某次扰动下的扰动指数,初始为接近无穷大的常数,该变量随求解过程逐渐降低,并决定了算法是否结束,e为自然指数,通常取2.718。
将此时解空间全部参数代入模型中,得到开关频率范围的最小值fmin,与LLC系统第二谐振频率fm比较,作为增益稳定性判据,确定扰动后结果的适用性:
Figure GDA0002923831010000034
式(10)中,P’为新解的二次接受概率。
若T>Tref,Tref为LLC系统设定的扰动指数参考值,设置为常数0.01,扰动指数较高,迭代算法求解未结束,重复步骤3.2;
若T<Tref,扰动指数较低,迭代算法结束,CPU对外输出当前谐振参数解。
本发明的有益效果是:一种交直流混合配电网的LLC系统及其谐振参数计算方法,适用于铁路供电技术领域。在传统模型的基础上,建立了考虑电路自身特性的精确电路等效模型,并推导出相应的直流增益函数,提高了模型的精确程度;结合传统谐振参数求解方法,采用小信号扰动法对谐振参数进行精确求解。在提高了负载供电可靠性的同时,也显著提高了系统的输入输出电压的可调范围,从而切实保证了供电质量。
试验证明,本实施例的方法具有如下有益效果:
1)本发明所采用的LLC系统在启动与关断瞬间采用了硬件软启动,能够有效避免负载和LLC模块低压侧启动瞬间的过电压和过电流问题,保证LLC系统的运行稳定性;
2)本发明考虑了电路自身特性与器件寄生参数的问题,使得建立的电路等效模型及直流增益函数更为精确;在传统谐振参数求解方法的基础上,采用小信号扰动法对谐振参数进行精确求解,提高了系统运行的可靠性;
3)本发明在提高了负载供电可靠性的同时,也显著提高了系统的输入输出电压的可调范围,从而切实保证了供电质量。
附图说明
图1是本发明的电路示意图;
图2为本发明的控制系统示意图;
图3是本发明的单模块等效示意图;
图4是本发明谐振参数精确计算方法流程图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种交直流混合配电系统的LLC系统的结构,如图1所示,包括由非线性电源负载、多LLC模块并联及其控制电路组成的LLC系统;非线性电源负载采用铅蓄电池储能装置,通过开关K0、K1和电阻R0实现软启动保护;LLC模块高压侧采用基于功率开关的全控整流桥,高压侧接电容Cin实现稳压,谐振电路采用谐振电容C1-Cn、谐振电感L1-Ln、励磁电感Lm1-Lmn、中高频变压器MFT,低压侧采用对称全控逆变桥,并利用低压侧电容Co稳压;所述LLC控制电路包括与LLC模块、非线性电源负载连接的电压、电流传感器,所述电压传感器输入端接高压侧直流母线电源侧,输出端通过数模转换器、检测电路与主控CPU连接;所述电流传感器的输入端分别接高压侧直流母线、低压侧非线性电源负载与高压侧谐振电感,输出侧通过通过数模转换器、检测电路与主控CPU连接,所述主控CPU与驱动电路相连。主控CPU采用FPGA EP4CH14F7。
一种LLC系统谐振参数计算方法,采用一种交直流混合配电系统的LLC系统,其电路结构为:
包括由非线性电源负载、多LLC模块并联及其控制电路组成的LLC系统;非线性电源负载采用铅蓄电池储能装置,通过开关K0、K1和电阻R0实现软启动保护;LLC模块高压侧采用基于功率开关的全控整流桥,高压侧接电容Cin实现稳压,谐振电路采用谐振电容C1-Cn、谐振电感L1-Ln、励磁电感Lm1-Lmn、中高频变压器MFT,低压侧采用对称全控逆变桥,并利用低压侧电容Co稳压;所述LLC控制电路包括与LLC模块、非线性电源负载连接的电压、电流传感器,所述电压传感器输入端接高压侧直流母线电源侧,输出端通过数模转换器、检测电路与主控CPU连接;所述电流传感器的输入端分别接高压侧直流母线、低压侧非线性电源负载与高压侧谐振电感,输出侧通过通过数模转换器、检测电路与主控CPU连接,所述主控CPU与驱动电路相连。主控CPU采用FPGA EP4CH14F7。
具体包括以下步骤:
步骤1:采用电压电流传感器、LCR测量仪采集LLC系统输入侧直流电压、器件自身参数,构建考虑器件自身参数的精确电路等效模型。如图2所示,以单模块LLC为例,高压侧全控整流桥等效为AC电源,低压侧全控逆变桥等效为两个等效电阻负载Reqs和Req
步骤2:根据步骤1中考虑器件自身参数的精确电路等效模型,确定谐振参数解空间R与初始解R1-R20,解空间R包含谐振电容C1、谐振电感L1、励磁电感Lm1、励磁电阻RLm1、谐振电容电阻RC1、谐振电感电阻RL1、开关器件寄生电容Cs、等效储能负载Req、等效开关负载Rs和Reqs,初始解由传统计算方法与工程经验得到;
步骤2.1:精确电路等效模型
根据图3,可以得到等效后的单模块LLC等效电路。将等效电路的输入侧与输出侧的电压相除,得到等效电路的电压增益,即精确电路等效模型,如式(1)中所示:
Figure GDA0002923831010000051
步骤2.2:解空间与初始解
解空间R包含谐振电容C1、谐振电感L1、励磁电感Lm1、励磁电阻RLm1、谐振电容电阻RC1、谐振电感电阻RL1、开关器件寄生电容Cs、等效储能负载Req、等效开关负载Rs和Reqs。解空间R可以表示为式(2):
R={C1,L1,Lm1,RLm1,Rc1,RL1,Cs,Req,Rs,Reqs} (2)
初始解空间是解空间R的一个或多个实例,可以表示为式(3):
Ri={C1,L1,Lm1,RLm1,Rc1,RL1,Cs,Req,Rs,Reqs}i=1,2,...,20 (3)
其中,初始解空间中谐振电容C1、谐振电感L1、励磁电感Lm1由传统计算方法得到,初始解空间其余参数采用由LCR测量仪直接测量得到的电路参数。
初始解空间中谐振电容C1、谐振电感L1、励磁电感Lm1的计算过程如下:
首先计算特征阻抗Z如式(2)所示。式(4)中品质因数Q为工程经验得到,通常取0.8左右,Req为直接测量得到的等效储能负载,
Z=Q·Req (4)
其次计算谐振电容C1、谐振电感L1、励磁电感Lm1,如式(5)-(7)所示,始终k为电感系数,工程经验取4左右,fr为开关频率,为系统构建时确定的指标,
Figure GDA0002923831010000052
Figure GDA0002923831010000053
Lm1=k·L1 (7)
通过上述方法,在计算过程中,品质因数Q和电感系数k取不同的工程经验参数,可以得到初始解空间R1-R20
步骤3:将步骤2中所计算的初始解空间,代入小变量扰动的迭代求解算法。对初始解中部分变量进行随机小变量扰动,根据增益优化判据确定扰动后的变化方向,根据增益稳定性判据确定扰动后结果的适用性,迭代多次直至变化方向稳定后输出最终解。将初始解代入小变量扰动的迭代求解算法的具体实施方式为:
步骤3.1:定义小信号扰动的精确谐振参数计算方法中代价函数fi
Figure GDA0002923831010000054
式(8)中,M1-M20为把初始解空间参数代入式(1)求得的电压增益,Mref为电压增益的理想值,式(8)计算结果为f1-f20
步骤3.2:进行一次小信号扰动的迭代求解
通过对解空间内任意一个变量δ扰动
Figure GDA0002923831010000061
产生新解R’1-R’20,并代入式(8)计算相应的电压增益M’1-M’20和代价函数f’1-f’20
Figure GDA0002923831010000062
计算扰动后代价函数fi’和代价函数差Δfi
Δfi=fi’-fi (10)
步骤3.3:小信号扰动迭代求解判据
将扰动后产生的增益与扰动前产生的增益进行对比,采用增益优化对其进行筛选,当Δf<0时接受新解,反之则以新解与当前解的目标函数差定义接受概率。将20个初始解与20个扰动后的新解采用式(11)中判据进行晒选,根据概率筛选后,保留20组解,淘汰20组解。
Figure GDA0002923831010000063
其中,T为某次扰动下的扰动指数,初始为接近无穷大的常数,该变量随求解过程逐渐降低,并决定了算法是否结束。
将此时20组解空间的全部参数代入增益模型中,得到开关频率范围的最小值fmin,与系统第二谐振频率fm比较,作为增益稳定性判据,确定扰动后结果的适用性。
Figure GDA0002923831010000064
若T>Tref,Tref为系统设定的扰动指数参考值,通常设置为0.01,扰动指数较高,迭代算法求解未结束,重复步骤3.2;
若T<Tref,扰动指数较低,迭代算法结束,CPU对外输出当前谐振参数解。
一种适用于铁路交直流混合配电网的LLC系统及谐振参数计算方法,在传统模型的基础上,建立了考虑电路自身特性的精确电路等效模型,并推导出相应的直流增益函数,提高了模型的精确程度;结合传统谐振参数求解方法,采用小信号扰动法对谐振参数进行精确求解。在提高了负载供电可靠性的同时,也显著提高了系统的输入输出电压的可调范围,从而切实保证了供电质量。

Claims (1)

1.一种交直流混合配电网的LLC系统谐振参数计算方法,包括非线性电源负载、多LLC并联模块及其控制电路;所述非线性电源负载采用蓄电池作为储能装置,通过开关K0、K1和电阻R0实现软启动保护;所述多LLC并联模块的高压侧采用全控整流桥,高压侧接电容Cin实现稳压,谐振电路采用谐振电容C1-Cn、谐振电感L1-Ln、励磁电感Lm1-Lmn、中高频变压器MFT,低压侧采用对称全控逆变桥,并利用低压侧电容Co稳压;所述LLC控制电路包括与LLC模块、非线性电源负载连接的电压、电流传感器,所述电压传感器输入端接高压侧直流母线电源侧,输出端通过数模转换器、检测电路与主控CPU连接;所述电流传感器的输入端分别接高压侧直流母线、低压侧非线性电源负载与高压侧谐振电感,输出侧通过数模转换器、检测电路与主控CPU连接,所述主控CPU与驱动电路相连;其特征在于:所述的LLC系统谐振参数计算方法,具体包括以下步骤:
步骤1:采用电压电流传感器、LCR测量仪采集LLC系统输入侧直流电压、器件自身参数,构建考虑器件自身参数的精确电路等效模型;将单模块LLC系统高压侧的全控整流桥等效为AC电源,低压侧的全控逆变桥等效为两个等效电阻负载Reqs和Req
步骤2:根据步骤1所述的精确电路等效模型,确定谐振参数解空间R与初始解空间R1-R20;步骤2.1:精确电路等效模型
将等效电路的输入侧与输出侧的电压相除,得到等效电路的电压增益M,如式(1)中所示:
Figure FDA0002923825000000011
式(1)中M为电压增益,Req为等效储能负载,s为拉普拉斯算子,L1为谐振电感,RL1为谐振电感电阻,RLm1为励磁电感电阻,Lm1为励磁电感,Rs和Reqs为等效开关负载,RC1为谐振电容电阻,C1为谐振电容,Cs为开关器件寄生电容;
步骤2.2:解空间与初始解空间
解空间R包含谐振电容C1、谐振电感L1、励磁电感Lm1、励磁电阻RLm1、谐振电容电阻RC1、谐振电感电阻RL1、开关器件寄生电容Cs、等效储能负载Req、等效开关负载Rs和Reqs;初始解空间中的谐振电容C1、谐振电感L1、励磁电感Lm1由传统计算方法得到,初始解空间的其余参数采用固定参数;计算过程如下,首先计算特征阻抗Z如式(2)所示:
Z=Q·Req (2)
式(2)中Q为LLC系统品质因数,为工程经验常数,通常取0.8左右,其次计算谐振电容C1、谐振电感L1、励磁电感Lm1
Figure FDA0002923825000000012
Figure FDA0002923825000000013
Lm1=k·L1 (5)
如式(3)-(5)所示,k始终为电感系数,工程经验取4左右,fr为开关频率,为系统构建时确定的指标:通过上述方法,得到初始解空间R1-R20
步骤3:将步骤2中所计算的初始解空间,代入小变量扰动的迭代求解算法;对初始解空间中部分变量进行随机小变量扰动,根据增益优化判据确定扰动后的变化方向,根据增益稳定性判据确定扰动后结果的适用性,迭代多次直至变化方向稳定后输出最终解;将初始解空间代入小变量扰动的迭代求解算法的具体方式为:
步骤3.1:定义小信号扰动的精确谐振参数计算方法中代价函数fi
Figure FDA0002923825000000021
式(6)中,M1-M20为代入初始解下电压增益,Mref为电压增益的理想值,i为求解的数量,取20,计算结果为f1-f20
步骤3.2:进行一次小信号扰动的迭代求解
通过对解空间R内任意一个变量δ的扰动量
Figure FDA0002923825000000022
产生新解R’1-R’20,并计算相应的电压增益M’1-M’20和代价函数f’1-f’20:
Figure FDA0002923825000000023
计算扰动后代价函数fi’和代价函数差Δfi
Δfi=fi'-fi (8)
步骤3.3:小信号扰动迭代求解判据
将扰动后产生的增益与扰动前产生的增益进行对比,采用增益优化对其进行筛选,当Δf<0时接受新解,反之则以新解与当前解的目标函数差定义接受概率:
Figure FDA0002923825000000024
其中,P为新解的接受概率,T为某次扰动下的扰动指数,初始为接近无穷大的常数,该变量随求解过程逐渐降低,并决定了算法是否结束,e为自然指数,通常取2.718;
将此时解空间全部参数代入模型中,得到开关频率范围的最小值fmin,与LLC系统第二谐振频率fm比较,作为增益稳定性判据,确定扰动后结果的适用性:
Figure FDA0002923825000000025
式(10)中,P’为新解的二次接受概率;
若T>Tref,Tref为LLC系统设定的扰动指数参考值,设置为常数0.01,扰动指数较高,迭代算法求解未结束,重复步骤3.2;
若T<Tref,扰动指数较低,迭代算法结束,CPU对外输出当前谐振参数解。
CN201910848413.8A 2019-09-09 2019-09-09 一种交直流混合配电网的llc系统谐振参数计算方法 Active CN110557011B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910848413.8A CN110557011B (zh) 2019-09-09 2019-09-09 一种交直流混合配电网的llc系统谐振参数计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910848413.8A CN110557011B (zh) 2019-09-09 2019-09-09 一种交直流混合配电网的llc系统谐振参数计算方法

Publications (2)

Publication Number Publication Date
CN110557011A CN110557011A (zh) 2019-12-10
CN110557011B true CN110557011B (zh) 2021-03-16

Family

ID=68739667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910848413.8A Active CN110557011B (zh) 2019-09-09 2019-09-09 一种交直流混合配电网的llc系统谐振参数计算方法

Country Status (1)

Country Link
CN (1) CN110557011B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111813000B (zh) * 2020-06-11 2023-04-11 广西电网有限责任公司电力科学研究院 一种配电网实境试验平台铁磁谐振仿真的方法及装置
CN113060052B (zh) * 2021-04-23 2022-07-08 重庆中车长客轨道车辆有限公司 一种双流制轨道交通车辆控制系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790591A (zh) * 2016-04-22 2016-07-20 东北电力大学 一种混合型直流变换器
CN109617445A (zh) * 2018-12-10 2019-04-12 上海交通大学 五电平变流器直流侧充电软启动电路及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109831114B (zh) * 2019-01-31 2021-02-05 张欣 一种llc类双向有源桥逆变器谐振参数设计方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790591A (zh) * 2016-04-22 2016-07-20 东北电力大学 一种混合型直流变换器
CN109617445A (zh) * 2018-12-10 2019-04-12 上海交通大学 五电平变流器直流侧充电软启动电路及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A New Auxiliary Power Supply System of Magnetic Levitation Train Based on SiC MosFet;Pengcheng Han等;《2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia》;20180613;第23-29页 *
Resonance Parameter of Variable Mode LLC Converter for Auxiliary Converter;XiaoQiong He等;《2019 10th International Conference on Power Electronics and ECCE Asia》;20190815;第20-25页 *

Also Published As

Publication number Publication date
CN110557011A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
Wu et al. SoC balancing strategy for multiple energy storage units with different capacities in islanded microgrids based on droop control
Anderson et al. Four quasi-Z-source inverters
CN108512452B (zh) 一种直流微电网并网变换器电流的控制系统及控制方法
CN110557011B (zh) 一种交直流混合配电网的llc系统谐振参数计算方法
CN107947592B (zh) 一种基于路耦合的全桥式开关电源纹波系数预测方法
Dai et al. Dynamic parameters identification method for inductively coupled power transfer system
CN110212800B (zh) 基于模型预测控制的模块化多电平换流器通用控制方法
CN108011395B (zh) 一种混合逆变器中充放电回路自动寻优的控制方法
CN111431184B (zh) 基于bp神经网络算法的最优虚拟谐波电阻控制方法
CN115864671A (zh) 无线电能传输系统效率优化控制方法、系统、设备及介质
Qi et al. Finite-control-set model predictive control for a wireless power transfer system
CN115593250A (zh) 恒功率无线充电系统
CN104685751B (zh) 电子电压适配器模块的调节
Xie et al. A fundamental harmonic analysis-based optimized scheme for DAB converters with lower RMS current and wider ZVS range
Bertolini et al. Control Strategies for Output Voltage Regulation in a SS Compensated Wireless Charging System
WO2024045935A1 (zh) 充电机控制方法、装置、充电机及车辆
Saichand et al. Generalized design of passive components for ultracapacitor based bidirectional DC-DC converters
CN113809911B (zh) 电力转换装置
Hu et al. Discrete‐time modelling and stability analysis of wireless power transfer system
Shou et al. Efficiency analysis in ipt system based on lcc compensation network
Eroğlu et al. Design and implementation of an ultracapacitor test system
Chen et al. Load and mutual inductance identification method for series-parallel compensated IPT systems
CN104991117B (zh) 智能路由器直流单元谐振频率的测试方法
Jaritz et al. Control of a modular series parallel resonant converter system for a solid state 2.88 MW/115-kV long pulse modulator
Palanas et al. Analysis and Design of a Novel LLC CCPS for Repetitive Pulsed Power Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: He Xiaoqiong

Inventor after: Han Pengcheng

Inventor after: Zeng Li

Inventor after: Gong Zi

Inventor after: Zhao Zhiqin

Inventor after: Shu Zeliang

Inventor before: He Xiaoqiong

Inventor before: Zhao Zhiqin

Inventor before: Yu Haolun

Inventor before: Han Pengcheng

Inventor before: Shu Zeliang

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230627

Address after: Room 044, Floor 1, Building 1, No. 170, Tianhuan Road, Rongdu Avenue, Jinniu District, Chengdu, Sichuan 610000

Patentee after: Chengdu Lixing Enterprise Management Center (L.P.)

Patentee after: Chengdu Tuoje Xingtong Technology Co.,Ltd.

Address before: 610031 No. two, section 111, ring road, Chengdu, Sichuan, China

Patentee before: SOUTHWEST JIAOTONG University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230822

Address after: Room 044, Floor 1, Building 1, No. 170, Tianhuan Road, Rongdu Avenue, Jinniu District, Chengdu, Sichuan 610000

Patentee after: Chengdu Lixing Enterprise Management Center (L.P.)

Patentee after: Chengdu Tuoje Xingtong Technology Co.,Ltd.

Patentee after: He Xiaoqiong

Address before: Room 044, Floor 1, Building 1, No. 170, Tianhuan Road, Rongdu Avenue, Jinniu District, Chengdu, Sichuan 610000

Patentee before: Chengdu Lixing Enterprise Management Center (L.P.)

Patentee before: Chengdu Tuoje Xingtong Technology Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230915

Address after: No. 719, 7th Floor, Building 7, No. 666 Jinfenghuang Avenue, Jinniu High tech Industrial Park, Chengdu, Sichuan Province, 610000

Patentee after: Chengdu Tuoje Xingtong Technology Co.,Ltd.

Address before: Room 044, Floor 1, Building 1, No. 170, Tianhuan Road, Rongdu Avenue, Jinniu District, Chengdu, Sichuan 610000

Patentee before: Chengdu Lixing Enterprise Management Center (L.P.)

Patentee before: Chengdu Tuoje Xingtong Technology Co.,Ltd.

Patentee before: He Xiaoqiong

TR01 Transfer of patent right