CN110520040A - 表皮虚拟现实装置 - Google Patents

表皮虚拟现实装置 Download PDF

Info

Publication number
CN110520040A
CN110520040A CN201880008854.0A CN201880008854A CN110520040A CN 110520040 A CN110520040 A CN 110520040A CN 201880008854 A CN201880008854 A CN 201880008854A CN 110520040 A CN110520040 A CN 110520040A
Authority
CN
China
Prior art keywords
actuator
actuation means
virtual reality
sensor
wireless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880008854.0A
Other languages
English (en)
Other versions
CN110520040B (zh
Inventor
约翰·A·罗杰斯
徐帅
郑英华
钟海旭
于新歌
杨宇
李中烨
孙汝杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Illinois
Northwestern University
Original Assignee
University of Illinois
Northwestern University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Illinois, Northwestern University filed Critical University of Illinois
Publication of CN110520040A publication Critical patent/CN110520040A/zh
Application granted granted Critical
Publication of CN110520040B publication Critical patent/CN110520040B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/015Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/164Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted in or on a conformable substrate or carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Biomedical Technology (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • User Interface Of Digital Computer (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Prostheses (AREA)

Abstract

本发明提供致动装置、由所述致动装置形成的虚拟现实装置,和相关虚拟现实方法。所述装置可包括:多个空间上分布的致动器,每一致动器被配置成用于与生物皮肤表面交互;无线控制器,其被配置成接收操作性命令信号以控制所述致动器中的每一个;以及无线电力系统,其为所述致动器供电。本发明还提供多个互连装置的独特布局以实现大面积覆盖度。

Description

表皮虚拟现实装置
相关申请的交叉引用
本申请要求2017年5月8日提交的第62/503,142号和2017年1月27日提交的第62/451,248号美国临时专利申请的优先权,所述临时专利申请中的每一个在与本文相一致的程度上全文以引用的方式并入本文中。
背景技术
本文提供用于虚拟现实应用的无线传感器和致动器的阵列。装置和相关方法可用于多种多样的应用,包含可穿戴式电子器件、虚拟现实、个人监测和医疗装置。
随着电子通信和社交媒体的不断发展,用于社交互动的平台越来越普及。对于视频通信,包含经由那些社交平台的以及在游戏和培训领域的视频通信,仍然滞后的是以不引人注目且真实的方式相隔一定距离利用对应的视频交互可靠地且全面地物理上交互的能力。尽管已投入大量精力来产生使用户沉浸于虚拟现实中的装置,但那些装置具有显著缺点,包含以轻量、无线且不受限的方式可靠地为那些装置供电和与那些装置通信的能力。
举例来说,美国专利公开2015/0022328存在电力局限性,其需要电力供应或到另一装置(例如“移动装置”或电力供应)的物理连接。第2014204323号PCT公开描述集成到可穿戴式物件的制造中的传感器,但具有有限价值,因为未包含致动器。美国专利公开2014/0070957和第7,967,679号专利可表征为描述力的提供,但其中描述的装置体积庞大、复杂,且需要引人注目且体积庞大的硬件,这对于舒适且可靠的虚拟现实体验来说完全没有帮助。
随着小型化电子系统的持续开发(参看例如WO 2016/196675;WO 2013/149181;U.S.2013/0041235;2017年1月27日提交的标题为“主体安装式无线传感器和致动器(Body-Mounted Wireless Sensors and Actuators)”的第62/451,248号美国临时申请(代理人参考588027:4-17P)(Rogers等)),这些文献中的每一个以引用的方式特定地并入本文中,平台可用于以轻量、形状配合且与传统制造平台兼容的方式简化虚拟现实装置。然而,关于可靠地为装置供电和与装置通信仍然存在挑战,尤其是对于具有用于为用户实现可检测物理体验的多个致动器的装置。尤其用于力产生的此类致动器在功率方面非常苛刻。本文中所提供的装置和方法通过以下方式来解决此问题:并入独特的功率节省平台,使得装置保持无线且不限于扣到体积相对庞大的电源中,甚至达到具有较大致动器总数目的非常大面积覆盖度系统。
发明内容
包含致动装置和虚拟现实装置的装置专门被配置成提供可靠地产生和施加动作(甚至相对耗能的力)的能力,所述动作可由用户感觉到且与无线配置兼容。这通过使用无线电力、通信和控制系统实现。特殊的挑战在于,提供足够的功率来致动分布在用户的表面上的机械和/或热致动器。在本文的某些实例中,这通过以下操作来实现:设置控制多个致动器的一个控制器,且快速接通和断开控制器使得一次仅为一个单个致动器供电。然而,所述切换可能在充分高的速率下进行,使得用户体验到所有致动器正同时激励的感觉。以此方式,在任何给定时间的总功率要求可降低,使得即使对于主体的大表面积上的相对长时间的致动也维持足够的功率。当然,本文提供的系统类似地与充分分离的致动器兼容,使得用户可辨识正接收致动器所进行的致动的皮肤的不同区。
还提供致动器的独特配置,其允许控制器快速且可靠地在相隔一定距离的用户身上施加多种力中的任一个。与控制器(包含任选地与独立地监测用户的传感器)的双向通信允许控制器确认用户正体验所要的力且评估对其的任何生物响应。系统与一对虚拟现实装置的使用兼容,从而基本上允许用户成为控制器,且反之亦然。系统还可彼此间双向通信,使得一个致动装置或系统与其它致动装置或系统双向通信。
本文提供用于一系列应用的各种致动装置,包含用于模拟远程或人工环境或邂逅,例如用于虚拟现实应用。举例来说,致动装置可包括多个空间上分布的致动器。每一致动器被配置成与生物皮肤表面交互。无线控制器可操作地连接到所述致动器且被配置成接收操作性命令信号来控制所述致动器中的每一个。以此方式,相隔一定距离的个体可按需要控制正由第二个体使用的装置的致动器的致动,而无个体之间的任何直接物理接触或物理连接。无线电力系统可操作地连接以为致动器供电。选择无线电力系统以提供足够的功率来可靠地为致动器供电和控制致动器。举例来说,本文中所提供的致动器装置中的任一个可由提供限定功率捕获电平的无线电力系统限定,所述限定功率捕获电平例如大于或等于5mW的功率捕获,包含大于或等于5mW和小于或等于5W,或介于约10mW和500mW之间,或介于约5mW和500mW之间,及其任何子范围,本文中所提供的装置可与一系列无线电力系统兼容,只要捕获足够的功率来为致动器供电以及控制装置和与装置通信,同时仍能够可靠地且相对不引人注目地与皮肤交互或介接。特定应用和相关联致动器可能需要比其它应用和相关联致动器多的功率。举例来说,作为用以产生短突发电场的电极的致动器可能需要比通过组件抵着皮肤的高频移动而运行的机械致动器或用以为皮肤加热的热致动器(例如,加热器)少的功率。
其它参数可用于描述无线能量捕获器。举例来说,致动装置中的任一个可被描述为提供最低功率捕获电平,包含如上文所描述(例如,5mW);至少5x10-4mW/cm2且小于5x10- 2mW/cm2的功率递送;和/或大于或等于50%的功率效率,所述功率效率定义为所递送功率与所捕获功率之比。相对适度的功率要求反映各种低功率配置,包含如下文通过与致动器相关联的快速功率开关电路所解释。
致动或虚拟现实装置中的任一个可进一步包括可操作地连接到无线控制器和无线电力系统的用于感测物理参数的传感器。此感测能力提供额外的控制和双向交互水平,其中远程控制器能够独立地、定量地且可靠地评估致动器正如何运行以及用户正如何对致动刺激作出响应。还可在反馈控制回路配置中使用传感器,以确保致动器正提供所要水平的致动刺激。
本文中所提供的装置可依据无线电力系统进一步描述。举例来说,所述装置中的任一个可具有用于无线功率捕获和致动器的供电的大面积天线。所述大面积天线可具有大于或等于100cm的长度。大面积天线可具有经选择以提供所要功率捕获(包含用于所关注的应用)的长度、厚度和材料属性。通过卷绕在上面支撑装置或形成装置的基部的衬底的相对大区域周围来实现大天线的大长度。天线可内嵌于聚合物衬底中,包含限制在边缘区,例如总支撑表面衬底表面区域的最外10%或5%。
本文中所提供的装置和方法中的任一个可使用无线电力系统连同本地功率存储装置,包含呈电池或超级电容器的形式的本地功率存储装置。
类似地,本文中所提供的装置中的任一个可进一步包括用于为无线控制器供电的小面积天线,例如小于或等于10cm的周界占地面积。通过卷绕来实现较长长度。以此方式,致动器装置或虚拟现实装置可具有一对天线,其中大面积天线捕获较多功率以满足致动器的相对高的功率需求。相比而言,小面积天线可捕获相对较少功率且用于为无线控制器供电和与无线控制器通信。
无线控制器可包括NFC芯片,所述NFC芯片可以无线方式与附近电子装置通信,包含单向或双向通信。附近电子装置接着可利用较强的形式的无线通信在任一方向中传送数据,包含向和从具有致动器装置的图形用户接口(GUI)显示状态的远程用户传送数据。
所述多个空间上分布的致动器可分布在表面区域上方,其密度与所关注的所要应用匹配。举例来说,在对物理刺激具有较高敏感度的主体的区域中,可部署较高密度的致动器。相比而言,具有较低敏感度或重要性的主体的区域可具有相对较低密度。所述装置可部署在平铺配置中,其中致动器装置的“贴片”分布在主体上方,每一贴片含有多个致动器。以此方式,虽然每一装置可具有相对小占地面积,例如1cm2和500cm2之间的范围内的占地面积,但可实现较大的总表面区域分布和覆盖度。举例来说,致动器分布表面面积大于或等于1m2
致动器和相关组件可设置在例如柔性衬底等衬底上。以此方式,致动器可被描述为具有衬底上的密度,所述密度由致动器数目除以支撑致动器的表面的面积来限定。举例来说,七个致动器容易地定位于3"x3"衬底上,对应于0.12致动器/cm2的致动器密度,或约1致动器/8.3cm2的致动器密度。本文提供稀疏分布到密集分布的范围内的致动器密度,例如0.01致动器/cm2到1致动器/cm2之间。
如所描述,装置可包括多个个别地互连的柔性衬底,其中个别衬底中的每一个支撑多个致动器且可在使用期间个别地定位在所要皮肤区域上方。以此方式,致动器“集群”设置在所要位置中,而不一定必须损失所要的大体上整个身体乃至整个身体覆盖度。举例来说,在待体验物理力(例如钝力或剧烈的力)的游戏中,前、后和侧躯干、头部、每条腿和每条臂可具有密集覆盖度区以真实地反映到那些区的力。相比而言,对于例如高尔夫、棒球、网球或英式足球等体育游戏,较大覆盖度可贡献给手或脚以反映与球的真实碰撞。因此,通过在所要布局中覆盖主体以便最佳地反映预期虚拟现实传输的交互,本文提供的装置与多种应用和交互中的任一个兼容且相对于多种应用和交互中的任一个调适。
装置本身可容易缩放,且可具有两个或两个以上致动器,例如支撑4个到500个之间的致动器的柔性衬底。装置可配置成用于与皮肤的可逆介接。以此方式,在使用之后,移除装置,而不会损坏组件,且可在稍后时间再次使用装置(包含用于不同个体)。相应地,装置可进行清洁或杀菌,而不会对功能性产生任何不利影响。视需要,为了更好地保护装置组件,装置中的任一个可用囊封层囊封以增加装置耐久性,而不会牺牲功能性。这通过在囊封层中使用例如聚合物等相对柔软、柔性且可弯曲的材料来实现。
柔性衬底可包括织物,包含作为衣物的一部分的织物。特别适用的是可拉伸且形状配合的织物,包含弹性地配合到主体的合成织物,包含衬衫、裤子、短裤、内衣、帽子、面盖、袜子、脚盖、手或手指盖等。
装置与一系列致动器兼容,包含机械致动器、热致动器、电致动器及其组合。其它致动器基于所关注的应用而选择。举例来说,化学或生物致动器可释放活性剂,所述活性剂与皮肤上或下的生物组分交互。对于带电试剂或连接到带电载体的试剂,应用可在所施加电场下方,其中电场不被用户感觉到。
机械致动器可描述为具有大于或等于1Hz和小于或等于1kHz的振动频率,包含与在装置下方的包含机械感受器的生物机械换能器匹配的频率,包含100Hz和300Hz之间、150Hz和250Hz之间,及其任何子范围。
机械致动器可包括导电线圈和磁体,其中磁体定位在当电位施加到导电线圈时由导电线圈产生的磁场内。以此方式,接通和断开到线圈的所施加电信号将对应的振动频率施加到磁体,且振荡磁体在使用期间被主体感测为压力型撞击力。
导电线圈和磁体可分隔一定间隙,例如介于约0.1mm和0.5mm之间的间隙。包含PI的介于约5和50μm之间或介于约10μm和20μm之间的薄覆盖层定位于磁体上方以提供所要间隙。
机械致动器可进一步包括具有凹口的聚合物层,其中磁体定位于凹口中且导电线圈定位于磁体下方。
可设置开关,其由无线控制器以电子方式控制用于在断开状态和接通状态之间振荡导电线圈的电激励,借此产生磁体的受控振动频率。磁体振动频率可在100Hz和300Hz之间。
致动器可以是热致动器,包含具有在所施加电流下加热的电阻丝的热致动器。举例来说,具有10μm和200μm之间的宽度的金丝,其发热面积在1mm2和50mm2之间。以此方式,致动装置可包括热致动器和机械致动器两者。较长持续时间内较强烈的较高频率致动随后也可通过以热致动器加热而传信给用户。致动器的任何组合接着可用于进一步增加所传输动作的真实感。举例来说,由致动器施加以反映一滴水沿着表面向下流动的压力还可导致湿气或水从释放湿气或水的致动器释放。为了避免不合需要的湿气积聚,衬底可由湿气可透的芯吸或移除材料形成。
本文中所描述的装置(包含致动和虚拟现实装置)可包括低功率电路。低功率电路可包括单个无线控制器,其控制所述多个空间上分布的致动器且在其它致动器处于断开状态的情况下一次电学上激励单个致动器。
无线控制器可以是具有多个输出的NFC芯片,其中每一输出以电子方式连接到个别致动器,所述装置进一步包括以电子方式定位于NFC芯片输出和致动器之间以在开关频率下提供个别致动器电激励的开关。致动器之间的开关频率可比在使用期间定位在致动装置下方的机械感受器的机械感受器反应时间快,使得所有所述多个致动器的同时致动被致动装置介接到的用户体验到,但一次仅致动单个致动器。以此方式,致动器的有效占地面积扩展超出单个致动器的占地面积,包含对应于至少80%、至少90%,或支撑致动器的衬底的近似整个占地面积。
本文中所描述的装置中的任一个可进一步包括与无线控制器进行电子通信以用于测量物理参数的传感器。以此方式,可发生双向通信,其中传感器将信号馈送到远程控制器或用户以显示关于体验致动的人的状态的信息。
本文还提供虚拟现实装置或致动系统,包括本文中所描述的致动装置中的任一个的多个。举例来说,致动装置中的每一个可彼此进行无线通信。无线通信可包括双向通信,包含在装置之间和/或在装置和远程控制器/显示器之间。
致动装置中的每一个可进一步包括用于感测物理参数的传感器,其中传感器与无线控制器进行电子通信使得传感器输出可传送到不同的致动装置或外部控制器。
致动装置或系统中的任一个可以是虚拟现实装置的部分。
本文还提供包括多个空间上分布的生物交互装置的虚拟现实装置,所述生物交互装置被配置成用于与例如朝外皮肤表面等生物表面交互。生物交互装置可各自包括传感器和致动器。被配置成接收操作性命令信号的无线控制器可控制生物交互装置中的每一个且向远程控制器传输来自传感器中的每一个的输出。无线电源可以可操作地连接到所述多个生物交互装置。
所述多个空间上分布的生物交互装置可被配置成产生协调且时空上变化的热、电刺激、机械振动输出,或其任何组合。其还可从控制器(例如,与用户远程交互的人)接收指定输入,且向用户提供对应致动。
虚拟现实装置可配置成用于人际交互,进一步包括计算机接口,用于相隔一定距离由某个人来控制所述多个空间上分布的生物交互装置。通过将所述装置配对,可存在双向交互。
虚拟现实装置可与其中期望在个体上实现例如用于游戏、培训、通信或娱乐的一个或多个参数的任何应用一起使用。
传感器可被配置成基于由传感器测得的一个或多个生理参数调制致动器。生理参数包含(但不限于)温度;压力;运动;位置;或应变。
无线控制器可包括近场通信(NFC)芯片以提供到传感器和致动器的无线电力递送,以及生物交互装置和外部控制器之间的无线数据通信。
无线控制器可提供与所述多个生物交互装置的双向通信以从所述多个传感器获取生理参数数据,且操作所述多个生物交互装置的致动器。无线控制器可包括长程读取器,使得向连接到装置的致动器的个体提供一些移动自由度,而不会丢失正发送到远程运营商的信号。
虚拟现实装置可被配置成提供对应于活体动物皮肤表面的至少70%的有效体表面积的感测和致动能力。
虚拟现实装置可具有大于或等于10cm的最大无线传输和接收范围,和任选地小于或等于1m的上限截止。
所述多个生物交互装置可直接或间接安装在皮肤上,且将生理参数的空间分布映射例如实时提供到显示器和/或记录以供稍后使用。直接安装指代直接放置在皮肤上,且可按需要包含类似于可移除的粘合绷带的粘合剂的使用。或者,装置可安装于衣物或类似物中,其中所述衣物或类似物由用户利用与致动器的一种类型的“自动”介接而穿戴。这可能特别适用,代替于单独地在整个主体上个别地安装装置。
相应地,所述多个生物交互装置可被配置成直接连接到活体动物的皮肤表面。或者,所述多个生物交互装置可嵌入或连接到服装,其中所述服装被配置成由活体动物穿戴以在皮肤表面附近提供所述多个生物交互装置。
虚拟现实装置可包括至少20个生物交互装置。每一生物交互装置可自身包括单个致动器或多个致动器,例如2-20个、4-10个或其任何子范围。
每一生物交互装置可包括用于无线通信和控制的NFC芯片,以及包括用于为致动器供电的大面积天线的无线能量捕获器。
传感器可包括温度传感器和压力传感器。压力传感器可包括由超薄螺旋形状单晶硅层形成的硅压力传感器。压力传感器可包括定位于顶部聚合物层和底部聚合物层之间的硅层。
虚拟现实装置可进一步包括磁感应环形天线,其被配置成以无线方式与外部读取器天线介接。外部读取器天线可内嵌于外部读取器天线衬底中,包含还支撑致动器的衬底。
虚拟现实装置可进一步包括远程控制器,其向无线控制器提供用于远程控制所述多个致动器的无线命令。
每一生物交互装置可以是多功能的且测量和/或控制至少温度和压力。
每一生物交互装置可测量选自由以下组成的群组的至少一个额外参数:氧含量、电位、心率、呼吸速率、低血容量和光学信号。所述装置和方法中的任一个可用于测量生理参数,即压力、温度、皮肤电流响应、阻抗、热传递、排汗、血流、血氧合、热特性、电阻抗、模量、汗液、生物电位(emg、eog、eeg等)、剪切应力、正应力(压力)等,及其任何组合。举例来说,装置和方法中的任一个可具有压力传感器和/或温度传感器以测量压力和/或温度。任选地,除压力和温度之外还可测量一个或多个额外生理参数。装置和方法中的任一个可用于测量皮肤的生理参数。那些测量值中的任一个接着可由本文中所描述的致动器中的任一个使用以实现生物响应,使得存在内置反馈回路,其中传感器用于确定适当致动状态、致动的量值和/或空间分布。
本文还提供致动系统或虚拟现实装置,包括本文中所描述的装置中的任一个的多个。举例来说,所述多个装置中的每一个可以是致动装置,所述致动装置包括:多个空间上分布的致动器,每一致动器被配置成用于与生物皮肤表面交互;无线控制器,其被配置成接收操作性命令信号来控制致动器中的每一个;无线电力系统,其为所述致动器供电;以及柔性衬底,其支撑所述致动器、无线控制器和无线电力系统中的每一个。每一致动装置可与致动装置中的至少一个其它致动装置进行无线通信。
本文中所提供的装置和方法可并入有全系列的致动器模态,包含静态或动态力、静态或动态温度、电刺激,包含与来自本文中所描述的传感器中的任一个的输入组合。此传感器和致动器的组合配置可独立地控制,可在闭合反馈回路配置中,且可具有一系列空间配置中的任一个,这取决于所关注的应用。
致动装置之间的无线通信可呈双向通信,使得发出信号的致动装置还可接收回信号。举例来说,致动装置中的每一个可进一步包括传感器,包含使得来自至少一个传感器的输出传送到另一致动装置以控制来自另一装置致动器的另一致动。
本文还提供一种使用据其形成的致动或虚拟现实装置中的任一个与个体进行虚拟交互的方法。举例来说,所述方法可包括以下步骤:提供空间上分布在个体的皮肤表面上方的多个致动器;以无线方式将所述致动器连接到远程控制器;将输入信号输入到远程控制器以激活所述致动器的至少一部分且与皮肤表面介接;以及在低电力模式中以无线方式为被激活的致动器供电,其中所述低电力模式包括在被激活的致动器之间快速切换使得个体体验到所有致动器同时激活的物理感觉,但一次仅为一个致动器有效地供电。
一种与个体虚拟交互的方法可包括以下步骤:在个体的皮肤表面附近提供本文中所描述的致动器装置、系统或虚拟现实装置中的任一个;以无线方式将致动器连接到远程控制器;将输入信号输入到远程控制器以激活致动器的至少一部分且与皮肤表面远程介接;借此与个体进行虚拟交互。
所述方法可进一步包括以传感器感测一个或多个物理参数;以及将来自传感器的输出传输到远程控制器,借此向远程控制器的远程用户提供反馈。
包含致动器的每一生物交互装置可具有小于或等于5cm2的占地面积;以及小于或等于1cm的厚度。下伏致动器可提供高保真度,例如高敏感度和精度。举例来说,装置可具有:至少0.1℃的温度精度;小于皮肤的热质量密度且小于75μJ/mm2/K的热质量密度;和/或小于或等于3秒的热平衡响应时间。
不希望受任何具体的理论所束缚,,本文可论述关于本文中所公开的装置和方法的基本原理的信念或理解。应认识到,无关于任何机理阐释或假设的最终正确性,本发明的实施例可仍然具有操作性且有用。
附图说明
图1.由大天线供电且被小天线所供电的芯片控制的七致动器装置的电路示意图。开关可并入到电路中以提供个体致动器的快速接通/断开,包含通过使用IC开关。快速切换提供这样的能力:为多个致动器供电,使得个体具有所有致动器同时操作的物理感觉,但一次仅为单个致动器供电。以此方式,电力使用最小化且与由大天线产生的功率兼容,尤其是对于功率密集型致动器。
图2.图1的七致动器装置的电路布局。
图3A标记图2的电路的各个组件,且图3B包含电路中的致动器。
图4.是具有图1、2和3A中概述的电路布局的图3B的表皮致动装置的照片。在此实例中,致动器为振动致动器。
图5.示出能够在无不利影响的情况下适应弯曲的表皮致动装置的照片。.
图6A是示出表皮致动装置可表征为柔软且对于生物组织(皮肤)具顺应性的照片。顶部和底部面板示出通过从皮肤剥除边角进行装置移除。图6B示出装置可在主体上任何地方使用,包含在胸部上(左上面板)、手臂上(右面板)、腿部上(左下面板)和颈部上(右下面板)。装置可缩放到任何尺寸,这取决于所关注的应用。
图7.IC开关的使用促进在单个芯片的情况下为多个致动器供电,所述单个芯片以扫描型方式快速控制多个致动器开关(IC开关)的IC开关状态,使得个体体验到装置中所有致动器同时致动的感觉,但在任何给定时间仅单个致动器接收功率。
图8.示出本文中所提供的装置中的任一个可用于达到整个主体致动和/或感测,包含在表皮虚拟现实应用中。顶部面板上人的四个图像示意性地示出随时间推移人的皮肤表面上感测到的物理参数的颜色映射。此图像还与被激活以便实现颜色映射的致动器的分布兼容。以此方式,个体可感觉到来自另一人的虚拟力(例如,到该人身上的第三人触摸)、另一人身上施加的力(例如,该人触摸第三人或另一表面),和/或热量。底部面板示出多个生物交互装置,与外部控制器(例如,计算机、智能电话等)的双向通信。
图9.顶部面板示出人类表皮/真皮/组织和相关神经的相关机械感受器。底部表概述各种机械感受器的相关感测模态和对应的频率范围。对于感测触摸,举例来说,200Hz可能是感测到的最剧烈的频率,其中所述频率施加由主体感觉为坚实的触摸。较细微的挤压型压力往往在较低频率的情况下产生。
图10.适于表皮虚拟现实应用的代表性装置的示意性说明。
图11.用于供电和无线控制及通信的致动器和相关联电子器件的电路示意图。
图12.可用于控制振动型致动器的振荡器电路设计实例。以此方式,通过改变电容器和/或电阻器的值容易地调整振荡频率。
图13.示范性机械致动器的示意性说明。左面板示出通过使用定位于柔软且可变形材料(例如PDMS)内的腔中的导电线圈和磁体的振动机制。
右面板示出随着线圈匝数的磁场强度变化。
图14.顶部面板是侧视图,且底部面板是图13的机械致动器的俯视图。
图15.右面板是热致动器的示意性说明,且左面板示出随着时间推移的温度改变,包含适应在2秒内从29℃到45℃的温度增加。加热面积为近似3mm x 4mm。
图16.外部控制器的代表性实例,包含用于经由无线通信控制个别致动器(在此情况下,四个致动器)的图形用户接口。可在接通/断开配置中独立地控制致动器。
图17.本文中所描述的装置的可缩放性的示意性说明,其能够个别地控制来自大数目和大面积覆盖度内的致动器。
图18是一种类型的传感器(特定来说,压力传感器)的示意性说明。
图19示意性地示出致动器和传感器装置,其中传感器被配置成用于反馈回路配置中的自主致动器控制以确保达到和/或维持皮肤上由传感器感测到的所要物理参数。传感器还可充当故障保护以确保致动器不会产生在安全水平之外的物理参数,且在接近该水平时,致动器可自动断电。
图20是表皮VR装置的示意性说明和光学图像。
图21概述表皮VR装置的机械致动器的分析。
图22概述表皮VR装置的无线电力优化的分析。
图23提供表皮VR装置的无线操作系统的电路图和表征。
图24提供用于安装到主体上的不同位置的不同表皮VR装置的实例。
具体实施方式
一般来说,本文所用的术语和短语具有其领域公认的含义,其可以参考标准文本、杂志参考文献和本领域的技术人员已知的情境找到。提供以下定义以阐明其在本发明的情境下的特定用途。
“无线控制器”指代机载芯片和其它电子组件,其在无物理连接的情况下提供远程控制致动器和其它可控制组件(例如传感器)的能力,以及数据通信要求。在某些实施例中,控制器还可指代电子器件/计算和辅助性组件,远程个体使用它们来控制穿戴或以其它方式安装到另一个体(本文通常称为“外部控制器”)的致动器装置。
“功率捕获”指代借以从外部源导出能量且借此可避免需要相对大的体积庞大且昂贵的初级或次级电池系统的过程。当然,本文中所提供的装置可与电池和/或超级电容器兼容,这取决于所关注的应用。举例来说,相对重型或体积庞大的系统可并入到衣物、鞋子、帽子、手套、披巾、面盖或类似物中,使得其对于用户来说将不会引人注目,或最低限度可察觉。
外周指代天线的单个线圈的长度,且反映由天线占据的占地面积。对于小面积天线,其可为10cm。对于大面积天线,其可高达装置的外周,例如40cm。通过增加线圈数目,可达到一系列长度。
“有效体表面积”指代本文提供的虚拟现实装置的有效覆盖度。通过将致动器和传感器专门分组在一起,且接着使用多个那些群组,可能实现大表面积覆盖度。
此大表面积覆盖度可通过将装置放置在穿戴在身上的衣服和覆盖物中来促进。此类分组的使用增加致动的有效表面积。
“柔性”或“可弯曲性”指代材料、结构、装置或装置组件能够变形成弯曲或弯折形状,而不经历引入显著应变的变换,例如表征材料、结构、装置或装置组件的故障点的应变。在一示范性实施例中,柔性材料、结构、装置或装置组件可变形成弯曲形状,而不会在应变敏感区中引入大于或等于5%,对于一些应用大于或等于1%,且对于另外其它应用大于或等于0.5%的应变。如本文所使用,一些(但不一定是全部)柔性结构也是可拉伸的。多种性质提供本发明的柔性结构(例如,装置组件),包含材料性质,例如低模量、弯曲硬度和挠曲刚度;物理尺寸,例如小平均厚度(例如,小于100微米,任选地小于10微米,且任选地小于1微米);以及装置几何形状,例如薄膜和开放或网格几何形状。
“空间上分布”指代致动器或传感器布置为使得其可独立地控制且与皮肤表面的不同位置介接。取决于情境,空间上分布可指代装置在皮肤上的位置,或可指代所述多个致动器中的每一个相对于彼此的位置。
“交互”指代致动器实现下伏表面的变化的能力。所述改变可经由例如物理力、温度、压力等感受器介导的改变,其由个体经由机械转导和后续神经脉冲或通过化学介导的感受器结合和信号转导检测到。“接口”指代致动器与表面交互或传感器检测表面的物理参数的能力。
“可操作地连接”指代元件的配置,其中一个元件的动作或反应影响另一元件,但使得保持每一元件的功能性。举例来说,可操作地连接到致动器的例如NFC芯片等无线控制器指代根据由控制器接收的控制命令激励致动器而不影响无线控制器和致动器的功能性的能力。
“可拉伸”指代材料、结构、装置或装置组件经历应变而不发生断裂的能力。在一示范性实施例中,可拉伸材料、结构、装置或装置组件可经历大于0.5%的应变而不断裂,对于一些应用大于1%的应变而不断裂,且对于另外其它应用大于3%的应变而不断裂。如本文中所使用,许多可拉伸结构也是柔性的。一些可拉伸结构(例如,装置组件)经工程设计以能够经历压缩、伸长和/或扭曲以便能够变形而不断裂。可拉伸结构包含包括例如弹性体等可拉伸材料的薄膜结构;能够进行伸长、压缩和/或扭曲运动的弯曲结构;以及具有岛-桥几何形状的结构。可拉伸装置组件包含具有例如可拉伸电互连件等可拉伸互连件的结构。如本文中所使用,对于其中装置直接安装到皮肤的实施例,装置可表征为可拉伸,包含可拉伸且柔性以便视需要实现与下伏皮肤的良好顺应接触。“具顺应性”指代装置、材料或衬底的弯曲硬度足够低且弹性足够高以允许装置、材料或衬底采用所要轮廓构型,包含可随着时间推移改变的轮廓构型,例如允许与具有凹陷或凹入特征的图案的表面顺应接触的轮廓构型,或。在某些实施例中,所要轮廓构型是例如皮肤或表皮层等生物环境中的组织的轮廓构型。
“邻近”于生物表面或皮肤指代将装置定位成使得致动器可与下伏生物材料介接。所述介接可借助于物理力(例如施加在表面上的压力)、电刺激、光学信号或加热,或可以是较生物或化学的介接,例如生物或化学试剂的释放。类似地,在传感器与表面介接的上下文中的邻近指代传感器能够测量皮肤上或皮肤下方的所关注参数,例如血流、氧含量、温度、光学参数、组织硬度、湿度等。相应地,如果装置直接安装到表面或具有包含粘合剂和/或阻隔层的介入层,则装置可视为是邻近的,只要维持致动器或传感器的功能性即可。邻近还可被描述为在皮肤表面的1mm、500μm、100μm、10μm或1μm内。
“无线控制器”指代包含芯片的电子组件,其提供致动器的无线控制。无线控制器的实例为近场通信(NFC)芯片,包含来自Texas Instruments公司的NFC芯片。
NFC是实现装置之间的双向短程无线通信的无线电技术。以此方式,致动器装置外部的控制器(例如,断开电路)可用于提供致动器控制且接收来自致动器装置的信息,包含来自一个或多个接通电路传感器的装置状态或信息。
“衬底”指代具有能够支撑结构的表面的材料,所述结构包含本文中所描述的任何电子装置或电子装置组件,包含致动器、传感器、天线和相关电路系统。支撑包含组件至少部分或完全内嵌于衬底中。“结合”到衬底的结构指代结构的与所述衬底物理接触且不能够相对于其结合到的衬底表面实质上移动的部分。相比而言,未结合部分能够相对于衬底进行实质移动。
“聚合物”指代由共价化学键连接的重复结构单元组成的大分子或一个或多个单体的聚合产物(常常表征为高分子量)。术语聚合物包含均聚物,或基本上由单个重复单体子单元组成的聚合物。术语聚合物还包含共聚物,或基本上由两个或两个以上单体子单元组成的聚合物,例如随机共聚物、嵌段聚合物、交替共聚物、分段共聚物、接枝共聚物、锥形共聚物和其它共聚物。有用的聚合物包含有机聚合物或无机聚合物,且可呈无定形、半无定形、晶体或部分晶体状态。具有链接单体链的交联聚合物对于一些应用特别适用。所述方法、装置和装置组件中可用的聚合物包含(但不限于)塑料、弹性体、热塑性弹性体、弹性塑胶、热塑物和丙烯酸酯。示范性聚合物包含(但不限于)缩醛聚合物、可生物降解聚合物、纤维素聚合物、氟聚合物、尼龙、聚丙烯腈聚合物、聚酰胺-酰亚胺聚合物、聚酰亚胺、聚芳酯、聚苯并咪唑、聚丁烯、聚碳酸酯、聚酯、聚醚酰亚胺、聚乙烯、聚乙烯共聚物和经改质聚乙烯、聚酮、聚(甲基丙烯酸甲酯)、聚甲基戊烯、聚苯醚和聚苯硫醚、聚邻苯二甲酰胺、聚丙烯、聚氨基甲酸酯、苯乙烯类树脂、基于砜的树脂、基于乙烯基的树脂、橡胶(包含天然橡胶、苯乙烯-丁二烯、聚丁二烯、氯丁橡胶、乙烯-丙烯、丁基、腈、硅树脂)、丙烯酸、尼龙、聚碳酸酯、聚酯、聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚烯烃或这些的任何组合。
“弹性体”指代可拉伸或变形且返回到其原始形状而无实质的永久变形的聚合材料。弹性体通常经历实质的弹性变形。有用的弹性体包含包括聚合物、共聚物、复合材料或聚合物和共聚物的混合物的弹性体。弹性体层指代包括至少一个弹性体的层。弹性体层还可包含掺杂剂和其它非弹性材料。
有用的弹性体包含(但不限于)热塑性弹性体、苯乙烯类材料、烯烃材料、聚烯烃、聚氨酯热塑性弹性体、聚酰胺、合成橡胶、PDMS、聚丁二烯、聚异丁烯、聚(苯乙烯-丁二烯-苯乙烯)、聚氨基甲酸酯、聚氯丁二烯和硅树脂。在一些实施例中,弹性压模包括弹性体。示范性弹性体包含(但不限于)含硅聚合物,例如包含聚(二甲基硅氧烷)(即,PDMS和h-PDMS)、聚(甲基硅氧烷)、部分烷基化聚(甲基硅氧烷)、聚(烷基甲基硅氧烷)和聚(苯基甲基硅氧烷)的聚硅氧烷、硅改质弹性体、热塑性弹性体、苯乙烯类材料、烯烃材料、聚烯烃、聚氨酯热塑性弹性体、聚酰胺、合成橡胶、聚异丁烯、聚(苯乙烯-丁二烯-苯乙烯)、聚氨基甲酸酯、聚氯丁二烯和硅树脂。在一实施例中,柔性聚合物为柔性弹性体。
“杨氏模量”和“模量”可互换地使用且指代材料、装置或层的机械性质,其指代给定物质的应力与应变比。杨氏模量可由以下表达式提供;
其中E为杨氏模量,L0为均衡长度,ΔL为所施加应力下的长度改变,F为所施加力,且A为在上面施加力的面积。杨氏模量还可经由以下等式依据拉梅常数来表达:
其中λ和μ是拉梅常数。高杨氏模量(或“高模量”)和低杨氏模量(或“低模量”)是给定材料、层或装置中的杨氏模量的量值的相对描述词。在一些实施例中,高杨氏模量比低杨氏模量大,优选地对于一些应用大10倍,更优选地对于其它应用大100倍,且甚至更优选地对于另外其它应用大1000倍。“非均质杨氏模量”指代具有空间上变化(例如,随表面位置改变)的杨氏模量的材料。具有非均质杨氏模量的材料可任选地依据整个材料层的“大批”或“平均”杨氏模量来描述。
“弯曲硬度”是描述材料、装置或层对所施加弯曲力矩的阻力的所述材料、装置或层的机械性质。通常,弯曲硬度被定义为材料、装置或层的惯性的模量与面积矩的乘积。具有非均质弯曲硬度的材料可任选地依据整个材料层的“大批”或“平均”弯曲硬度来描述。
“囊封”指代一个结构的定向使得其至少部分且在某些状况下完全被一个或多个其它结构环绕。“部分囊封”指代一个结构的定向使得其部分被一个或多个其它结构环绕。“完全囊封”指代一个结构的定向使得其完全被一个或多个其它结构环绕。本发明包含具有部分或完全囊封的电子装置、装置组件和/或无机半导体组件的装置。
“组件”用于概括地指代电学、光学、机械或热装置内的个别组件。组件包含(但不限于)光电二极管、LED、TFT、电极、半导体、其它光收集/检测组件、晶体管、集成电路、能够接纳装置组件的接触垫、薄膜装置、电路元件、控制元件、微处理器、换能器及其组合。电气装置通常指代并入有多个装置组件的装置,且包含大面积电子器件、印刷电线板、集成电路、装置组件阵列、生物和/或化学传感器、物理致动器和传感器(例如,温度、光、辐射等)。
“传感器”指代可用作传感器和/或可用于检测物理性质、物体、辐射和/或化学物的存在、不存在、量、量值或强度的装置组件。在一些实施例中传感器用以将生物信号变换成电学信号、光学信号、无线信号、声学信号等。有用的感测元件包含(但不限于)电极元件、化学或生物传感器元件、pH传感器、光学传感器、光电二极管、温度传感器、电容性传感器、应变传感器、加速度传感器、移动传感器、位移传感器、压力传感器、声学传感器或这些的组合。
“致动器”指代可用于与外部结构、材料或流体(例如,生物组织)交互、刺激、控制,或以其它方式影响所述外部结构、材料或流体的装置组件。致动器的有用的致动元件包含(但不限于)电极元件、电磁辐射发射元件、发光二极管、激光器、振荡磁场中的磁体、化学或生物离型剂和加热元件。致动器包含用于向组织提供电压或电流的电极、用于向组织提供热的加热器、用于向组织产生力或压力的机械致动器。致动器可包含用于向组织提供电磁辐射的电磁辐射源。致动器包含用于为组织加热的热源。致动器包含用于使组织移位或以其它方式移动组织的移位源。
实例1:含致动器的装置
图1-2、3A和3B描述演示的致动器装置,其具有3"x3"正方形占地面积,在此实例中七个独立控制的致动器在圆形阵列配置中空间上分离,其中一个致动器处于原点且其它致动器空间上分布在原点处的中心致动器周围。装置是无线的且可视需要在无电池的情况下操作。此外,装置容易缩放以具有任何尺寸的占地面积,且可平铺在主体上,而无限制。装置具有一定范围的设计灵活性,包含尺寸、形状和形状因数方面的设计灵活性,且具有被描述为柔软、柔性和可弯曲的机械特性。装置容易制造。
图1为示出多个空间上分布的致动器10连接到无线控制器20和无线电力系统30的致动装置电路示意图。无线电力系统可包括用于无线功率捕获和致动器的供电的大面积天线40。小面积天线50可对操作性命令信号(例如,通信信号)供电且将其发送到无线控制器20。单个无线控制器20可控制一个或多个致动器10。在此实例中,单个无线控制器20控制多个致动器10,特定来说七个致动器。在给定以此形状因数装置进行无线功率捕获的实务能量局限性的情况下,这对于电力管理是有利的。电力管理可包含开关60,其由控制器20独立地控制使得在任何给定时间仅有效地激励一个致动器,例如其它六个开关有效地处于断开状态以电隔离致动器。这可通过以下操作来实现:致动器快速循环,使得比机械感受器的反应更快,使得个体体验到所有致动器接通的物理感觉,但其正快速循环以减小功率需求。其它电子组件包含二极管70和电容器80。图2是无致动器的电路布局,且图3A标记各个组件。图3B包含七个致动器,特定地示出单个NFC芯片20可如何以无线方式且通过无线功率捕获控制多个致动器10。
图4是表皮VR装置的光学图像。装置制造可以涂覆18pm厚Cu的聚酰亚胺(PI-12.5μm厚)片材开始。那些Cu片材层压在涂覆PDMS的晶片或玻璃载片(以3000rpm自旋持续1分钟)处置衬底上。柔性Cu电路板通过利用Cu蚀刻剂的湿式化学蚀刻经由AZ4620光致抗蚀剂(PR)的硬烘焙掩模图案化到两个线圈和连接导线/贴片。光致抗蚀剂通过丙酮的清洗来移除。此处是表皮VR装置的设计,其包含用于功率捕获的正方形形状的大天线线圈40(3×3英寸,7.62x7.62cm),以及用于无线通信的圆形形状的小天线线圈50(3.5cm的直径)。相应地,大面积天线可定位在衬底的周边周围,例如在衬底尺寸的最外5%或10%内。PI上的感光成孔(photo defined)的柔性Cu电路板利用PI作为Cu表面保护层进行旋涂,且在真空烤箱中在250℃下硬烘焙75分钟。薄PI保护层防止Cu表面的氧化,并且还防止装置制造期间的擦伤。通过穿过AZ4620PR的图案的March RIE形成的穿过PI的开口提供到电子零件/与Cu接触贴片的电线焊接的接达。随后,例如机械致动器、电容器、电阻器、电子开关和无线控制器(例如,NFC芯片)等电子元件焊接到Cu电路板上。这些电子零件(机械致动器除外)是市售的。这些零件的厚度小于1mm。接下来,通过倾倒少量低模量PDMS硅酮且接着在70℃烤箱中固化整夜来囊封所述装置。将装置谨慎地从处置衬底剥离且传送到涂覆硅酮的氨纶织布。涂覆的织布具有极高柔性且可拉伸(达200%拉伸度)。3x3英寸装置包括7个机械致动器。致动器装置的总体厚度小于3mm,重量为约30g。如图5中所示出,装置可以是可弯曲且柔软的,以促进与表皮或皮肤的顺应性(图6A-6B)。
图7示出IC开关的细节。示范性开关展示为具有连接到大天线、小天线和致动器的5个端口:Vout和接地端口连接到机械致动器Cu线圈的两个端子,接近Vout的一个Vcc端口连接到大线圈作为Vin用于到机械致动器的电力供应,另一Vcc端口连接到小线圈上的Tl NFC芯片(无线控制器)的Vcc,作为受控Vcc,最后一个端口连接到NFC芯片的GPIO端口。当GPIO端口提供高电压时,开关断开,因此致动器的输出断开。相比而言,当GPIO端口的电压为低或零(参看图7的中间和下部面板)时,致动器的输出接通。因为GPIO端口是以特定频率编程,所以机械致动器在这些频率下振动。这些致动器可通过切换GPIO控制端口而个别地工作。对于当前装置,从一个致动器到另一致动器的切换时间小于0.1s。
软件编程和致动器控制:如先前所提到,振动由振动磁体产生,振动磁体又由于线圈中引发的磁场而振动。举例来说,其可通过从RF430FRL15xH NFC ISO 15693传感器应答器(Texas仪器公司)将200Hz方波施加到线圈来实现。
NFC芯片使用代码调试器(Code Composer Studio,CCS)编程以产生此信号。这通过在高和低之间交替GPIO(通用I/O)端口的输出来进行。内置式计时器中的芯片用于获得所需频率。内置式系统频率利用子主时钟(sub-main clock,SMCLK),2MHz。因此,方波的可能频率范围为0到1MHz(近似)。单个NFC芯片运行8个GPIO端口,且每一GPIO端口可独立地编程。当然,具有较高数目的端口的芯片容易地并入到本文中所描述的装置中。振动传感器的实例:单个应答器与单个致动器,以及单个应答器与多个致动器。
NFC芯片的程序还并入有中断机制,其充当对于方波产生的控制。可通过在特定寄存器中写入特定十六进制值从而导致GPIO端口输出方波信号来触发此中断。可通过在相同寄存器中写入任何其它十六进制值来停用所述中断。因此,中断充当用于方波的控制机制。此类十六进制命令经由NFC数据交换格式(NDEF)消息传递。
必需的NDEF消息使用RF读取器写入到NFC芯片中。RF读取器可以是FEIG的IDISC.LRM2500-A,其在13.56MHz下操作。其输出功率范围为2W到12W,且其可经由USB端口向计算机通信。利用后者来控制使用具有定制GUI的RF读取器的写入过程。GUI显示RF读取器与计算机的连接状态。如果状态为断开,则可按压按钮以重建连接。一旦RF读取器连接到计算机,则可使用初始化按钮。这当前将RF功率设定在4W到12W之间。用以更改功率从而挑选所要功率的特征可添加到GUI。如果使用动态天线,则还可并入用以自动调谐天线的特征。
一旦系统初始化,则使用详细目录按钮来获得字段中所有NFC芯片的标签ID。这些ID在下拉菜单中列出,下拉菜单可用于选择所要NFC芯片。可随后使用开关式按钮来接通和断开选定的装置。当经由RF读取器命令针对应答器的开和关时,时间延迟是不可避免的,因为RF读取器在发送每一命令时限于25ms。举例来说,致动器的手动操作(开和关),其中手动地点击开关式按钮将产生50ms延迟直至下一致动器操作为止。
图8例示表皮VR应用,其依赖于具有包含机械、热等各种致动的极高可拉伸度/柔性装置。这些装置可层压或暂时“纹印”在皮肤的任何部分上(参看例如图6B),向上从头部向脚穿过而到达全身。所有这些致动器以无线方式控制和供电。相应地,当播放比赛、视频通信等时个体感觉到“触摸”、“冲击”、“热量”等,而不会物理上受到外部组件的硬连线的限制。
参看人类表皮/真皮器官/组织的机械感受器,Meissneer小体和Pacinican小体(图9)是最敏感部分。它们负责在振动频率为约200Hz时以高达几微米变形振幅的敏感度在皮肤上感测振动。如此,200Hz脉冲致动的产生对于机械致动器来说是需要考虑的重要物理参数。其它频率范围对于其它机械信号转导方案和感测模态很重要。举例来说,小于40Hz的频率通常被感觉为“触摸、按压”,需要较强强度的致动器来模拟此触摸。在大于40Hz时,质感(texture)可使人类的皮肤感觉到振动,那些振动的主要范围为40Hz到300Hz。出于参考目的,蜂窝电话中电机的振动频率通常大于55Hz。
包含用于功率捕获的大天线线圈40和用于无线通信的小天线50线圈的表皮VR装置的代表性设计提供于图10中。致动系统制造于极高拉伸度衬底100上,以促进皮肤上的顺应涂覆和稳健运作,即使在较大皮肤变形的情况下也如此。NFC芯片20可在系统中使用用于通信和无线控制。举例来说,致动器10的数目、天线线圈尺寸和相对间隔可取决于主体安装区域和所关注的应用而变化。大天线线圈可充当无线电力供应,小天线线圈作为无线控制“遥控器”。小线圈以电子方式与NFC芯片连接,且所述芯片可控制多个致动器。致动器装置可由例如织物、聚合物、橡胶、软塑料等超柔性衬底100支撑。尽管实例示出七个在空间上分布,但线圈的尺寸、致动器数目、电子组件的相对定位中的任一个可变化,包含取决于主体安装区域和所关注的应用。
图11示出装置电路和电子图式的实施例,包含针对表皮VR应用。能量捕获部分大线圈与电容器、电阻器、二极管并联或串联连接以优化从给定天线(天线L)产生的RF功率。由3x3英寸正方形线圈产生的功率范围为30mW到120mW,给定天线功率为4W到12W(基于装置之间的5cm工作距离和供电RF计算)。小线圈连接到无线控制器芯片(例如Tl NFC芯片),每一NFC芯片具有多个输出/控制部分;在此例示实施例中,8个输出/控制端口(GPIO端口),其控制各种致动器的开/关,包含通过开关的控制来进行。为简单起见,图11示出单个致动器/开关对。振动频率可控制在0Hz直到500Hz之间,通常对于人类使用200Hz振动,这是归因于人类皮肤机械接受器性质。NFC芯片的GPIO端口以特定频率信号编程,以控制开关的开和关状态。或者,可通过整合能够将DC电力转换为200Hz(或任何其它所要频率)信号的振荡器来产生200Hz信号(参看例如图12)。开关与GPIO端口、大天线线圈和致动器(此实例中示出为机械致动器)连接。当然,任何类型的致动器可并入到电路中,包含取决于所要物理响应而选择的热、压力、化学或其它致动器。天线L(较大):电力供应,比用于为芯片供电的功率高得多的功率,其中功率由RF功率、线圈尺寸等确定。天线S(较小):控制部分,编程多个GP I/O端口以控制开关的200Hz开/关,每一端口与一个装置连接。天线L和S可共享一个RF,其两者均在13.56MHz下工作。
图12示出振荡器的两个代表性设计。可通过改变电容器和/或电阻器的值来调整振荡频率。以此方式,DC电力转换为例如可用于控制机械致动器的200Hz输出。
图13是一种类型的机械致动器的示意图。所述设计通过使用有限元分析(FEA)的数值模拟来了解。在此实例中,致动手段是通过洛仑兹力,其促进0到500Hz范围内动态磁场中磁体的受控振动。举例来说,磁体可从200Hz开/关磁场振动。机械致动器可由Cu线圈1300、由聚合物层(PDMS)制成的环形模具1310和永久磁体盘片1320形成,所述环形模具具有内径为7mm且总PDMS直径为1cm的凹口1340,且所述永久磁体盘片具有约3到5mm之间的直径和0.5到1.5mm之间的厚度,且定位于PDMS凹口1340中。一旦动态电压输入到Cu线圈中,就产生特定频率下的开/关磁场,因此,磁体将经由洛仑兹力振动,因此磁体在选定频率下振动。根据FEA模拟和电磁原理,增加Cu线圈的匝数会增加磁场强度。考虑Cu线圈厚度与磁性强度的平衡,我们选择卷绕约300匝的Cu线材(50μm)作为线圈。因此,在此实例中致动器的通常配置为PDMS环1310、底部Cu线圈1300和顶部磁体1320。磁体通过感光成孔/March RIE成孔的薄PI层1330(12.5μm)固定以维持距Cu线圈~0.3mm的小间隙。磁体和线圈之间的间隙可经选择以便实现最大振动。致动器的总厚度为约2mm,重量为约2.5g。图14提供图13的机械致动器的侧视图(顶部面板)和俯视图(底部面板)。
图15中示出热致动器1500。加热器可具有约50μm的宽度。热致动可依赖于针对机械致动器实例描述的相同无线电力。使用电子束汽化200nm Au薄膜的光刻制造热致动器。图案为正方形形状,具有3x4μm的面积,以及50pm的电线宽度。这些热致动器的温度可快速增加,左面板示出在几秒内从29℃增加到45℃。在此实例中,大天线40直接为热致动器供电且通过电阻加热产生热量,左侧的图像是在由3"x 3"大天线供电的情况下热致动和所得温度改变的代表性示例。
图16示出外部控制器1600,在此情况下体现于在计算装置上运行且在显示器上视觉上显示的软件控制面板中。在此实例中,装置包括四个致动器,且这四个致动器中的每一个经由无线通信在外部控制平台中依据软件接口识别和显示。那些致动器可随后各自经由接口进行远程控制,包含独立地、远程地和以无线方式接通/断开。具有4个致动器的致动系统在供电天线下测试。确认200Hz的振动信号。以此方式,可在视频聊天、游戏等期间从第三方向正与本文中所描述的致动装置中的任一个接触的远程定位的人提供虚拟体验。
本文提供的致动装置尤其适于比例缩放,包含通过在一个系统中并入多个致动装置,其中每一致动装置包括多个空间上分布的致动器。举例来说,图17示意性地示出多个致动装置5(也可互换地称为“生物交互装置”)之间的双向通信,其中每一致动装置5包括多个致动器10(例示为7个致动器)。六个双端箭头1700强调装置之间的双向通信。以此方式,装置5中的一个的状态可用于实现不同装置5中的改变。此方面可对于进一步包括一个或多个传感器12的致动器装置尤其重要。物理参数可以传感器12直接测量且用于经由传输1700控制另一装置5。如本文所描述,外部控制器1600可提供与致动器装置5的单向或双向通信1710。对于其中致动器装置5包括致动器10和传感器12两者的实施例,与控制器1600(直接或间接经由一个或多个无线通信组件)的双向通信1710(包含与NFC芯片20)向远离另一个体的个体提供通用控制和反馈。当然,所述双向通信在两个个体都在使用致动装置时也是有用的,其能够提供对于传感器和/或致动控制的实时运行中反馈。即使没有此有效反馈,双向通信也可用于向远程用户呈现已定位且可用的致动器的确认,以及激励、断开或相关致动参数(温度、力、压力、振动频率、电场、光学等)的值的致动器装置状态。按需要,用于无线通信的较高能力组件可定位在装置5附近以在不妨碍用户的情况下改进和提升通信能力。
传感器:本文提供的装置与一系列传感器兼容。用于测量压力的一个示范性传感器在图18中示出。压力传感器1800可以是由超薄螺旋形状单晶硅层1810形成的硅压力传感器。压力传感器可包括定位于顶部聚合物层1820和底部聚合物层1830之间的硅层。其它组件可包含PI层1840、NFC线圈1850、桥1860、NFC芯片1870。粘合剂层1880(例如粘合带)可促进到皮肤的直接安装。或者,如本文所描述,传感器连同致动器一起可并入到衬底中或上,整个装置并入到例如衣物中。
图19示出传感器并入在致动器系统(包含生物交互装置)中的任一个中,以提供自主或半自主功能性。举例来说,外部控制器1600可提供与致动器10和传感器12装置5的单向或双向通信1710。一旦提供致动信号,则传感器12可经由与控制器芯片20的通信1900提供反馈控制。以此方式,传感器可用于独立地测量所关注的参数且用于进一步控制致动以确保达到所要水平。以此方式,装置被表征为具有自主或半自主功能性。举例来说,如果通信1710指示致动器产生特定致动水平(例如,温度、压力等),则传感器12可在组织中测量所述参数水平(例如,温度、压力等),且随后向控制器20提供装置上命令和控制以确保适当致动水平施加到皮肤以实现皮肤中的所要参数水平。这也是一种有用的故障保护,其中在存在不合需要的超出范围的参数测量(例如温度、压力等)的情况下停止致动。压力传感器可用于持续地测量皮肤上的压力,且一旦达到所要压力水平持续所要时间水平,则致动器可断电。
实例2:VR装置的表征。
图20示出示范性VR装置。面板a是具有32个机械致动器的表皮VR装置的分解图示意说明。分解图辅助视觉化各个组件和层,包含致动器(面板b-f中进一步示出),其支撑于柔软衬底(标记为“软PDMS”)上用于促进与皮肤舒适的顺应接触。其它所示出的组件包含电子组件、柔性电路、NFC电子器件(面板g中进一步示出,图像在面板h和i中示出)。面板b是致动器的示意性说明。面板c和d是从顶部(c)和底部(d)检视的致动器的示意图。面板e和f是从顶部(e)和底部(f)检视的致动器的光学图像。面板g是具有柔性Cu电路的NFC电子器件的示意性说明。插图示出蛇形形状Cu线圈的放大图。面板h和i是在(h)之前且在整合电子组件装置2之后NFC线圈的光学图像。装置可安装在生物组织上以用于额外表征,连同弯曲、扭曲和拉伸表征。
图21概述机械致动器的分析。面板a示出无接触的情况下机械致动器的测得的振幅-频率响应。面板b-d示出在接触不同刚度:60kPa(b)、130kPa(c)和200kPa(d)的人造皮肤时机械致动器的测得的振幅-频率响应。面板e是致动器的谐振频率作为所测试人造皮肤的模量的函数。面板f是在40mW的所施加功率下接触皮肤的致动器的行进振幅的FEA结果。面板g是致动器的行进振幅作为所施加功率的函数。面板h和i是在各种振动模式下致动器的机械联接的示意说明(h)和FEA(i)。
图22示出表皮VR装置的无线电力优化。面板a是这些示例中使用的具有3个维度的RF读取器的示意性说明,以及两个RF读取器318x318mm和620x852mm的光学图像。面板b和c是两个RF读取器的磁场强度的FEA相对于Z方向的距离。面板d和e是表皮VR装置的能量捕获线圈的测得的功率作为Z方向的距离的函数。面板f是RF读取器的顶部上的中间线圈的示意性说明。面板g是中间线圈的模拟平均磁场强度作为距离的函数。面板h是当在RF读取器的顶部上时中间线圈的磁场强度的FEA。面板i是当引入中间线圈时表皮VR装置的测得的功率作为距离的函数。
图23示出表皮VR装置的无线操作系统。面板a和b是表皮VR装置的电路图,其具有功率捕获线圈(a)和若干控制模块(b),每一控制模块具有NFC线圈和芯片,8个致动器由8个IC开关独立地控制。面板c是IC开关和开关的工作原理的示意图。IC开关的输出电压由NFC芯片的GPIO端口控制。面板d是从操作系统发送命令的工作原理。每一NFC芯片的GPIO端口由两个字节次序限定,所有致动器可由8个字节的组合以任何形式启动。面板e是由4个NFC芯片控制的致动器的响应时间。面板f是从一个致动器切换到另一致动器的响应时间的放大图。面板g和h示出软件接口可用作表皮VR装置的控制系统的一部分。
图24示出本文中所提供的装置可以针对装置定位在主体上何处进行调适的任何数目的几何形状配置。举例来说,图24示出装置安装在手背、前臂、二头肌、腹股沟和背部上。
关于以引用的方式并入及变型的陈述
贯穿本申请所有参考文献,例如包含已颁发或授予的专利或等效物的专利文件;专利申请公开;和非专利文献文件或其它原始材料,特此以全文引用的方式并入本文中,如同个别地以引用的方式并入一般,其程度使得每个参考文献至少部分不会与本申请中的公开内容不一致(例如,将部分不一致的参考文献除了参考文献的部分不一致部分以外以引用的方式并入)。
举例来说,Rogers等在2018年1月26日提交的标题为“无线表面可安装传感器和致动器(WIRELESS SURFACE MOUNTABLE SENSORS AND ACTUATORS)”的PCT/US18/15389以引用的方式特定地并入,包含针对传感器、致动器、无线组件(包含功率和通信系统、NFC芯片等)。
本文已经采用的术语和表达用作描述性术语而非限制,且此类术语和表达的使用并不意图排除所展示和描述的特征或其部分的任何等效物,而是应认识到,在所要求的本发明的范围内各种修改是可能的。因此,应理解,虽然本发明已通过优选实施例、示范性实施例和任选特征进行特别地公开,但所属领域的技术人员可以对本文中所公开的概念进行修改和变化,且此类修改和变化被视为属于如所附权利要求书限定的本发明范围内。本文提供的特定实施例是本发明的有用实施例的实例,且所属领域的技术人员将了解,本发明可使用当前描述内容中陈述的装置、装置组件、方法步骤的大量变化来实行。如所属领域的技术人员将显而易见,方法和可用于当前方法的装置可包含大量任选组合和处理元件及步骤。
当本文公开替代物群组时,应了解,单独地公开群组和所有子组的所有个别成员。当在本文中使用马库什(Markush)群组或其它分组时,群组的所有个别成员以及群组的所有可能组合和子组合预期个别地包含于本公开中。
除非另外陈述,否则本文描述或例示的组分的每种调配物或组合可以用以实践本发明。
每当在说明书中给定某一范围(例如,功率范围、装置数目、致动器数目、频率范围、长度范围、温度范围、时间范围或者组成或浓度范围)时,所有中间范围和子范围以及所给定范围中包含的所有个别值既定包含在本公开中。应理解,包含在本文的描述内容中的范围或子范围中的任何子范围或个别值可从本文的权利要求书排除。
本说明书中提及的所有专利和公开都指示本发明所属领域的技术人员的技能水平。本文列举的参考文献以全文引用的方式并入本文中以指示截至其公开或申请日的技术水平,且希望此信息视需要可在本文采用以排除现有技术中的特定实施例。
举例来说,当要求物质组成时,应理解,在申请人的发明之前此项技术中已知且可用的化合物,包含对于其在本文列举的参考文献中提供令人能够实现的披露的化合物,不希望包含在本文的物质组成权利要求项中。
如本文中所使用,“包括”与“包含”、“含有”或“表征为”同义,且为包含性的或开放式的且不排除额外未叙述的要素或方法步骤。如本文所用,“由……组成”排除权利要求要素中未规定的任何要素、步骤或成分。如本文中所使用,“基本上由......组成”不排除不会实质上影响权利要求项的基本和新颖特性的材料或步骤。在本文中各情况下,术语“包括”、“基本上由……组成”和“由……组成”中任一个可以替换成其它两个术语中的任一个。可以适合地在不存在本文未具体公开的任何一个多个要素、一个或多个限制的情况下实践本文说明性地描述的发明。
所属领域的一般技术人员将了解,除特定例示的那些以外的起始材料、生物材料、反应剂、合成方法、提纯方法、分析方法、测定方法和生物方法可以用于本发明的实践中,而无需进行过度实验。任何此类材料和方法的所有领域内已知的功能等效物既定包含在本发明中。已经采用的术语和表达用作描述性术语而非限制,且此类术语和表达的使用并不意图排除所展示和描述的特征或其部分的任何等效物,而是应认识到,在所要求的本发明的范围内各种修改是可能的。因此,应理解,虽然本发明已通过优选实施例和任选特征进行特别地公开,但所属领域的技术人员可以对本文中所公开的概念进行修改和变化,且此类修改和变化被视为属于如所附权利要求书限定的本发明范围内。

Claims (69)

1.一种致动装置,其特征在于:包括:
多个空间上分布的致动器,每一致动器被配置成用于与生物皮肤表面交互;
无线控制器,其被配置成接收操作性命令信号以控制所述致动器中的每一个;以及
无线电力系统,其为所述致动器供电,其中所述无线电力系统提供大于或等于5mW的功率捕获。
2.根据权利要求1所述的致动装置,其特征在于:所述无线电力系统提供至少5x10-4mW/cm2的功率递送。
3.根据权利要求1所述的致动装置,其特征在于:所述无线电力系统具有大于或等于50%的功率效率,所述功率效率定义为所递送功率与所捕获功率之比。
4.根据权利要求1所述的致动装置,其特征在于:包括传感器,所述传感器可操作地连接到所述无线控制器和所述无线电力系统用于感测物理参数。
5.根据权利要求1至4中任一项所述的致动装置,其特征在于:包括用于无线功率捕获和所述致动器的供电的大面积天线。
6.根据权利要求5所述的致动装置,其特征在于:所述大面积天线具有大于或等于100cm的长度。
7.根据权利要求5所述的致动装置,其特征在于:包括用于为所述无线控制器供电的小面积天线。
8.根据权利要求7所述的致动装置,其特征在于:所述小面积天线具有小于或等于10cm的外周占地面积。
9.根据权利要求8所述的致动装置,其特征在于:所述小面积天线包括线圈。
10.根据权利要求1所述的致动装置,其特征在于:所述无线控制器包括NFC芯片。
11.根据权利要求10所述的致动装置,其特征在于:所述多个空间上分布的致动器分布在大于或等于1m2的表面积上方。
12.根据权利要求11所述的致动装置,其特征在于:所述致动器提供在柔性衬底上。
13.根据权利要求12所述的致动装置,其特征在于:包括多个个别地互连的柔性衬底,其中所述个别衬底中的每一个支撑多个致动器且能在使用期间个别地定位在所要皮肤区域上方。
14.根据权利要求12所述的致动装置,其特征在于:所述柔性衬底支撑4个到500个之间的致动器。
15.根据权利要求12所述的致动装置,其特征在于:提供与皮肤的可逆介接。
16.根据权利要求12所述的致动装置,其特征在于:所述柔性衬底包括织物。
17.根据权利要求16所述的致动装置,其特征在于:所述织物是衣物的一部分。
18.根据权利要求1或4所述的致动装置,其特征在于:所述致动器包括机械致动器、热致动器和/或电致动器。
19.根据权利要求1所述的致动装置,其特征在于:所述致动器包括机械致动器,所述机械致动器的振动频率大于或等于1Hz且小于或等于1kHz。
20.根据权利要求19所述的致动装置,其特征在于:所述机械致动器包括导电线圈和磁体,其中所述磁体定位于在将电位施加到所述导电线圈期间由所述导电线圈产生的磁场内。
21.根据权利要求20所述的致动装置,其特征在于:所述导电线圈和所述磁体分隔一定的间隙。
22.根据权利要求21所述的致动装置,其特征在于:包括具有凹口的聚合物层,其中所述磁体定位于所述凹口中且所述导电线圈定位于所述磁体下方。
23.根据权利要求22所述的致动装置,其特征在于:包括开关,所述开关由所述无线控制器控制用于在断开状态和接通状态之间振荡所述导电线圈的电激励,借此产生所述磁体的受控振动频率。
24.根据权利要求23所述的致动装置,其特征在于:所述磁体振动频率在100Hz和300Hz之间。
25.根据权利要求1所述的致动装置,其特征在于:所述致动器包括热致动器。
26.根据权利要求25所述的致动装置,其特征在于:所述热致动器包括在所施加电流下加热的电线。
27.根据权利要求26所述的致动装置,其特征在于:由金丝形成,所述金丝具有10μm和200μm之间的宽度以及1mm2和50mm2之间的发热面积。
28.根据权利要求1或4所述的致动装置,其特征在于:包括低功率电路。
29.根据权利要求28所述的致动装置,其特征在于:所述低功率电路包括单个无线控制器,所述单个无线控制器通过在其它致动器处于断开状态的情况下一次电激励单个个别致动器且在所有致动器之间循环进行以上操作来控制所述多个空间上分布的致动器。
30.根据权利要求29所述的致动装置,其特征在于:所述无线控制器是具有多个输出的NFC芯片,其中每一输出以电子方式连接到个别致动器,所述装置进一步包括开关,所述开关以电子方式定位于所述NFC芯片输出和所述致动器之间以在开关频率下提供个别致动器电激励。
31.根据权利要求30所述的致动装置,其特征在于:在致动器之间的切换频率比在使用期间定位在所述致动装置下方的机械感受器的机械感受器反应时间快,使得所有所述多个致动器的同时致动被所述致动装置介接到的用户体验到。
32.根据权利要求1所述的致动装置,其特征在于:包括与所述无线控制器进行电子通信以用于测量物理参数的传感器,其中所述传感器提供反馈回路中所述致动器的自主控制。
33.一种致动系统,其特征在于:包括多个根据权利要求1所述的致动装置。
34.根据权利要求33所述的致动系统,其特征在于:所述致动装置中的每一个彼此间进行无线通信。
35.根据权利要求34所述的致动系统,其特征在于:所述无线通信包括双向通信。
36.根据权利要求35所述的致动系统,其特征在于:每一致动装置进一步包括用于感测物理参数的传感器,其中所述传感器与所述无线控制器进行电子通信使得传感器输出能传送到不同的致动装置或外部控制器。
37.根据权利要求33至36中任一项所述的致动系统,其特征在于:是虚拟现实装置的一部分。
38.一种虚拟现实装置,其特征在于:包括:
多个空间上分布的生物交互装置,其被配置成用于与生物表面交互,所述生物交互装置各自包括:
传感器和致动器;
无线控制器,其被配置成接收操作性命令信号以控制所述生物交互装置中的每一个且向远程控制器传输来自所述传感器中的每一个的输出;以及
无线电源,其可操作地连接到所述多个生物交互装置。
39.根据权利要求38所述的虚拟现实装置,其特征在于:所述多个空间上分布的生物交互装置被配置成产生协调且时空上变化的热、电刺激、机械振动输出,或其任何组合。
40.根据权利要求39所述的虚拟现实装置,其特征在于:被配置成用于人际交互,所述虚拟现实装置进一步包括计算机接口,用于相隔一定距离由某个人来控制所述多个空间上分布的生物交互装置。
41.根据权利要求39所述的虚拟现实装置,其特征在于:被配置成用于游戏或培训。
42.根据权利要求38所述的虚拟现实装置,其特征在于:所述传感器被配置成基于由所述传感器测得的一个或多个生理参数调制所述致动器。
43.根据权利要求42所述的虚拟现实装置,其特征在于:所述生理参数为:温度;压力;运动;位置;血流;血氧合;皮肤电流响应;电阻抗、模量;出汗率;生物电位;或应变。
44.根据权利要求38所述的虚拟现实装置,其特征在于:所述无线控制器包括近场通信芯片以提供到所述传感器和致动器的无线电力递送,以及所述生物交互装置和外部控制器之间的无线数据通信。
45.根据权利要求38所述的虚拟现实装置,其特征在于:所述无线控制器提供与所述多个生物交互装置的双向通信,以从所述多个传感器获取生理参数数据且操作所述多个生物交互装置的所述致动器。
46.根据权利要求45所述的虚拟现实装置,其特征在于:所述无线控制器包括长程读取器。
47.根据权利要求38所述的虚拟现实装置,其特征在于:被配置成提供对应于活体动物皮肤表面的至少70%的有效体表面积的感测和致动。
48.根据权利要求38所述的虚拟现实装置,其特征在于:具有大于或等于10cm的最大无线传输和接收范围。
49.根据权利要求38所述的虚拟现实装置,其特征在于:所述多个生物交互装置直接或间接安装在皮肤上,且提供所述生理参数的空间分布映射。
50.根据权利要求38所述的虚拟现实装置,其特征在于:所述多个生物交互装置被配置成直接连接到活体动物的皮肤表面。
51.根据权利要求38所述的虚拟现实装置,其特征在于:所述多个生物交互装置嵌入或连接到服装,其中所述服装被配置成由活体动物穿戴以在皮肤表面附近提供所述多个生物交互装置。
52.根据权利要求38所述的虚拟现实装置,其特征在于:包括至少20个生物交互装置。
53.根据权利要求38所述的虚拟现实装置,其特征在于:每一生物交互装置包括:
NFC芯片,其用于无线通信和控制;
无线能量捕获器,其包括用于为所述致动器供电的大面积天线。
54.根据权利要求38所述的虚拟现实装置,其特征在于:所述传感器包括:
温度传感器;以及
压力传感器。
55.根据权利要求54所述的虚拟现实装置,其特征在于:所述压力传感器包括由超薄螺旋形状单晶硅层形成的硅压力传感器。
56.根据权利要求54所述的虚拟现实装置,其特征在于:所述压力传感器包括定位于顶部聚合物层和底部聚合物层之间的硅层。
57.根据权利要求53所述的虚拟现实装置,其特征在于:包括被配置成以无线方式与外部读取器天线介接的磁感应环形天线。
58.根据权利要求57所述的虚拟现实装置,其特征在于:所述外部读取器天线内嵌于外部读取器天线衬底中。
59.根据权利要求57所述的虚拟现实装置,其特征在于:包括远程控制器,所述远程控制器向所述无线控制器提供用于远程控制所述多个致动器的无线命令。
60.根据权利要求38所述的虚拟现实装置,其特征在于:每一生物交互装置是多功能的且测量和/或控制至少温度和压力。
61.根据权利要求38所述的虚拟现实装置,其特征在于:每一生物交互装置测量选自由以下组成的群组的至少一个额外参数:氧含量、电位、心率、呼吸速率、低血容量和光学信号。
62.一种致动系统,其特征在于:包括:
多个致动装置,每一致动装置包括:
多个空间上分布的致动器,每一致动器被配置成用于与生物皮肤表面交互;
无线控制器,其被配置成接收操作性命令信号以控制所述致动器中的每一个;
无线电力系统,其为所述致动器供电;以及
柔性衬底,其支撑所述致动器、无线控制器和无线电力系统中的每一个;以及
其中每一致动装置与至少一个其它致动装置进行无线通信。
63.根据权利要求62所述的致动系统,其特征在于:所述致动装置包括:
多个空间上分布的致动器,每一致动器被配置成用于与生物皮肤表面交互;
无线控制器,其被配置成接收操作性命令信号以控制所述致动器中的每一个;以及
无线电力系统,其为所述致动器供电,其中所述无线电力系统任选地提供大于或等于5mW的功率捕获。
64.根据权利要求62所述的致动系统,其特征在于:致动装置之间的所述无线通信为双向通信。
65.根据权利要求64所述的致动系统,其特征在于:所述致动装置中的每一个进一步包括传感器。
66.根据权利要求65所述的致动系统,其特征在于:来自至少一个传感器的输出传送到另一致动装置以控制所述另一致动装置的致动器。
67.一种与个体进行虚拟交互的方法,特征在于:所述方法包括以下步骤:
提供空间上分布在个体的皮肤表面上方的多个致动器;
以无线方式将所述致动器连接到远程控制器;
将输入信号输入到所述远程控制器以激活所述致动器的至少一部分且与所述皮肤表面介接;以及
在低电力模式中以无线方式为被激活的致动器供电,其中所述低电力模式包括被激活的致动器之间的快速切换,使得所述个体体验到所有致动器同时激活的物理感觉。
68.一种与个体进行虚拟交互的方法,其特征在于:所述方法包括以下步骤:
在个体的皮肤表面附近提供致动器装置、系统或虚拟现实装置;
以无线方式将所述致动器连接到远程控制器;
将输入信号输入到所述远程控制器以激活所述致动器的至少一部分且与所述皮肤表面远程介接;
借此与个体进行虚拟交互。
69.根据权利要求68所述的方法,其特征在于:包括;
以传感器感测一个或多个物理参数;以及
将来自所述传感器的输出传输到所述远程控制器,借此向所述远程控制器的远程用户提供反馈。
CN201880008854.0A 2017-01-27 2018-01-26 表皮虚拟现实装置 Active CN110520040B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762451248P 2017-01-27 2017-01-27
US62/451,248 2017-01-27
US201762503142P 2017-05-08 2017-05-08
US62/503,142 2017-05-08
PCT/US2018/015472 WO2018140743A1 (en) 2017-01-27 2018-01-26 Epidermal virtual reality devices

Publications (2)

Publication Number Publication Date
CN110520040A true CN110520040A (zh) 2019-11-29
CN110520040B CN110520040B (zh) 2022-05-31

Family

ID=62978774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880008854.0A Active CN110520040B (zh) 2017-01-27 2018-01-26 表皮虚拟现实装置

Country Status (4)

Country Link
US (2) US11112869B2 (zh)
EP (1) EP3573525B1 (zh)
CN (1) CN110520040B (zh)
WO (1) WO2018140743A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022134371A1 (zh) * 2020-12-25 2022-06-30 苏州益舒缘科技有限公司 一种用于实时监控心率的检测装置及其检测方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11029198B2 (en) 2015-06-01 2021-06-08 The Board Of Trustees Of The University Of Illinois Alternative approach for UV sensing
EP3304430A4 (en) 2015-06-01 2019-03-06 The Board of Trustees of the University of Illionis MINIATURIZED ELECTRONIC SYSTEMS HAVING WIRELESS POWER CAPACITIES AND NEAR FIELD COMMUNICATION
US10653342B2 (en) 2016-06-17 2020-05-19 The Board Of Trustees Of The University Of Illinois Soft, wearable microfluidic systems capable of capture, storage, and sensing of biofluids
US11071857B2 (en) 2016-08-22 2021-07-27 William Marsh Rice University Systems and methods for wireless treatment of arrhythmias
US11642039B1 (en) * 2018-11-11 2023-05-09 Kimchi Moyer Systems, methods, and apparatuses for analyzing galvanic skin response based on exposure to electromagnetic and mechanical waves
WO2020106862A1 (en) 2018-11-20 2020-05-28 The Regents Of The University Of California Systems and methods for controlling wirelessly powered leadless pacemakers
EP4110165A4 (en) * 2020-02-28 2024-05-15 The Regents of the University of California INTEGRATED TRANSCEIVERS AND TRANSMITTERS ENERGY HARVESTERS WITH DUAL ANTENNA ARCHITECTURE FOR MINIATURISTED IMPLANTS AND ELECTROCHEMICAL SENSORS
US11887259B2 (en) 2021-01-25 2024-01-30 Walker L. Sherk Method, system, and apparatus for full-body tracking with magnetic fields in virtual reality and augmented reality applications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583478A (en) * 1995-03-01 1996-12-10 Renzi; Ronald Virtual environment tactile system
US20030227374A1 (en) * 2002-06-10 2003-12-11 Ling Sho-Hung Welkin Modular electrotactile system and method
CN102292688A (zh) * 2008-12-10 2011-12-21 英默森公司 用于提供来自触觉纺织物的触觉反馈的方法和设备
US20160012689A1 (en) * 2014-07-09 2016-01-14 Tampereen Yliopisto Tactile imaging system

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165897A (en) * 1990-08-10 1992-11-24 Tini Alloy Company Programmable tactile stimulator array system and method of operation
US6106576A (en) * 1994-07-19 2000-08-22 Maxwell Products, Inc. Adjustable massage bed assembly with handheld control unit having automatic stop safety feature
US6809462B2 (en) * 2000-04-05 2004-10-26 Sri International Electroactive polymer sensors
US6882128B1 (en) 2000-09-27 2005-04-19 Science Applications International Corporation Method and system for energy reclamation and reuse
DE10102817B4 (de) 2001-01-23 2006-01-12 Lts Lohmann Therapie-Systeme Ag Vorrichtung und Verfahren zur Hitzepulsgestützten transdermalen Applikation von Wirkstoffen
US6920883B2 (en) 2001-11-08 2005-07-26 Arthrocare Corporation Methods and apparatus for skin treatment
JP2004024551A (ja) 2002-06-26 2004-01-29 Renesas Technology Corp センサシステム用半導体装置
EP1533678A1 (en) * 2003-11-24 2005-05-25 Sony International (Europe) GmbH Physical feedback channel for entertaining or gaming environments
TWI434718B (zh) 2006-12-07 2014-04-21 Cel Kom Llc 觸覺式可穿戴型遊戲裝置
FR2945835B1 (fr) * 2009-05-25 2016-01-22 Commissariat Energie Atomique Microsystemes de transformation de pressions et de compression, capteur, roue, puce, micromoteur, pile incorporant ce microsysteme et procede de fabrication de ce microsysteme
US9417694B2 (en) * 2009-10-30 2016-08-16 Immersion Corporation System and method for haptic display of data transfers
US20110115709A1 (en) * 2009-11-17 2011-05-19 Immersion Corporation Systems And Methods For Increasing Haptic Bandwidth In An Electronic Device
US10441185B2 (en) 2009-12-16 2019-10-15 The Board Of Trustees Of The University Of Illinois Flexible and stretchable electronic systems for epidermal electronics
US9880621B2 (en) 2010-04-08 2018-01-30 Disney Enterprises, Inc. Generating virtual stimulation devices and illusory sensations using tactile display technology
US20120286935A1 (en) 2011-05-10 2012-11-15 Haiying Huang Unpowered wireless sensor systems and methods
US20130184611A1 (en) * 2011-07-13 2013-07-18 Andrew Nichols System and apparatus for posture and body position correction and improvement through a computer-assisted biofeedback system
JP2015521303A (ja) 2012-03-30 2015-07-27 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシ 表面への形状適合可能な付属物装着可能電子デバイス
ES2705526T3 (es) 2012-09-11 2019-03-25 Life Corp Sa Plataforma de comunicación ponible
US10918561B2 (en) * 2012-09-14 2021-02-16 Recovery Force, LLC Compression device
US9110897B2 (en) 2012-11-16 2015-08-18 Electronics And Telecommunications Research Institute Sensor tag and method of providing service using the same
US10152706B2 (en) * 2013-03-11 2018-12-11 Cellco Partnership Secure NFC data authentication
US9949890B2 (en) 2013-03-15 2018-04-24 Sambhu Choudhury Garment with remote controlled vibration array
EP2957983A1 (en) * 2014-06-18 2015-12-23 Alcatel Lucent User-wearable electronic device and system for personal computing
KR102307640B1 (ko) 2014-06-25 2021-10-05 센셀, 인크. 촉각 터치 센서 시스템 및 방법
US10390755B2 (en) * 2014-07-17 2019-08-27 Elwha Llc Monitoring body movement or condition according to motion regimen with conformal electronics
KR102096146B1 (ko) 2014-09-02 2020-04-28 애플 인크. 가변 햅틱 출력을 위한 시맨틱 프레임워크
US9935370B2 (en) 2014-12-23 2018-04-03 Palo Alto Research Center Incorporated Multiband radio frequency (RF) energy harvesting with scalable antenna
US10437335B2 (en) * 2015-04-14 2019-10-08 John James Daniels Wearable electronic, multi-sensory, human/machine, human/human interfaces
EP3304430A4 (en) * 2015-06-01 2019-03-06 The Board of Trustees of the University of Illionis MINIATURIZED ELECTRONIC SYSTEMS HAVING WIRELESS POWER CAPACITIES AND NEAR FIELD COMMUNICATION
US11364389B2 (en) * 2015-10-01 2022-06-21 Zoll Medical Corporation Training modules for an external medical device
US9741216B1 (en) * 2016-10-14 2017-08-22 Oculus Vr, Llc Skin stretch instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583478A (en) * 1995-03-01 1996-12-10 Renzi; Ronald Virtual environment tactile system
US20030227374A1 (en) * 2002-06-10 2003-12-11 Ling Sho-Hung Welkin Modular electrotactile system and method
CN102292688A (zh) * 2008-12-10 2011-12-21 英默森公司 用于提供来自触觉纺织物的触觉反馈的方法和设备
US20160012689A1 (en) * 2014-07-09 2016-01-14 Tampereen Yliopisto Tactile imaging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022134371A1 (zh) * 2020-12-25 2022-06-30 苏州益舒缘科技有限公司 一种用于实时监控心率的检测装置及其检测方法

Also Published As

Publication number Publication date
EP3573525C0 (en) 2023-06-07
US11112869B2 (en) 2021-09-07
US20210397257A1 (en) 2021-12-23
EP3573525A4 (en) 2020-12-30
CN110520040B (zh) 2022-05-31
EP3573525A1 (en) 2019-12-04
EP3573525B1 (en) 2023-06-07
US20190369728A1 (en) 2019-12-05
US11874965B2 (en) 2024-01-16
WO2018140743A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
CN110520040A (zh) 表皮虚拟现实装置
Pyo et al. Recent progress in flexible tactile sensors for human‐interactive systems: from sensors to advanced applications
Shi et al. Artificial intelligence of things (AIoT) enabled floor monitoring system for smart home applications
Zhu et al. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification
CN103119920B (zh) 具有可弹性变形的本体的装置
CN104662800B (zh) 用于电气设备或电子设备的触觉控制布置
Shi et al. Progress of advanced devices and internet of things systems as enabling technologies for smart homes and health care
CN107206668B (zh) 3d机电一体化物体的增材制造的方法
US20080281244A1 (en) Electronic bandage with flexible electronic controller
Shi et al. Soft robotic perception system with ultrasonic auto-positioning and multimodal sensory intelligence
JP2015028799A (ja) ハプティック・テキスタイルからハプティック・フィードバックを提供する方法及び装置
EP2830492A1 (en) Appendage mountable electronic devices conformable to surfaces
Cai et al. Ultrahigh sensitive and flexible magnetoelectronics with magnetic nanocomposites: toward an additional perception of artificial intelligence
CN106934444B (zh) 模块化结构电子贴片
Wang et al. Localizable, identifiable, and perceptive untethered light-driven soft crawling robot
CN104423429B (zh) 一种穿戴式移动终端
CN107765844A (zh) 对电场进行选择性控制以传递非接触式触觉效果
CN106999047A (zh) 监测身体部位在冲击后的损伤的系统
Wang et al. Mechanical gradients enable highly stretchable electronics based on nanofiber substrates
Ma et al. Soft, multifunctional, robust film sensor using a ferroelectret with significant longitudinal and transverse piezoelectric activity for biomechanical monitoring
Kim et al. An implantable ionic wireless power transfer system facilitating electrosynthesis
Park et al. Soft Sensors and Actuators for Wearable Human–Machine Interfaces
Su et al. All-Fabric tactile sensors based on sandwich structure design with tunable responsiveness
Tian et al. Ultrathin epidermal P (VDF-TrFE) piezoelectric film for wearable electronics
Li et al. An All-Protein Multisensory Highly Bionic Skin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant