CN110518603B - 含环网的三相不平衡的中低压完整配电网潮流计算方法 - Google Patents

含环网的三相不平衡的中低压完整配电网潮流计算方法 Download PDF

Info

Publication number
CN110518603B
CN110518603B CN201910777285.2A CN201910777285A CN110518603B CN 110518603 B CN110518603 B CN 110518603B CN 201910777285 A CN201910777285 A CN 201910777285A CN 110518603 B CN110518603 B CN 110518603B
Authority
CN
China
Prior art keywords
voltage
network
node
power
distribution network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910777285.2A
Other languages
English (en)
Other versions
CN110518603A (zh
Inventor
周晓鸣
丁一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910777285.2A priority Critical patent/CN110518603B/zh
Publication of CN110518603A publication Critical patent/CN110518603A/zh
Application granted granted Critical
Publication of CN110518603B publication Critical patent/CN110518603B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种含环网的三相不平衡的中低压完整配电网潮流计算方法。针对含环网的三相不平衡的中低压完整配电网,获得已知基础网络数据,通过虚拟电流补偿法,将环网解列为解环网,处理获得潮流迭代后的电网中各节点的潮流后电压,并且不断潮流处理迭代,每次潮流迭代后,计算潮流迭代前后电网各节点电压之差的最大值:并判断直至达到要求,实现完成了潮流处理。本发明方法能处理三相不平衡的中低压完整配电网中的环状不平衡网络,更快速地进行计算处理,占用内存小,潮流结果准确性好,对于三相不平衡的中低压完整配电网的构建能优化运行,向电网调度提供准确数据。

Description

含环网的三相不平衡的中低压完整配电网潮流计算方法
技术领域
本发明属于配电网潮流处理领域,涉及含环网的三相不平衡的中低压完整配电网潮流计算方法。
背景技术
潮流处理是对配电网进行管理与规划,并实现安全、稳定、经济运行的基础。近年来,随着能源电力、“云大物移智”等技术的不断进步与应用,分布式电源与泛在电力物联网发展结合度越来越高。随着风、光等分布式电源的快速大量接入,传统无源配电网正向有源主动配电网转变。在带来显著环境、经济和社会效益的同时,对配电网潮流计算也带来了新的挑战。首先,配电网由于线路不对称布置和转置缺失、负荷不均匀分布等因素影响本身具有显著的三相不平衡特征,而分布式电源(通常为单相)的随机接入进一步加剧了网络不平衡性;其次,分布式电源不仅直接影响其通常所接入的低压配网,同时间接影响其上游中压配网;另外,中压配电网由于供电可靠性的要求,其环网拓扑获得了更多重视和应用。
截至目前,尚无潮流处理全面考虑了三相不平衡、多电压等级和弱环网等配电网新特征。
发明内容
针对上述背景技术中的问题,本发明提出了一种含环网的三相不平衡的中低压完整配电网潮流计算方法,适用于多电压等级和环网的三相不平衡配电网综合直接潮流处理,应用该含环网的三相不平衡的中低压完整配电网潮流计算方法,保留了直接潮流的精准性与高效性,同时将其应用范围扩展至含多电压等级、环网的三相不平衡配电网,为新形势下配电网的潮流计算提供了有效解决方案。
本发明的技术方案是:
所述的含环网的三相不平衡的中低压完整配电网(以下文中部分地方简称电网)包括三相不平衡的中压配电网、三相不平衡的低压配电网和中低压配电变压器的三个部分,中低压配电变压器连接三相不平衡的中压配电网和三相不平衡的低压配电网之间;环网是指由多条供电线路构成的“口”字型电网结构,环网处于三相不平衡的中压配电网,环网线路是指组成环网的多条供电线路中的距离源节点最远的一条供电线路;所述的中低压完整配电网中存在负荷节点,各负荷节点之间相连的线路为支路,以中低压完整配电网输入端所连接的上级供电变压器成为源节点,上级供电变压器向中低压完整配电网输送提供电能;
所述的节点为将汇集、分配和传送能量(电能)的设备。例如为住宅区用电中转站。
方法包括以下几个步骤:
1)通过中低压完整配电网中的传感器或者通过工具采集获得以下中低压完整配电网的已知基础网络数据,包括:
中低压完整配电网:总节点数n、线路长度Lij,其中i,j均表示节点的序数,i,j∈n;线路的单位阻抗Z、额定电压矩阵VN、中压配电网额定电压VN.M、低压配电网额定电压VN.L
中压配电网负荷节点的电能消耗有功功率PLoad.i.M、中压配电网负荷节点的电能消耗无功功率QLoad.i.M
低压配电网负荷节点的电能消耗有功功率PLoad.i.L、低压配电网负荷节点的电能消耗无功功率QLoad.i.L
中低压配电变压器:第i个配电变压器的变比nt.i、第i个配电变压器的变比矩阵Ti、第i个配电变压器的阻抗Zt.i、第i个配电变压器的三相阻抗矩阵Zt.i、配电变压器电流电压修正矩阵AT
2)处理获得电网中各负荷节点的流出电流Ii
针对第一次迭代时:
先根据中压配电网中各负荷节点的电能消耗功率PLoad.i.M、中压配电网中负荷节点的电能消耗无功功率QLoad.i.M与中压配电网的各负荷节点的额定电压VN.M计算得到中压配电网中各负荷节点的流出电流Ii.M
Figure BDA0002175479640000021
其中,()*表示矩阵的共轭计算;j为虚数单位;
同时根据低压配电网中各负荷节点的电能消耗功率PLoad.i.L、低压配电网中负荷节点的电能消耗无功功率QLoad.i.L与低压配电网的各负荷节点的额定电压VN.L计算得到低压配电网中各负荷节点的流出电流Ii.L
Figure BDA0002175479640000022
最后根据中压配电网中各负荷节点的流出电流Ii.M与低压配电网中各负荷节点的流出电流Ii.L,共同获得中低压完整配电网中各负荷节点的流出电流Ii
Figure BDA0002175479640000031
针对第二次迭代及以后的每次迭代时:
利用上次迭代后的各负荷节点的电压Vi′以及配电网中各负荷节点的电能消耗功率PLoad.i、负荷节点的电能消耗无功功率QLoad.i,计算获得中低压完整配电网中各负荷节点的流出电流Ii
Figure BDA0002175479640000032
其中,Vi′表示上一次迭代后的电网各节点的电压,由步骤4)求得;
3)将含环网的三相不平衡的中低压完整配电网中的环网线路去除获得解环网的三相不平衡的中低压完整配电网,由各负荷节点的流出电流Ii处理获得解环网的负荷节点的流出电流矩阵IH,并且获得解环网的三相不平衡的中低压完整配电网的节点支路关联矩阵A和支路电压关联矩阵C以及解环网的节点电压降落矩阵ΔVH和带环网的节点电压降落矩阵ΔV;
4)根据额定电压矩阵VN与带环网的节点电压降落矩阵ΔV相减得到迭代后的电网各节点的电压矩阵Vi′,完成本次潮流迭代:
Vi′=VN-△V
5)通过以下公式计算潮流迭代前后电网各节点电压之差的最大值△Vi.max
△Vi.max=max(|Vi′-Vi|)
其中,Vi表示上一次迭代后负荷节点i的电压,Vi′表示本次迭代后负荷节点i的电压;
需要说明的是,对于第一次迭代,上一次迭代后的负荷节点i的电压Vi为各负荷节点的额定电压VN;第二次迭代后(包括第二次迭代),上一次迭代后的负荷节点i的电压Vi为上一次迭代中步骤5)所计算的中低压完整配电网各负荷节点的电压。
6)不断迭代重复步骤(2)~(5)进行潮流迭代,每次潮流迭代后,采用以下方式进行判断潮流迭代是否收敛;
若本次潮流迭代后收敛,则输出本次潮流迭代后的处理结果,获得本次潮流迭代后的电网中各节点的潮流后电压Vi′;
若本次潮流迭代后未收敛,将本次潮流迭代后的处理结果作为下次潮流迭代前的潮流前数值,将本次潮流迭代后的电网中各节点的潮流后电压Vi′作为下次潮流迭代时的电网中各节点的潮流前电压Vi,返回步骤2)进行下一次潮流迭代处理。
本发明采用潮流计算的结果进行电网调度,优化电网中元件的优化配置,进行电网状态的监测。
所述1)中的低压配电网额定电压VN.L通过中压配电网额定电压VN.M与配电变压器的变比矩阵Ti处理计算得到:
VN.M=Ti·VN.L
所述1)中的额定电压矩阵VN采用以下方式处理获得:
根据中压配电网额定电压VN.M与低压配电网额定电压VN.L共同组成了中低压完整配电网中各负荷节点的额定电压VN
Figure BDA0002175479640000041
各个负荷节点的额定电压VN组成的列矩阵作为额定电压矩阵VN
所述1)中的中压配电网负荷节点的电能消耗有功功率PLoad.i.M和低压配电网负荷节点的电能消耗有功功率PLoad.i.L采用以下方式处理获得:
根据中压配电网负荷节点的电能消耗有功功率PLoad.i.M与低压配电网负荷节点的电能消耗有功功率PLoad.i.L共同组成了电网负荷节点的电能消耗有功功率PLoad.i
Figure BDA0002175479640000042
根据中压配电网负荷节点的电能消耗无功功率QLoad.i.M与低压配电网负荷节点的电能消耗无功功率QLoad.i.L共同组成了电网负荷节点的电能消耗无功功率QLoad.i
Figure BDA0002175479640000043
所述步骤3)具体如下:
3.1)由各负荷节点的流出电流Ii组成负荷节点的带环网的流出电流矩阵I,表示为:
Figure BDA0002175479640000044
3.2)由环网线路上流经的电流Bij.H拓展连接在负荷节点的流出电流矩阵I之后组成解环网的负荷节点的流出电流矩阵IH,表示为:
Figure BDA0002175479640000051
3.3)将含环网的三相不平衡的中低压完整配电网中的环网线路去除/解除,得到一个解环网的三相不平衡的中低压完整配电网,并获得解环网的三相不平衡的中低压完整配电网的节点支路关联矩阵A,其中基于节点i的流出电流Ii对电网中节点i和节点j之间支路上的电流Bij的流经路径,节点支路关联矩阵A第i行j列元素取值如下:
Figure BDA0002175479640000052
其中,Ti表示第i个配电变压器的变比矩阵,表示为:
Figure BDA0002175479640000053
上述第i个配电变压器的变比矩阵Ti是根据变压器接线方式决定,采用Dyn11型接线。
其中,1为三阶单位矩阵,0为三阶零矩阵;
Figure BDA0002175479640000054
Figure BDA0002175479640000055
3.4)通过以下公式,根据解环网的负荷节点的流出电流矩阵IH与解环网的三相不平衡的中低压完整配电网的节点支路关联矩阵A获得解环网的电网支路的电流矩阵BH
Figure BDA0002175479640000056
其中,XA表示节点支路关联矩阵A的第一修正矩阵,YA表示节点支路关联矩阵A的第二修正矩阵;Bij为电网中节点i和节点j之间支路上的电流;B表示带环网的电网支路的电流矩阵,计算为:
Figure BDA0002175479640000061
所述的第一修正矩阵XA由n×1个维度为3×3的子矩阵组成的列矩阵,其中,根据环网线路所对应的连接节点:第i节点与第j节点,在修正矩阵XA中,第i个子矩阵为单位矩阵1,第j个子矩阵为-1,其余子矩阵为零矩阵0;第二修正矩阵YΑ由1×n个维度为3×3的零矩阵0组成的横矩阵。
3.5)采用以下方式生成解环网的三相不平衡的中低压完整配电网的支路电压关联矩阵C,其中基于电网中节点i和节点j之间支路上的电流Bij及配电变压器的位置,支路电压关联矩阵C中对应元素取值如下:
Figure BDA0002175479640000062
其中,Zij表示线路阻抗矩阵,AT为配电变压器的电流电压修正矩阵,表示为:
Figure BDA0002175479640000063
上述配电变压器的电流电压修正矩阵AT是根据变压器接线方式决定,采用Dyn11型接线。
线路阻抗矩阵Zij根据线路单位阻抗Z、线路长度Lij和三阶单位矩阵1得到:
Zij=Z×Lij·1
其中,Lij表示节点i和节点j之间的线路的长度;
Zt.i表示第i个配电变压器的三相变比矩阵,表示为:
Figure BDA0002175479640000064
3.6)通过以下公式,根据解环网的电网支路的电流矩阵BH与解环网的三相不平衡的中低压完整配电网的支路电压关联矩阵C获得解环网的节点电压降落矩阵ΔVH
Figure BDA0002175479640000071
其中,XC表示支路电压关联矩阵C的第一修正矩阵,YC表示支路电压关联矩阵C的第二修正矩阵,ZC表示支路电压关联矩阵C的第三修正矩阵;节点i的电压降落△Vi为电网中节点i相对于额定电压VN的差;ΔV表示带环网的节点电压降落矩阵,表示为:
Figure BDA0002175479640000072
第一修正矩阵XC由n×1个维度为3×3的零矩阵0组成的列矩阵;第二修正矩阵YC由1×n个维度为3×3的子矩阵组成的横矩阵,其中,根据环网线路所对应的连接节点:第i节点与第j节点,在修正矩阵YC中,第i个子矩阵为支路电压关联矩阵C的第i个子矩阵,第j个子矩阵为负的支路电压关联矩阵C的第j个子矩阵,其余子矩阵为零矩阵0;第三修正矩阵ZC为环网线路的线路阻抗矩阵Zij.H
3.7)根据上述解环网的节点电压降落矩阵ΔVH的公式和解环网的电网支路的电流矩阵BH的公式,获得以下公式的解环网的节点电压降落矩阵ΔVH
Figure BDA0002175479640000073
接着通过库朗(Kron)简化处理得到带环网的节点电压降落矩阵ΔV为:
ΔV=(K-L·N-1·M)·I
K=C·A+XC·YA;L=C·XA+XC;M=YC·A+ZC·YA;N=YC·XA+ZC
其中矩阵L与矩阵M互为转置矩阵,即:L=MT
所述步骤6)中,潮流迭代是否收敛的判敛依据为:潮流迭代前后电网节点电压之差的最大值△Vi.max是否小于等于10-5
△Vi.max≤10-5
如果满足上述公式,则本次潮流迭代后收敛;否则本次潮流迭代后尚未收敛。
所述步骤6)中,潮流迭代是否收敛的判敛依据为:潮流迭代计算次数k超过100次,则判断该含环网的三相不平衡的中低压完整配电网潮流计算不收敛,结束含环网的三相不平衡的中低压完整配电网潮流计算。
本发明的有益效果:
本发明方法能处理三相不平衡的中低压完整配电网中的环状不平衡网络,,并且能更快速地进行计算处理,占用内存小,潮流结果准确性好,对于含环网的三相不平衡的中低压完整配电网的构建能优化运行,向电网调度提供准确数据,提供准确的网络状态。
本发明可以兼容包括光伏、风电、储能、微型燃气轮机、电动汽车等分布式电源的配电网络。
本发明可以计算各种接线类型与变比的配电变压器网络。
本发明可以准确计算配电变压器两侧三相不平衡电压的幅值与相角。
本发明对大量节点的配电网仍具备较好的鲁棒性。
本发明中低压完整配电网潮流计算提升了直接潮流的适用性,且在提升适用性的基础上依然保持了原电力系统直接潮流的高效性与高鲁棒性。
附图说明
图1为本发明实施例的含环网的三相不平衡的中低压完整配电网示例图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
按照本发明发明内容完整方法实施的实施例及其实施过程如下:
1)通过电网中的传感器或者通过工具采集获得以下电网的已知基础网络数据,包括:
电网:总节点数n、线路长度Lij,其中i,j均表示节点的序数,i,j∈n;线路单位阻抗Z、中压配电网额定电压VN.M;中压配电网负荷节点的电能消耗有功功率PLoad.i.M、中压配电网负荷节点的电能消耗无功功率QLoad.i.M;低压配电网负荷节点的电能消耗有功功率PLoad.i.L、低压配电网负荷节点的电能消耗无功功率QLoad.i.L
中低压配电变压器:第i个配电变压器的变比Zt.i;第i个配电变压器的三相变比矩阵Zt.i;配电变压器电流电压修正矩阵AT
具体实施例如如下电-热联合系统:
如图1所示的含环网的三相不平衡的中低压完整配电网由六个节点组成。其中,存在六个节点,节点1代表上级供电变压器,为源节点;节点2、节点3和节点6均为中压配电网负荷节点;节点3与节点6之间通过环网连接;节点3与节点4之间存在一个配电变压器,其连接方式为Dyn11;节点4与节点5为低压配电网负荷节点;
并且获得电网与热网的已知基础网络数据为:
电力节点数:5;
线路参数:线路单位长度电阻3.7Ω/km,线路单位长度电抗0.369Ω/km
线路长度:线路12:0.01km;线路23:0.01km;线路26:0.01km;线路45:0.01km
中压配电网电力节点额定电压:10kV;低压配电网电力节点额定电压:220V;
负荷节点用电设备的A相功率:节点2:有功功率500kW、无功功率0kVar;节点3:有功功率5000kW、无功功率0kVar;节点4:有功功率5000kW、无功功率0kVar;节点4:有功功率400kW、无功功率0kVar;节点5:有功功率400kW、无功功率0kVar。B相功率为A相的1.02倍,C相功率为A相的1.05倍。
配电变压器变比:10000/220。
1、根据步骤3.1)~3.4),解环网的电网支路的电流矩阵BH为:
Figure BDA0002175479640000091
2、根据步骤3.5)~3.6),解环网的节点电压降落矩阵ΔVH
Figure BDA0002175479640000092
3、根据步骤3)至步骤5),完成含环网的三相不平衡的中低压完整配电网潮流计算。
实施例进行含环网的三相不平衡的中低压完整配电网潮流处理后,总迭代次数进行5次,计算时间为0.0027s。获得最后结果为:节点2潮流后电压依次为:A相9.96kV、B相9.95kV、C相9.93kV;节点3潮流后电压依次为:A相9.95kV、B相9.92kV、C相9.9kV;节点4潮流后电压依次为:A相218V、B相216V、C相213V;节点5潮流后电压依次为:A相215V、B相211V、C相208V;节点6潮流后电压依次为:A相9.95kV、B相9.93kV、C相9.92kV。
由此,可见本发明所提含环网的三相不平衡的中低压完整配电网潮流计算方法可以计算环网的三相不平衡的中低压完整配电网,同时,具有高效性与高鲁棒性。在配电变压器所连两侧网络均为三相不平衡的配电网时,本发明所提含环网的三相不平衡的中低压完整配电网潮流计算方法可以准确计算出两侧网络的不平衡的三相电压。在三相不平衡的中压配电网还有环网时,本发明所提含环网的三相不平衡的中低压完整配电网潮流计算方法可以计算出环网线路两端节点的不平衡的三相电压。

Claims (7)

1.一种含环网的三相不平衡的中低压完整配电网潮流计算方法,所述的含环网的三相不平衡的中低压完整配电网包括三相不平衡的中压配电网、三相不平衡的低压配电网和中低压配电变压器的三个部分,中低压配电变压器连接三相不平衡的中压配电网和三相不平衡的低压配电网之间;环网是指由多条供电线路构成的“口”字型电网结构,环网处于三相不平衡的中压配电网,环网线路是指组成环网的多条供电线路中的距离源节点最远的一条供电线路;所述的中低压完整配电网中存在负荷节点,仅包含负荷节点,即用电负荷的节点,各负荷节点之间相连的线路为支路,以中低压完整配电网输入端所连接的上级供电变压器成为源节点,上级供电变压器向中低压完整配电网输送提供电能;其特征在于:
方法包括以下几个步骤:
1)通过中低压完整配电网中的传感器采集获得以下中低压完整配电网的已知基础网络数据,包括:
中低压完整配电网:总节点数n、线路长度Lij,其中i,j均表示节点的序数,i,j∈n;线路的单位阻抗Z、额定电压矩阵VN、中压配电网额定电压VN.M、低压配电网额定电压VN.L
中压配电网负荷节点的电能消耗有功功率PLoad.i.M、中压配电网负荷节点的电能消耗无功功率QLoad.i.M
低压配电网负荷节点的电能消耗有功功率PLoad.i.L、低压配电网负荷节点的电能消耗无功功率QLoad.i.L
中低压配电变压器:第i个配电变压器的变比nt.i、第i个配电变压器的变比矩阵Ti、第i个配电变压器的阻抗Zt.i、第i个配电变压器的三相阻抗矩阵Zt.i、配电变压器电流电压修正矩阵AT
2)处理获得电网中各负荷节点的流出电流Ii
针对第一次迭代时:
先根据中压配电网中各负荷节点的电能消耗功率PLoad.i.M、中压配电网中负荷节点的电能消耗无功功率QLoad.i.M与中压配电网的各负荷节点的额定电压VN.M计算得到中压配电网中各负荷节点的流出电流Ii.M
Figure FDA0002720948500000011
其中,()*表示矩阵的共轭计算;j为虚数单位;
同时根据低压配电网中各负荷节点的电能消耗功率PLoad.i.L、低压配电网中负荷节点的电能消耗无功功率QLoad.i.L与低压配电网的各负荷节点的额定电压VN.L计算得到低压配电网中各负荷节点的流出电流Ii.L
Figure FDA0002720948500000021
最后根据中压配电网中各负荷节点的流出电流Ii.M与低压配电网中各负荷节点的流出电流Ii.L,共同获得中低压完整配电网中各负荷节点的流出电流Ii
Figure FDA0002720948500000022
针对第二次迭代及以后的每次迭代时:
利用上次迭代后的各负荷节点的电压Vi′以及配电网中各负荷节点的电能消耗功率PLoad.i、负荷节点的电能消耗无功功率QLoad.i,计算获得中低压完整配电网中各负荷节点的流出电流Ii
Figure FDA0002720948500000023
其中,Vi′表示上一次迭代后的电网各节点的电压;
3)将含环网的三相不平衡的中低压完整配电网中的环网线路去除获得解环网的三相不平衡的中低压完整配电网,由各负荷节点的流出电流Ii处理获得解环网的负荷节点的流出电流矩阵IH,并且获得解环网的三相不平衡的中低压完整配电网的节点支路关联矩阵A和支路电压关联矩阵C以及解环网的节点电压降落矩阵ΔVH和带环网的节点电压降落矩阵ΔV;
4)根据额定电压矩阵VN与带环网的节点电压降落矩阵ΔV相减得到迭代后的电网各节点的电压矩阵Vi′,完成本次潮流迭代:
Vi′=VN-ΔV
5)通过以下公式计算潮流迭代前后电网各节点电压之差的最大值ΔVi.max
ΔVi.max=max(|Vi′-Vi|)
其中,Vi表示上一次迭代后负荷节点i的电压,Vi′表示本次迭代后负荷节点i的电压;
6)不断迭代重复步骤(2)~(5)进行潮流迭代,每次潮流迭代后,采用以下方式进行判断潮流迭代是否收敛;
若本次潮流迭代后收敛,则输出本次潮流迭代后的处理结果,获得本次潮流迭代后的电网中各节点的潮流后电压Vi′;
若本次潮流迭代后未收敛,将本次潮流迭代后的处理结果作为下次潮流迭代前的潮流前数值,将本次潮流迭代后的电网中各节点的潮流后电压Vi′作为下次潮流迭代时的电网中各节点的潮流前电压Vi,返回步骤2)进行下一次潮流迭代处理。
2.根据权利要求1所述的一种含环网的三相不平衡的中低压完整配电网潮流计算方法,其特征在于:所述1)中的低压配电网额定电压VN.L通过中压配电网额定电压VN.M与配电变压器的变比矩阵Ti处理计算得到:
VN.M=Ti·VN.L
3.根据权利要求1所述的一种含环网的三相不平衡的中低压完整配电网潮流计算方法,其特征在于:所述1)中的额定电压矩阵VN采用以下方式处理获得:
根据中压配电网额定电压VN.M与低压配电网额定电压VN.L共同组成了中低压完整配电网中各负荷节点的额定电压VN
Figure FDA0002720948500000031
各个负荷节点的额定电压VN组成的列矩阵作为额定电压矩阵VN
4.根据权利要求1所述的一种含环网的三相不平衡的中低压完整配电网潮流计算方法,其特征在于:所述1)中,根据中压配电网负荷节点的电能消耗有功功率PLoad.i.M和低压配电网负荷节点的电能消耗有功功率PLoad.i.L采用以下方式处理获得电网负荷节点的电能消耗有功功率PLoad.i和电网负荷节点的电能消耗无功功率QLoad.i
根据中压配电网负荷节点的电能消耗有功功率PLoad.i.M与低压配电网负荷节点的电能消耗有功功率PLoad.i.L共同组成了电网负荷节点的电能消耗有功功率PLoad.i
Figure FDA0002720948500000032
根据中压配电网负荷节点的电能消耗无功功率QLoad.i.M与低压配电网负荷节点的电能消耗无功功率QLoad.i.L共同组成了电网负荷节点的电能消耗无功功率QLoad.i
Figure FDA0002720948500000033
5.根据权利要求1所述的一种含环网的三相不平衡的中低压完整配电网潮流计算方法,其特征在于:所述步骤3)具体如下:
3.1)由各负荷节点的流出电流Ii组成负荷节点的带环网的流出电流矩阵I,表示为:
Figure FDA0002720948500000041
3.2)由环网线路上流经的电流Bij.H拓展连接在负荷节点的流出电流矩阵I之后组成解环网的负荷节点的流出电流矩阵IH,表示为:
Figure FDA0002720948500000042
3.3)将含环网的三相不平衡的中低压完整配电网中的环网线路去除,得到一个解环网的三相不平衡的中低压完整配电网,并获得解环网的三相不平衡的中低压完整配电网的节点支路关联矩阵A,其中基于节点i的流出电流Ii对电网中节点i和节点j之间支路上的电流Bij的流经路径,节点支路关联矩阵A第i行j列元素取值如下:
Figure FDA0002720948500000043
其中,Ti表示第i个配电变压器的变比矩阵,表示为:
Figure FDA0002720948500000044
其中,1为三阶单位矩阵,0为三阶零矩阵;
Figure FDA0002720948500000045
Figure FDA0002720948500000046
3.4)通过以下公式,根据解环网的负荷节点的流出电流矩阵IH与解环网的三相不平衡的中低压完整配电网的节点支路关联矩阵A获得解环网的电网支路的电流矩阵BH
Figure FDA0002720948500000051
其中,XA表示节点支路关联矩阵A的第一修正矩阵,YA表示节点支路关联矩阵A的第二修正矩阵;Bij为电网中节点i和节点j之间支路上的电流;B表示带环网的电网支路的电流矩阵,计算为:
Figure FDA0002720948500000052
3.5)采用以下方式生成解环网的三相不平衡的中低压完整配电网的支路电压关联矩阵C,其中基于电网中节点i和节点j之间支路上的电流Bij及配电变压器的位置,支路电压关联矩阵C中对应元素取值如下:
Figure FDA0002720948500000053
其中,Zij表示线路阻抗矩阵,AT为配电变压器的电流电压修正矩阵,表示为:
Figure FDA0002720948500000054
线路阻抗矩阵Zij根据线路单位阻抗Z、线路长度Lij和三阶单位矩阵1得到:
Zij=Z×Lij·1
其中,Lij表示节点i和节点j之间的线路的长度;
Zt.i表示第i个配电变压器的三相阻抗矩阵,表示为:
Figure FDA0002720948500000055
3.6)通过以下公式,根据解环网的电网支路的电流矩阵BH与解环网的三相不平衡的中低压完整配电网的支路电压关联矩阵C获得解环网的节点电压降落矩阵ΔVH
Figure FDA0002720948500000061
其中,XC表示支路电压关联矩阵C的第一修正矩阵,YC表示支路电压关联矩阵C的第二修正矩阵,ZC表示支路电压关联矩阵C的第三修正矩阵;节点i的电压降落ΔVi为电网中节点i相对于额定电压VN的差;ΔV表示带环网的节点电压降落矩阵,表示为:
Figure FDA0002720948500000062
3.7)根据上述解环网的节点电压降落矩阵ΔVH的公式和解环网的电网支路的电流矩阵BH的公式,获得以下公式的解环网的节点电压降落矩阵ΔVH
Figure FDA0002720948500000063
接着通过库朗简化处理得到带环网的节点电压降落矩阵ΔV为:
ΔV=(K-L·N-1·M)·I
K=C·A+XC·YA;L=C·XA+XC;M=YC·A+ZC·YA;N=YC·XA+ZC
6.根据权利要求1所述的一种含环网的三相不平衡的中低压完整配电网潮流计算方法,其特征在于:所述步骤6)中,潮流迭代是否收敛的判敛依据为:潮流迭代前后电网节点电压之差的最大值ΔVi.max是否小于等于10-5
ΔVi.max≤10-5
如果满足上述公式,则本次潮流迭代后收敛;否则本次潮流迭代后尚未收敛。
7.根据权利要求1所述的一种含环网的三相不平衡的中低压完整配电网潮流计算方法,其特征在于:所述步骤6)中,潮流迭代是否收敛的判敛依据为:潮流迭代计算次数k超过100次,则判断该含环网的三相不平衡的中低压完整配电网潮流计算不收敛,结束含环网的三相不平衡的中低压完整配电网潮流计算。
CN201910777285.2A 2019-08-22 2019-08-22 含环网的三相不平衡的中低压完整配电网潮流计算方法 Active CN110518603B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910777285.2A CN110518603B (zh) 2019-08-22 2019-08-22 含环网的三相不平衡的中低压完整配电网潮流计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910777285.2A CN110518603B (zh) 2019-08-22 2019-08-22 含环网的三相不平衡的中低压完整配电网潮流计算方法

Publications (2)

Publication Number Publication Date
CN110518603A CN110518603A (zh) 2019-11-29
CN110518603B true CN110518603B (zh) 2020-12-08

Family

ID=68627130

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910777285.2A Active CN110518603B (zh) 2019-08-22 2019-08-22 含环网的三相不平衡的中低压完整配电网潮流计算方法

Country Status (1)

Country Link
CN (1) CN110518603B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111061827B (zh) * 2019-12-30 2023-04-18 广东电网有限责任公司 一种配电网电能供需平衡热力图的构建方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102842907A (zh) * 2012-09-11 2012-12-26 河海大学 基于道路矩阵的配电网三相解耦潮流计算方法
CN103023013A (zh) * 2012-08-08 2013-04-03 清华大学 一种主动配电网三相潮流的计算方法
CN103066593A (zh) * 2012-12-20 2013-04-24 河海大学 含多类型分布式电源的弱环配电网三相潮流计算方法
CN103683284A (zh) * 2013-12-26 2014-03-26 国家电网公司 一种含分布式电源的配电网三相不平衡潮流计算方法
CN105098776A (zh) * 2015-09-07 2015-11-25 张洁 一种主动配电网三相潮流的计算方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236691B (zh) * 2013-04-16 2015-01-21 天津大学 基于复仿射数学理论的三相不平衡潮流计算方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103023013A (zh) * 2012-08-08 2013-04-03 清华大学 一种主动配电网三相潮流的计算方法
CN102842907A (zh) * 2012-09-11 2012-12-26 河海大学 基于道路矩阵的配电网三相解耦潮流计算方法
CN103066593A (zh) * 2012-12-20 2013-04-24 河海大学 含多类型分布式电源的弱环配电网三相潮流计算方法
CN103683284A (zh) * 2013-12-26 2014-03-26 国家电网公司 一种含分布式电源的配电网三相不平衡潮流计算方法
CN105098776A (zh) * 2015-09-07 2015-11-25 张洁 一种主动配电网三相潮流的计算方法

Also Published As

Publication number Publication date
CN110518603A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
Ogunjuyigbe et al. Impact of distributed generators on the power loss and voltage profile of sub-transmission network
Hasanien Performance improvement of photovoltaic power systems using an optimal control strategy based on whale optimization algorithm
Belal et al. Adaptive droop control for balancing SOC of distributed batteries in DC microgrids
CN104537580B (zh) 基于K‑means聚类的配电网网架的构建方法
CN109586306B (zh) 一种基于柔性多状态开关的配电网电压波动抑制方法
CN103971183B (zh) 一种光伏电站的优化选址与容量配置方法
CN107332277B (zh) 一种考虑源储荷运行特性的有源配电网孤岛运行方法
CN107947183B (zh) 基于微分进化的含三端snop的配电网自适应优化方法
CN106229995B (zh) 基于风电场抗台风运行模式下的备用电源并联电抗器参数优化方法
CN110518603B (zh) 含环网的三相不平衡的中低压完整配电网潮流计算方法
CN103515964A (zh) 无功补偿控制方法和无功补偿控制装置
CN106021754A (zh) 考虑vsc无功越限调整策略的混联电网概率潮流算法
Dixit et al. Optimal placement of PV array in distribution system for power loss minimization considering feeder reconfiguration
CN111082470B (zh) 含低风速分散式风电的配电网多目标动态鲁棒重构方法
Yazdi et al. Analysis on impacts of the shunt conductances in multi-terminal HVDC grids optimal power-flow
Mujezinović et al. Use of integer genetic algorithm for optimal allocation and sizing of the shunt capacitor banks in the radial distribution networks
CN110445156B (zh) 含环网的三相不平衡的中低压主动配电网潮流计算方法
Benabdallah et al. Grid connected PV plant based on smart grid control and monitoring
CN107069703B (zh) 一种计及新能源接入的交直流配网规划方法
CN107508318B (zh) 一种基于电压灵敏度分区的有功控制方法及系统
Shukla et al. An analytical approach for optimal size of distributed generation unit
CN107562971B (zh) 一种基于pss/e的交直流电网潮流计算方法
Pál et al. The effect of small power plants on the distribution of mains voltage and power losses
CN113162078B (zh) 一种考虑充放电需求的储能设备无功响应控制方法
SHALLINI et al. Multi-Terminal Direct Current (DC) Networks for Grid Integration of Offshore Wind Farms: Operation and Power Flow Control Using Genetic Algorithms

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant