CN110514747A - 一种超声波高压发生系统及方法 - Google Patents

一种超声波高压发生系统及方法 Download PDF

Info

Publication number
CN110514747A
CN110514747A CN201910895173.7A CN201910895173A CN110514747A CN 110514747 A CN110514747 A CN 110514747A CN 201910895173 A CN201910895173 A CN 201910895173A CN 110514747 A CN110514747 A CN 110514747A
Authority
CN
China
Prior art keywords
voltage
signal
voltage signal
pulse voltage
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910895173.7A
Other languages
English (en)
Inventor
党博
龚静怡
冯旭东
张铁煜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Shiyou University
Original Assignee
Xian Shiyou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Shiyou University filed Critical Xian Shiyou University
Priority to CN201910895173.7A priority Critical patent/CN110514747A/zh
Publication of CN110514747A publication Critical patent/CN110514747A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • G01N29/343Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/346Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with amplitude characteristics, e.g. modulated signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids

Abstract

本发明实施例公开了一种超声波高压发生系统及方法。该系统包括:定时器模块,配置为接收第一直流电压信号并基于所述第一直流电压信号的触发生成方波信号;倍压电路升压模块,配置为对所述方波信号进行倍压整流,输出第二直流电压信号;以及脉冲电压升压模块,配置为提供低压第一脉冲电压信号并按照所述第二直流电压信号的电压对所述第一脉冲电压信号的电压进行升压,获得高幅值且高频率的第二脉冲电压信号。

Description

一种超声波高压发生系统及方法
技术领域
本发明涉及超声波领域,尤其涉及一种超声波高压发生系统及方法。
背景技术
超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,超声波可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。
在超声波探伤检测中,超声波频率越高,方向性越好,灵敏度越高,以很窄的波束向介质中辐射,易于确定缺陷的位置。而目前已有的固体探测用压电超声换能器的频率范围可达0.5~12.1MHz,但是当前国内外超声波发生器的频率最高只能达到几百KHz,所以不能满足超声波探伤检测的需求。
检测过程中不可避免存在着各种各样的噪声,如果信号幅值过小,则会造成现场采集的信号无法满足数据分析要求,测量出的误差会相对较大,所以需要较大的幅值来提高信噪比来减少误差。超声波在实际介质中传播时,其幅度将随着距离的增大而逐渐减小。
在超声波流量计中,超声波受到流动介质的影响,其测量过程是超声波穿过管道,接着产生时差、频率变化和相位的改变。通过计算超声波信号的以上变化可以测量管道内的流量。如果要穿透较厚的管道,就需要较大的能量,也就是需要大的脉冲电压和较小的脉冲宽度,因此,只有升高超声波发生器的脉冲电压,才能保证最后输出的能量足够大。目前相关技术已经印证了在超声波流量测量中,使用频率差法测量管壁厚度对测量精度的影响不可忽视。
然而,目前国内外超声波发生器的超声波幅值也较低,不能满足需求。
发明内容
为解决上述技术问题,本发明实施例期望提供一种超声波高压发生系统及方法;构成该系统的元器件成本较低,而同时系统速度快、效率高,并且能够输出高幅值、高频率的脉冲电压。
本发明的技术方案是这样实现的:
第一方面,本发明实施例提供了一种超声波高压发生系统,该系统包括:
定时器模块,配置为接收第一直流电压信号并基于所述第一直流电压信号的触发生成方波信号;
倍压电路升压模块,配置为对所述方波信号进行倍压整流,输出第二直流电压信号;以及
脉冲电压升压模块,配置为提供低压第一脉冲电压信号并按照所述第二直流电压信号的电压对所述第一脉冲电压信号的电压进行升压,获得高幅值且高频率的第二脉冲电压信号。
第二方面,本发明实施例提供了一种超声波高压发生方法,所述方法应用于第一方面所述的系统,所述方法包括:
定时器模块基于第一直流电压信号的触发生成方波信号;
倍压电路升压模块对所述方波信号进行倍压整流,获得第二直流电压信号;
脉冲电压升压模块提供低压第一脉冲电压信号并按照所述第二直流电压信号的电压对所述第一脉冲电压信号的电压进行升压,获得高幅值且高频率的第二脉冲电压信号。
本发明实施例提供了一种超声波高压发生系统及方法;能产生1300V的脉冲高压,减少了相对误差,产生较大的能量,能穿透较厚的测量物体,在例如超声波流量测量中减少管壁厚度对测量的影响;获得的脉冲电压信号的频率能达到1MHz,适用于更多的领域;整个系统结构简单、速度快、灵敏度高、效率高、发热低。
附图说明
图1为本发明实施例提供的一种超声波高压发生系统的总体设计方案的示意图;
图2为本发明实施例提供的一种定时器模块的示意图;
图3A为本发明实施例提供的一种倍压电路升压模块的示意图;
图3B为本发明实施例提供的一种倍压整流电路的子电路的示意图;
图4为本发明实施例提供的一种脉冲电压升压模块的示意图;
图5为本发明实施例提供的一种超声波高压发生系统的实施效果图;
图6为本发明实施例提供的一种超声波高压发生方法的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
参见图1,其示出了本发明实施例提供的一种超声波高压发生系统100,该系统100包括:
定时器模块110,配置为接收第一直流电压信号并基于所述第一直流电压信号的触发生成方波信号;
倍压电路升压模块120,配置为对所述方波信号进行倍压整流,输出第二直流电压信号;以及
脉冲电压升压模块130,配置为提供低压第一脉冲电压信号并按照所述第二直流电压信号的电压对所述第一脉冲电压信号的电压进行升压,获得高幅值且高频率的第二脉冲电压信号。
对于上述定时器模块110,图2示出了本发明实施例提供的一种定时器模块110的示意图。
如图2所示,定时器模块110包括用作多谐振荡器的定时器111,优选地为SE555定时器,能够精密定时,能够产生从微秒到小时的精确速率时延,所述定时器111基于所述第一直流电压信号的触发以自激方式自动产生方波信号。
如图2所示,定时器模块110还包括两个外部可调电阻R1和R2以及两个外部可调电容C1和C2,以控制所述方波信号的自由运行频率和占空比。
如图2所示,定时器模块110还包括与所述定时器111的输出端连接的三极管112,优选地为如图2所示的型号为TIP122的三极管,所述三极管112配置为将所述方波信号的功率放大。
具体地,在图2示出的定时器模块110中:SE555定时器111的Vcc接口和RST接口均接5V直流电压输入端;外部可调电阻R1的一端接5V直流电压输入端,另一端接定时器111的DIS接口;外部可调电阻R2的一端接接定时器111的DIS接口,另一端接定时器111的THR接口;电容C1的一端接定时器111的THR接口,另一端接地;电容C2的一端接定时器111的TRIG接口,另一端接地;定时器111的THR接口与TRIG接口相接;定时器111的GND接口接地;容值为0.01μF的电容C3的一端接定时器111的CTRL接口,另一端接地;阻值为1KΩ的电阻R3的一端接定时器111的OUT接口,另一端接型号为TIP122的三极管112的基极;三极管112的发射极接地;倍压电路升压模块120的一端接三极管112的基极,另一端接5V直流电压输入端。
对于上述倍压电路升压模块120,图3A示出了发明实施例提供的一种倍压电路升压模块120的示意图。
如图3A所示,倍压电路升压模块120包括升压变压器121和倍压整流电路122,其中,所述升压变压器121将所述方波信号升压相应倍数后输入至所述倍压整流电路122。优选地,升压变压器121的初级线圈与次级线圈之间的电压比为1:10。
而对于所述倍压整流电路122,则包括由数量为2N的电容和数量为2N的二极管所构成的倍数为N的倍压整流电路;其中,所述倍压整流电路由N级子电路构成,每级子电路参见图3B。如图3B所示,每级子电路包括四个连接端E1、E2、E3和E4,第一电容Cf连接在第一连接端E1和第二连接端E2之间,第二电容Cs连接在第三连接端E3和第四连接端E4之间,第一二极管Df的正极对应端接第三连接端E3,第一二极管Df的负极对应端接第二二极管Ds的正极对应端;第二电容Ds的正极对应端接第二连接端E2,第二电容Ds的负极对应端接第四连接端E4。
对于N级子电路来说,第一级子电路的连接描述为:第一连接端E1接变压器121的次级线圈的第一端,第三连接端E3接变压器121的次级线圈的第二端,第二连接端E2接下一级子电路的第一连接端E1,第四连接端E4接下一级子电路的第三连接端E3。末级子电路即第N级子电路的连接描述为:第一连接端E1接上一级子电路的第二连接端E2,第三连接端E3接接上一级子电路的第四连接端E4,第二连接端E2无连接,第四连接端E4接脉冲电压升压模块130。中间子电路即第i(其中,1<i<N)级子电路的连接描述为:第一连接端E1接第i-1级子电路的第二连接端E2,第二连接端E2接第i+1级子电路的第一连接端E1,第三连接端E3接第i-1级子电路的第四连接端E4,第四连接端E4接第i+1级子电路的第三连接端E3。以图3A为例,所述倍压整流电路122包括数量为例如14个的电容C4-C17和数量为例如14个的二极管D4-D17以构成倍数为7的倍压整流电路,能够输出高电压、小电流的直流电流;可以理解地,小电流能够对整个系统起到保护作用。
在本发明的优选实施方式中,所述电容C4-C17为耐压1200V的无感电容。
具体地,在图3A示出的倍压电路升压模块120中:变压器121的初级线圈接定时器模块110;变压器121的次级线圈的第二端接地;倍压整流电路122包括7级子电路。
对于上述脉冲电压升压模块130,图4示出了发明实施例提供的一种脉冲电压升压模块130的示意图。
如图4所示,脉冲电压升压模块130包括场效应管FET、信号发生器131和二极管桥式电路132,其中,所述场效应管FET的漏极与所述倍压电路升压模块120的输出端连接,用于接收所述第二直流电压信号,优选地,场效应管FET为型号为12N120K5的耐高压场效应管;所述信号发生器131与所述场效应管FET的栅极连接,用于向所述场效应管FET的栅极输入所述低压第一脉冲电压信号,使得所述场效应管FET和和所述信号发生器131一起构成电压跟随器,获得所述高幅值且高频率的第二脉冲电压信号;所述二极管桥式电路132与所述电压跟随器连接,能够将功率放大并且具有功率较高、输出电压相对较大、纹波电压相对较小等优点,用于限制所述第二脉冲电压信号倒流回所述系统100,保护系统100不被逆电流损坏。所获得的所述高幅值且高频率的第二脉冲电压信号的电压幅值能够达到1300V,频率能够达到1MHz。脉冲电压升压模块130中的电容C18的充放电速度快,达到五十纳秒级别,实用价值高。
具体地,在图4示出的脉冲电压升压模块130中:电阻R4的一端接倍压电路升压模块120,另一端接型号为12N120K5的耐高压场效应管FET的漏极;电容C18的一端接场效应管FET的漏极,另一端接二极管D18的负极对应端;二极管D18的负极对应端接二极管D19的正极对应端,正极对应端接二极管桥式电路132中的二极管D20的正极对应端;场效应管FET的栅极接信号发生器131,源极接地;电阻R5的一端接信号发生器131,另一端接地;二极管D19的正极对应端接二极管D18的负极对应端,负极对应端接地;电阻R5与超声波传感器S形成并联回路,该并联回路的一端接地,另一端接二极管桥式电路132中的二极管D20的正极对应端;在二极管桥式电路132中,二极管D20的正极对应端接二极管D21的负极对应端,二极管D21的正极对应端接二极管D23的正极对应端,二极管D23的负极对应端接二极管D22的正极对应端,二极管D22的负极对应端接二极管D20的负极对应端;电阻R6的一端接二极管D20的负极对应端,另一端接地;电阻R7的一端接二极管D21的正极对应端,另一端为输出端。
上述技术方案中所记载的超声波高压发生系统中各模块的元器件比如定时器和三极管的价格都比较低,从而能够节约制造成本。
图5为本发明实施例提供的一种超声波高压发生系统的实施效果图,其中,所获得的所述高幅值且高频率的第二脉冲电压信号幅值为1300V(示波器显示的幅值经过高压探头衰减了一千倍)。如图5所示,所输出的脉冲电压信号波形截止速度快,接近理想波形。
针对上述系统,参见图6,其示出了本发明实施例所提供的一种超声波高压发生方法,所述方法应用于上述实施例所描述的超声波高压发生系统100,所述方法包括:
S601:定时器模块110基于第一直流电压信号的触发生成方波信号;
S602:倍压电路升压模块120对所述方波信号进行倍压整流,获得第二直流电压信号;
S603:脉冲电压升压模块130提供低压第一脉冲电压信号并按照所述第二直流电压信号的电压对所述第一脉冲电压信号的电压进行升压,获得高幅值且高频率的第二脉冲电压信号。
针对图6所示的技术方案,在一种可能的实现方式中,脉冲电压升压模块130包括效应管FET、信号发生器131和二极管桥式电路132,相应地,所述脉冲电压升压模块130提供低压第一脉冲电压信号并按照所述第二直流电压信号的电压对所述第一脉冲电压信号的电压进行升压,获得高幅值且高频率的第二脉冲电压信号,对于S603来说,具体可以包括:
所述场效应管FET的漏极接收所述第二直流电压信号;
所述信号发生器131向所述场效应管FET的栅极输入所述低压第一脉冲电压信号,使得所述场效应管FET和和所述信号发生器131一起构成电压跟随器,获得所述高幅值且高频率的第二脉冲电压信号;
所述二极管桥式电路132限制所述第二脉冲电压信号倒流回所述系统100。
需要说明的是:本发明实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

1.一种超声波高压发生系统,其特征在于,包括:
定时器模块,配置为接收第一直流电压信号并基于所述第一直流电压信号的触发生成方波信号;
倍压电路升压模块,配置为对所述方波信号进行倍压整流,输出第二直流电压信号;以及
脉冲电压升压模块,配置为提供低压第一脉冲电压信号并按照所述第二直流电压信号的电压对所述第一脉冲电压信号的电压进行升压,获得高幅值且高频率的第二脉冲电压信号。
2.根据权利要求1所述的超声波高压发生系统,其特征在于,所述定时器模块包括用作多谐振荡器的定时器,所述定时器基于所述第一直流电压信号的触发以自激方式自动产生方波信号。
3.根据权利要求2所述的超声波高压发生系统,其特征在于,所述定时器模块还包括两个外部可调电阻和两个外部可调电容,以控制所述方波信号的自由运行频率和占空比。
4.根据权利要求2所述的超声波高压发生系统,其特征在于,所述定时器模块还包括与所述定时器的输出端连接的三极管,所述三极管配置为将所述方波信号的功率放大。
5.根据权利要求1所述的超声波高压发生系统,其特征在于,所述倍压电路升压模块包括升压变压器和倍压整流电路,其中,所述升压变压器将所述方波信号升压相应倍数后输入至所述倍压整流电路。
6.根据权利要求5所述的超声波高压发生系统,其特征在于,所述倍压整流电路包括由数量为2N的电容和数量为2N的二极管所构成的倍数为N的倍压整流电路。
7.根据权利要求6所述的超声波高压发生系统,其特征在于,所述电容为无感电容。
8.根据权利要求1所述的超声波高压发生系统,其特征在于,所述脉冲电压升压模块包括场效应管、信号发生器和二极管桥式电路,其中,
所述场效应管的漏极与所述倍压电路升压模块的输出端连接,用于接收所述第二直流电压信号;
所述信号发生器与所述场效应管的栅极连接,用于向所述场效应管的栅极输入所述低压第一脉冲电压信号,使得所述场效应管和所述信号发生器构成电压跟随器,获得所述高幅值且高频率的第二脉冲电压信号;
所述二极管桥式电路与所述电压跟随器连接,用于限制所述第二脉冲电压信号倒流回所述系统。
9.一种超声波高压发生方法,其特征在于,所述方法应用于权利要求1至8中任一项所述的系统,所述方法包括:
定时器模块基于第一直流电压信号的触发生成方波信号;
倍压电路升压模块对所述方波信号进行倍压整流,获得第二直流电压信号;
脉冲电压升压模块提供低压第一脉冲电压信号并按照所述第二直流电压信号的电压对所述第一脉冲电压信号的电压进行升压,获得高幅值且高频率的第二脉冲电压信号。
10.根据权利要求9所述的方法,其特征在于,所述脉冲电压升压模块包括场效应管、信号发生器、二极管桥式电路;相应地,所述脉冲电压升压模块提供低压第一脉冲电压信号并按照所述第二直流电压信号的电压对所述第一脉冲电压信号的电压进行升压,获得高幅值且高频率的第二脉冲电压信号,包括:
所述场效应管的漏极接收所述第二直流电压信号;
所述信号发生器向所述场效应管的栅极输入所述低压第一脉冲电压信号,使得所述场效应管和所述信号发生器构成电压跟随器,获得所述高幅值且高频率的第二脉冲电压信号;
所述二极管桥式电路限制所述第二脉冲电压信号倒流回所述系统。
CN201910895173.7A 2019-09-20 2019-09-20 一种超声波高压发生系统及方法 Pending CN110514747A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910895173.7A CN110514747A (zh) 2019-09-20 2019-09-20 一种超声波高压发生系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910895173.7A CN110514747A (zh) 2019-09-20 2019-09-20 一种超声波高压发生系统及方法

Publications (1)

Publication Number Publication Date
CN110514747A true CN110514747A (zh) 2019-11-29

Family

ID=68633385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910895173.7A Pending CN110514747A (zh) 2019-09-20 2019-09-20 一种超声波高压发生系统及方法

Country Status (1)

Country Link
CN (1) CN110514747A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033485A (zh) * 2020-08-31 2020-12-04 西安石油大学 一种超声波传感器高压脉冲收发复用系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884470A (ja) * 1994-09-08 1996-03-26 Origin Electric Co Ltd 直流高電圧発生装置
JP2014062800A (ja) * 2012-09-21 2014-04-10 Hioki Ee Corp 交流電圧生成装置および電圧検出装置
CN103997252A (zh) * 2014-05-13 2014-08-20 重庆大学 一种高频高压脉冲发生电路
CN108649794A (zh) * 2018-03-23 2018-10-12 加码技术有限公司 一种高压电源电路
CN108683342A (zh) * 2018-05-08 2018-10-19 深圳市日联科技有限公司 一种多倍压整流装置、多倍压整流电路及其控制方法
CN210572139U (zh) * 2019-09-20 2020-05-19 西安石油大学 一种超声波高压发生系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884470A (ja) * 1994-09-08 1996-03-26 Origin Electric Co Ltd 直流高電圧発生装置
JP2014062800A (ja) * 2012-09-21 2014-04-10 Hioki Ee Corp 交流電圧生成装置および電圧検出装置
CN103997252A (zh) * 2014-05-13 2014-08-20 重庆大学 一种高频高压脉冲发生电路
CN108649794A (zh) * 2018-03-23 2018-10-12 加码技术有限公司 一种高压电源电路
CN108683342A (zh) * 2018-05-08 2018-10-19 深圳市日联科技有限公司 一种多倍压整流装置、多倍压整流电路及其控制方法
CN210572139U (zh) * 2019-09-20 2020-05-19 西安石油大学 一种超声波高压发生系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
夏江涛;房润晨;袁昌斌;: "光电倍增管高压电源设计", 现代电子技术, no. 02, pages 201 - 204 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033485A (zh) * 2020-08-31 2020-12-04 西安石油大学 一种超声波传感器高压脉冲收发复用系统
CN112033485B (zh) * 2020-08-31 2023-12-22 西安石油大学 一种超声波传感器高压脉冲收发复用系统

Similar Documents

Publication Publication Date Title
CN103252314B (zh) 超声电源的动态匹配装置及其方法
CN200962142Y (zh) 高压电能表校验装置
CN106324538B (zh) 一种局部放电自动校准系统
CN105890685B (zh) 一种基于累积相位差的超声波流量测量装置
CN103018575B (zh) 一种利用大功率电感测试装置测量大功率电感的方法
CN102435916A (zh) 基于sopc技术的电缆故障在线检测与定位装置
CN103941259A (zh) 一种具备高抗干扰性的超声波测距方法与测距装置
CN110530988A (zh) 一种基于传感器阵列的16通道导波聚焦检测系统
CN104236505A (zh) 一种基于阵列式压电薄膜传感器的管道腐蚀监测装置
CN201837420U (zh) 一种精密测量超声波传输时间的装置
CN109596891A (zh) 一种超声换能器在线阻抗测量与动态匹配系统
CN209182394U (zh) 一种非接触式电流信号检测装置
CN110514747A (zh) 一种超声波高压发生系统及方法
CN102155905B (zh) 一种锚杆长度的无损测量装置及方法
CN210572139U (zh) 一种超声波高压发生系统
CN107179676A (zh) 基于数字解调的超声波飞行时间测量方法
CN103048006A (zh) 一种通用的超声波发射装置及方法
CN204008878U (zh) 多功能可编程信号发生参数测试系统
CN116990543A (zh) 一种多声道超声测速装置及测速方法
CN204085486U (zh) 一种基于阵列式压电薄膜传感器的管道腐蚀监测装置
CN104502626A (zh) 一种高动态响应的油流速度测量装置及测量方法
CN104880608A (zh) 基于相关分析法的电缆介损扫频测试方法
CN103353317B (zh) 基于tdc-gp22的超大型管径超声波流量计及其信号增强方法
CN104242873B (zh) 一种超声波回波占空比测量电路及其测量方法
CN203519458U (zh) 一种多声道高精度密度计

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Dang Bo

Inventor after: Gong Jingyi

Inventor after: Feng Xudong

Inventor after: Zhang Tieyu

Inventor before: Dang Bo

Inventor before: Gong Jingyi

Inventor before: Feng Xudong

Inventor before: Zhang Tieyu