CN110514727A - 基于铁掺杂聚苯胺/铂的多巴胺选择性电化学检测电极及其制备 - Google Patents

基于铁掺杂聚苯胺/铂的多巴胺选择性电化学检测电极及其制备 Download PDF

Info

Publication number
CN110514727A
CN110514727A CN201910687889.8A CN201910687889A CN110514727A CN 110514727 A CN110514727 A CN 110514727A CN 201910687889 A CN201910687889 A CN 201910687889A CN 110514727 A CN110514727 A CN 110514727A
Authority
CN
China
Prior art keywords
solution
pani
added
electrode
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910687889.8A
Other languages
English (en)
Other versions
CN110514727B (zh
Inventor
林玲玲
应少明
游东宏
庄凰龙
王韬琛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningde Normal University
Original Assignee
Ningde Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningde Normal University filed Critical Ningde Normal University
Priority to CN201910687889.8A priority Critical patent/CN110514727B/zh
Publication of CN110514727A publication Critical patent/CN110514727A/zh
Application granted granted Critical
Publication of CN110514727B publication Critical patent/CN110514727B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明提供了一种基于铁掺杂聚苯胺/铂的多巴胺选择性电化学检测电极及其制备方法。所述方法包括:S1,将苯胺单体加入二氯甲烷溶液超声分散形成均匀有机相溶液;S2,往有机相溶液中依次加入N‑甲基吡咯烷酮水溶液与氯化铁溶液避光搅拌反应后静置;S3,将过硫酸铵‑盐酸溶加入步骤S2中反应溶液中,静置反应后过滤得到固体产物;S4,将固体产物清洗、过滤、自然晾干得到Fe‑PANI粉体;S5,取Fe‑PANI粉体分散于纯水中,加入氯铂酸溶液和抗坏血酸溶液反应;S6,取少量浓盐酸加入S5的反应溶液中搅拌后过滤、晾干得到Fe‑PANI/Pt粉体;S7,将玻碳电极研磨抛光后备用;S8,取Fe‑PANI/Pt分散于乙醇中,加入Nafion溶液超声分散形成悬浮液;S9,取悬浮液滴加到步骤S7抛光后的玻碳电极表面。

Description

基于铁掺杂聚苯胺/铂的多巴胺选择性电化学检测电极及其 制备
技术领域
本发明涉及一种基于铁掺杂聚苯胺/铂的多巴胺选择性电化学检测电极及其制备方法。
背景技术
多巴胺(DA)是一种在中枢神经、心血管等系统中都起着重要作用的神经传导物质,其不仅是大脑信息的传递者,还是体内肾上腺素生物合成的前体,在人类的生命系统中扮演着重要的角色。多巴胺在人体中的正常含量为0.2-0.4g/ml,当人体中DA的含量不正常时人体就会出现很多不良反应和重要的疾病,如注意力不集中、睡眠不好、情绪波动大、精神分裂症、神经肌肉失调等。另外在医学方面,多巴胺也常被用于治疗抑郁症、肾功能衰竭、以及内毒素败血症等疾病。因此,多巴胺的高灵敏和选择性检测,对在分子水平上诊断这些疾病有重要的应用价值,对于神经生理学的研究及相关药物的质量控制有着重要意义。
随着科学研究的不断深入和各种检测手段的不断发展,越来越多的多巴胺检测方法被人们提出。目前多巴胺常用的检测方法中,电化学检测方法具有易操作、高灵敏、选择性好等优点,成为多巴胺检测的常用方法。多巴胺电化学检测的原理是多巴胺苯环上的两个羟基被氧化生成醌后再被还原为酚,为检测提供电化学信号。然在生物体内多巴胺、抗坏血酸、尿酸的氧化还原峰电位比较相近限制了电化学检测DA技术,因此,如何有效的排除尿酸和抗坏血酸对多巴胺检测的干扰,是目前多巴胺电化学传感体系的重要研究内容。
聚合纳米材料是化学修饰电极的一种重要材料,聚苯胺纳米材料比其他化学改性物质更便宜且更兼容、简单、比表面积大,导电率高、热稳定性好、相容性好,掺杂/去掺杂反向氧化还原等特点。目前运用聚苯胺复合材料修饰电极测定多巴胺的研究成果表明,聚苯胺修饰电极可以有效提高DA的响应电流强度,降低了检出限;然其抗干扰性能随着修饰材料的不同存在较大差异。聚苯胺金属单质复合材料是通过金属单质以掺杂的方式与聚苯胺复合形成的,该纳米复合材料具有独特的化学、物理及电化学性质。现如今,该复合纳米材料在电化学检测人体生物传感领域的研究是当今的一大热点。制备用于多巴胺灵敏的、选择性检测的的聚苯胺/金属复合材料修饰电极具有较好的应用前景。
发明内容
本发明提供了一种基于铁掺杂聚苯胺/铂的多巴胺选择性电化学检测电极及其制备方法,可以有效解决多巴胺检测过程中的尿酸和抗坏血酸的干扰性问题。
本发明是这样实现的:
一种基于铁掺杂聚苯胺/铂的多巴胺选择性电化学检测电极的制备方法,包括以下步骤:
S1,将0.5mL苯胺单体加入50mL二氯甲烷溶液中超声使其均匀分散形成透明均一的有机相溶液;
S2,在搅拌条件下往所述有机相溶液中依次缓慢加入50mL的0.2mol/L的N-甲基吡咯烷酮水溶液与0.05mL的0.5mol/L的氯化铁溶液,室温下避光搅拌一段时间后静置;
S3,将0.3g过硫酸铵加入8.6mL的2mol/L的盐酸溶液中形成过硫酸铵-盐酸溶液,将过硫酸铵-盐酸溶液缓慢加入步骤S2中反应溶液中,静置反应一段时间后用有机系滤膜过滤得到固体产物;
S4,将所述固体产物清洗、过滤、自然晾干得到Fe-PANI粉体;
S5,取25~35mg的Fe-PANI粉体超声分散于15-18.2MΩ纯水中,在搅拌条件下依次加入0.9mL的8.228mM的氯铂酸溶液和0.3mL的100mM抗坏血酸溶液,在室温下避光搅拌反应10-30h;
S6,反应结束后,取0.5mL浓盐酸加入S5的反应溶液中搅拌一段时间,然后用0.22μm孔径的水系滤膜过滤得到固体产物,将所述固体产物清洗、过滤、自然晾干得到Fe-PANI/Pt粉体;
S7,将所述玻碳电极依次用3μm、1μm、0.3μm、50nm的氧化铝微粉研磨抛光后备用;
S8,取1~3mg的Fe-PANI/Pt粉体超声分散于0.5mL无水乙醇中,加入5~15μL的Nafion溶液超声分散使其形成均匀的悬浮液;
S9,取10-40μL的悬浮液以10-20μL/次滴加到步骤S7抛光后的玻碳电极表面,静置待溶液挥发后继续滴加悬浮液,反复操作最终得到Fe-PANI/Pt修饰电极。
本发明还提供一种通过上述方法获得的基于铁掺杂聚苯胺/铂的多巴胺选择性电化学检测电极;其测试环境为:以Fe-PANI/Pt修饰电极为工作电极、石墨电极或铂电极为对电极、饱和甘共电极为参比电极进行DPV测试,其中,电位范围-0.1V-0.9V(vs.SCE),扫描振幅为50mV,脉冲宽度50ms,整个测试环境在pH=6.6-7.2的磷酸缓冲液中进行。
本发明的有益效果是:Fe-PANI/Pt修饰电极用于DA的测试时,UA和AA在DA测试的电位范围区间均没有表现出明显的氧化信号,可以有效的排除UA和AA干扰;检出限为1μM,可用于多巴胺的选择性测试。
附图说明
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是在0.1M,pH为6.8的磷酸缓冲液中,1mM的UA、1mM的AA、200μM的DA在PANI/Pt修饰电极上的DPV图。
图2是在0.1M的PBS溶液中,PANI/Pt修饰电极上系列浓度DA的DPV检测图。
图3是在0.1M,pH为6.8的磷酸缓冲液中,1mM的UA、1mM的AA、200μM的DA在Fe-PANI/Pt修饰电极上的DPV图。
图4是在0.1M的PBS溶液中,Fe-PANI/Pt修饰电极上系列浓度DA的DPV检测图。
图5为DA浓度与峰电流的线性关系曲线图。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
本发明实施例提供一种基于铁掺杂聚苯胺/铂的多巴胺选择性电化学检测电极的制备方法,包括以下步骤:
S1,将0.5mL苯胺单体加入50mL二氯甲烷溶液中超声使其均匀分散形成透明均一的有机相溶液;
S2,在搅拌条件下往所述有机相溶液中依次缓慢加入50mL的0.2mol/L的N-甲基吡咯烷酮水溶液与0.05mL的0.5mol/L的氯化铁溶液,室温下避光搅拌一段时间后静置;
S3,将0.3g过硫酸铵加入8.6mL的2mol/L的盐酸溶液中形成过硫酸铵-盐酸溶液,将过硫酸铵-盐酸溶液缓慢加入步骤S2中反应溶液中,静置反应一段时间后用有机系滤膜过滤得到固体产物;
S4,将所述固体产物清洗、过滤、自然晾干得到Fe-PANI粉体;
S5,取25~35mg的Fe-PANI粉体超声分散于15-18.2MΩ纯水中,在搅拌条件下依次加入0.9mL的8.228mM的氯铂酸溶液和0.3mL的100mM抗坏血酸溶液,在室温下避光搅拌反应10-30h;
S6,反应结束后,取0.5mL浓盐酸加入S5的反应溶液中搅拌一段时间,然后用0.22μm孔径的水系滤膜过滤得到固体产物,将所述固体产物清洗、过滤、自然晾干得到Fe-PANI/Pt粉体;
S7,将所述玻碳电极依次用3μm、1μm、0.3μm、50nm的氧化铝微粉研磨抛光后备用;
S8,取1~3mg的Fe-PANI/Pt粉体超声分散于0.5mL无水乙醇中,加入5~15μL的Nafion溶液超声分散使其形成均匀的悬浮液;
S9,取10-40μL的悬浮液以10-20μL/次滴加到步骤S7抛光后的玻碳电极表面,静置待溶液挥发后继续滴加悬浮液,反复操作最终得到Fe-PANI/Pt修饰电极。
所述Fe-PANI/Pt修饰电极的测试环境为:以Fe-PANI/Pt修饰电极为工作电极、石墨电极或铂电极为对电极、饱和甘共电极为参比电极进行DPV测试,其中,电位范围-0.1V-0.9V(vs.SCE),扫描振幅为50mV,脉冲宽度50ms,整个测试环境在pH=6.6-7.2发磷酸缓冲液中进行。作为进一步改进的,另外,在整个测试中,环境的pH值对测试也具有较大影响,当pH=6.6-7.2超过这一范围时,聚苯胺的质子掺杂程度发生变化,从而影响检测物质的抗干扰性、灵敏度及稳定性,因此优选的,整个测试环境在pH=6.8-7.2的磷酸缓冲液中进行。
作为进一步改进的,在步骤S2中,混合溶液避光反应时间为10-50h。
作为进一步改进的,在步骤S3中,加入过硫酸铵-盐酸溶液后静置反应时间为15-35min。
作为进一步改进的,在步骤S4中,将固体产物清洗的步骤包括:
S41,将所述固体产物依次用蒸馏水、盐酸溶液、乙醇洗涤清洗过滤产物,盐酸溶液的浓度范围为0.1-2mol/L。在步骤中S41中,盐酸溶液清洗使得聚苯胺保持一定的导电性和分散性。然过高溶度的盐酸清洗溶液将使得聚苯胺易分散成均匀溶液,影响产品的清洗并破坏过滤膜层。故,更优选的,所述盐酸溶液的浓度范围为0.1-1.2mol/L。
作为进一步改进的,在步骤S5中,取25~35mg的Fe-PANI粉体分散于15-18.2MΩ纯水中,在搅拌条件下依次加入0.9mL的8.228mM的氯铂酸溶液和0.3mL的100mM抗坏血酸溶液,在室温下避光搅拌反应10-30h的步骤包括:
S51,取30mg的Fe-PANI粉体分散于18.2MΩ纯水中,在搅拌条件下依次加入0.9mL的8.228mM的氯铂酸溶液和0.3mL的100mM抗坏血酸溶液,在室温下避光搅拌反应20h。
作为进一步改进的,在步骤S6中,反应结束后,取0.5mL浓盐酸加入S5的反应溶液中搅拌反应时间为20min-1h。
作为进一步改进的,在步骤S6中,将固体产物清洗的步骤包括:
S61,将所述固体产物依次用蒸馏水、盐酸溶液、乙醇洗涤清洗过滤产物,盐酸溶液的浓度范围为0.1-2mol/L。
作为进一步改进的,在步骤S8中,所述取1~3mg的Fe-PANI/Pt粉体超声分散于0.5mL无水乙醇中,加入5~15μL的Nafion溶液超声分散使其形成均匀的悬浮液的步骤包括:
S81,取2mg的Fe-PANI/Pt粉体超声分散于0.5mL无水乙醇中,加入10μL的Nafion溶液超声分散使其形成均匀的悬浮液。
作为进一步改进的,在步骤S9中,所述取10-40μL的悬浮液以10-20μL/次滴加到步骤S7抛光后的玻碳电极表面,静置待溶液挥发后继续滴加悬浮液,反复操作最终得到Fe-PANI/Pt修饰电极的步骤包括:
S91,取20μL的悬浮液直接滴加到步骤S5抛光后的玻碳电极表面,静置待溶液挥发后得到Fe-PANI/Pt修饰电极。
实施例:
将50mL二氯甲烷加入到圆底烧瓶中,再将0.5mL苯胺单体加入二氯甲烷溶液中超声使其均匀分散形成透明均一的有机相溶液。将得到的有机相溶液置放与磁力搅拌器上,在搅拌条件下往溶液中依次缓慢加入50mL0.2mol/L的N-甲基吡咯烷酮水溶液与0.05mL0.5mol/L的氯化铁溶液,室温下避光搅拌20h后静置。称取0.3g过硫酸铵溶于8.6mL 2mol/L的盐酸溶液中,完全溶解后得到过硫酸铵-盐酸溶液。将过硫酸铵-盐酸混合液沿着圆底烧瓶瓶壁缓慢加入静置条件下的二氯甲烷-N-甲基吡咯烷酮反应溶液中,静置反应20分钟后用0.22μm孔径的有机系滤膜过滤得到固体产物,依次用蒸馏水、1mol/L盐酸溶液、乙醇洗涤清洗过滤产物,自然晾干得到Fe-PANI粉体。
取铁掺杂聚苯胺Fe-PANI纳米材料30mg,用75mL 18.2MΩ纯水超声分散于150mL的圆底烧瓶中,在搅拌条件下依次加入0.9mL 8.228mM的氯铂酸溶液和0.3mL 100mM抗坏血酸溶液,在室温下避光搅拌反应20h。反应结束后,取0.5mL浓盐酸加入反应溶液中,搅拌20min后用0.22μm孔径的水系滤膜过滤得到固体产物,依次用蒸馏水、0.1M盐酸、乙醇洗涤,自然晾干得到铁掺杂聚苯胺/铂(Fe-PANI/Pt)粉体。将直径为5mm的玻碳电极依次用3μm、1μm、0.3μm、50nm的氧化铝微粉研磨抛光后备用。取2mg Fe-PANI/Pt粉体超声分散于0.5mL无水乙醇中,加入10μL的Nafion溶液超声分散30min使其形成均匀的悬浮液。取20μL的悬浮液滴加到干净的玻碳电极表面,静置待溶液挥发后得到Fe-PANI/Pt修饰电极待用。以Fe-PANI/Pt修饰电极为工作电极、石墨电极为对电极、饱和甘共电极为参比电极进行脉冲伏安(DPV)测试。其中电位范围-0.1V-0.9V(vs.SCE),扫描振幅为50mV,脉冲宽度50ms。整个实验均在磷酸缓冲液(0.1M PBS溶液,pH=6.8)的环境中进行。
对比例1:
取PANI纳米复合材料30mg,并量取75mL 18.2MΩ纯水将其分散于150mL的圆底烧瓶中,之后加入0.3mL(100mM)抗坏血酸溶液,0.9mL的氯铂酸溶液,并在室温下避光搅拌反应20h得到溶液。取0.5mL浓盐酸加入反应溶液中,搅拌20min后用0.22μm孔径的水系滤膜过滤得到固体产物,依次用蒸馏水、0.1M盐酸、乙醇洗涤,自然晾干得到聚苯胺/铂(PANI/Pt)粉体。将直径为5mm的玻碳电极依次用3μm、1μm、0.3μm、50nm的氧化铝微粉研磨抛光后备用。取2mg聚苯胺/铂粉体超声分散于0.5mL无水乙醇中,加入10μL的Nafion溶液超声分散30min使其形成均匀的悬浮液。取20μL的悬浮液滴加到干净的玻碳电极表面,静置待溶液挥发后得到聚苯胺/铂修饰电极待用。以聚苯胺/铂修饰电极为工作电极、石墨电极为对电极、饱和甘共电极为参比电极进行脉冲伏安(DPV)测试。其中电位范围-0.1V-0.9V(vs.SCE),扫描振幅为50mV,脉冲宽度50ms。整个实验均在磷酸缓冲液(0.1M PBS溶液,pH=6.8)的环境中进行。
测试:
图1是在0.1M,pH为6.8的磷酸缓冲液中,1mM的UA、1mM的AA、200μM的DA在PANI/Pt修饰电极上的DPV图,从图可以看出,DA在该检测条件下没有明显的氧化信号,UA的氧化电位位于0.3V-0.7V之间,氧化峰为0.45V;AA在0.4V-0.6V、0.7V-0.9V出现了两个氧化峰,其中0.4V-0.6V A的氧化信号会对UA的检测产生干扰;因此PANI/Pt修饰电极无法用于DA的电化学检测。
图2是在0.1M的PBS溶液中,PANI/Pt修饰电极上系列浓度DA的DPV检测图,从图可以看出在该测试浓度范围(0.001μM-200μM),DA在PANI/Pt修饰电极上没有明显的电化学响应信号,因此PANI/Pt修饰电极无法用于该浓度范围DA的检测。
图3是在0.1M,pH为6.8的磷酸缓冲液中,1mM的UA、1mM的AA、200μM的DA在Fe-PANI/Pt修饰电极上的DPV图,从图可以看出,DA的氧化电位位于0.2V-0.6V之间,峰电位为0.425V,而UA和AA在电位范围区间均没有表现出明显的氧化信号。
图4是在0.1M的PBS溶液中,Fe-PANI/Pt修饰电极上系列浓度DA的DPV检测图,从图中可以看出修饰电极上DA的氧化电位位于0.2V-0.6V之间,氧化峰0.42V,检出限为1μM。
图5为Fe-PANI/Pt修饰电极测试中DA浓度与峰电流的线性关系曲线图。在文中检出的浓度范围1μM-200μM时,线性曲线为y=0.02587x-0.02992,其相关系数R2=0.96343。
以上所述仅为本发明的优选实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于铁掺杂聚苯胺/铂的多巴胺选择性电化学检测电极的制备方法,其特征在于,包括以下步骤:
S1,将0.5mL苯胺单体加入50mL二氯甲烷溶液中超声使其均匀分散形成透明均一的有机相溶液;
S2,在搅拌条件下往所述有机相溶液中依次缓慢加入50mL的0.2mol/L的N-甲基吡咯烷酮水溶液与0.05mL的0.5mol/L的氯化铁溶液,室温下避光搅拌一段时间后静置;
S3,将0.3g过硫酸铵加入8.6mL的2mol/L的盐酸溶液中形成过硫酸铵-盐酸溶液,将过硫酸铵-盐酸溶液缓慢加入步骤S2中反应溶液中,静置反应一段时间后用有机系滤膜过滤得到固体产物;
S4,将所述固体产物清洗、过滤、自然晾干得到Fe-PANI粉体;
S5,取25~35mg的Fe-PANI粉体超声分散于15-18.2MΩ纯水中,在搅拌条件下依次加入0.9mL的8.228mM的氯铂酸溶液和0.3mL的100mM抗坏血酸溶液,在室温下避光搅拌反应10-30h;
S6,反应结束后,取0.5mL浓盐酸加入S5的反应溶液中搅拌一段时间,然后用0.22μm孔径的水系滤膜过滤得到固体产物,将所述固体产物清洗、过滤、自然晾干得到Fe-PANI/Pt粉体;
S7,将所述玻碳电极依次用3μm、1μm、0.3μm、50nm的氧化铝微粉研磨抛光后备用;
S8,取1~3mg的Fe-PANI/Pt粉体超声分散于0.5mL无水乙醇中,加入5~15μL的Nafion溶液超声分散使其形成均匀的悬浮液;
S9,取10-40μL的悬浮液以10-20μL/次滴加到步骤S7抛光后的玻碳电极表面,静置待溶液挥发后继续滴加悬浮液,反复操作最终得到Fe-PANI/Pt修饰电极。
2.如权利要求1所述的制备方法,其特征在于,在步骤S2中,混合溶液避光反应时间为10-50h。
3.如权利要求1所述的制备方法,其特征在于,在步骤S3中,加入过硫酸铵-盐酸溶液后静置反应时间为15-35min。
4.如权利要求1所述的制备方法,其特征在于,在步骤S4中,将固体产物清洗的步骤包括:
S41,将所述固体产物依次用蒸馏水、盐酸溶液、乙醇洗涤清洗过滤产物,盐酸溶液的浓度范围为0.1-2mol/L。
5.如权利要求1所述的制备方法,其特征在于,在步骤S5中,取25~35mg的Fe-PANI粉体分散于15-18.2MΩ纯水中,在搅拌条件下依次加入0.9mL的8.228mM的氯铂酸溶液和0.3mL的100mM抗坏血酸溶液,在室温下避光搅拌反应10-30h的步骤包括:
S51,取30mg的Fe-PANI粉体分散于18.2MΩ纯水中,在搅拌条件下依次加入0.9mL的8.228mM的氯铂酸溶液和0.3mL的100mM抗坏血酸溶液,在室温下避光搅拌反应20h。
6.如权利要求1所述的制备方法,其特征在于,在步骤S6中,反应结束后,取0.5mL浓盐酸加入S5的反应溶液中搅拌反应时间为20min-1h。
7.如权利要求1所述的制备方法,其特征在于,在步骤S6中,将固体产物清洗的步骤包括:
S61,将所述固体产物依次用蒸馏水、盐酸溶液、乙醇洗涤清洗过滤产物,盐酸溶液的浓度范围为0.1-2mol/L。
8.如权利要求1所述的制备方法,其特征在于,在步骤S8中,所述取1~3mg的Fe-PANI/Pt粉体超声分散于0.5mL无水乙醇中,加入5~15μL的Nafion溶液超声分散使其形成均匀的悬浮液的步骤包括:
S81,取2mg的Fe-PANI/Pt粉体超声分散于0.5mL无水乙醇中,加入10μL的Nafion溶液超声分散使其形成均匀的悬浮液。
9.如权利要求1所述的制备方法,其特征在于,在步骤S9中,所述取10-40μL的悬浮液以10-20μL/次滴加到步骤S7抛光后的玻碳电极表面,静置待溶液挥发后继续滴加悬浮液,反复操作最终得到Fe-PANI/Pt修饰电极的步骤包括:
S91,取20μL的悬浮液直接滴加到步骤S5抛光后的玻碳电极表面,静置待溶液挥发后得到Fe-PANI/Pt修饰电极。
10.一种基于铁掺杂聚苯胺纳米材料的多巴胺电化学传感电极,其特征在于,所述多巴胺电化学传感电极为通过权利要求1-9任一项的方法制备得到;其测试环境为:以Fe-PANI/Pt修饰电极为工作电极、石墨电极或铂电极为对电极、饱和甘共电极为参比电极进行DPV测试,其中,电位范围-0.1V-0.9V(vs.SCE),扫描振幅为50mV,脉冲宽度50ms,整个测试环境在pH=6.6-7.2的磷酸缓冲液中进行。
CN201910687889.8A 2019-07-29 2019-07-29 基于铁掺杂聚苯胺/铂的多巴胺选择性电化学检测电极及其制备 Expired - Fee Related CN110514727B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910687889.8A CN110514727B (zh) 2019-07-29 2019-07-29 基于铁掺杂聚苯胺/铂的多巴胺选择性电化学检测电极及其制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910687889.8A CN110514727B (zh) 2019-07-29 2019-07-29 基于铁掺杂聚苯胺/铂的多巴胺选择性电化学检测电极及其制备

Publications (2)

Publication Number Publication Date
CN110514727A true CN110514727A (zh) 2019-11-29
CN110514727B CN110514727B (zh) 2020-05-05

Family

ID=68624271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910687889.8A Expired - Fee Related CN110514727B (zh) 2019-07-29 2019-07-29 基于铁掺杂聚苯胺/铂的多巴胺选择性电化学检测电极及其制备

Country Status (1)

Country Link
CN (1) CN110514727B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113804737A (zh) * 2021-08-26 2021-12-17 宁德师范学院 聚苯胺负载的银/氧化亚铜多元纳米复合材料及修饰电极的制备方法
CN113884560A (zh) * 2021-09-30 2022-01-04 宁德师范学院 石墨烯基Pt-Pd双金属纳米复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308579A (zh) * 2013-05-09 2013-09-18 东华大学 一种聚苯胺/贵金属纳米复合材料修饰电极的制备方法
CN104950027A (zh) * 2015-06-20 2015-09-30 常州大学 一种石墨烯/聚苯胺/金纳米粒子复合材料的合成及其应用于多巴胺的检测
CN106324057A (zh) * 2016-08-01 2017-01-11 红河学院 一种免疫传感器对黄曲霉毒素的检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308579A (zh) * 2013-05-09 2013-09-18 东华大学 一种聚苯胺/贵金属纳米复合材料修饰电极的制备方法
CN104950027A (zh) * 2015-06-20 2015-09-30 常州大学 一种石墨烯/聚苯胺/金纳米粒子复合材料的合成及其应用于多巴胺的检测
CN106324057A (zh) * 2016-08-01 2017-01-11 红河学院 一种免疫传感器对黄曲霉毒素的检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RACHNA RAWAL 等: "An amperometric biosensor based on laccase immobilized onto Fe3O4NPs/cMWCNT/PANI/Au electrode for determination of phenolic content in tea leaves extract", 《ENZYME AND MICROBIAL TECHNOLOGY》 *
WENJIE LIU 等: "Electrocatalytic oxidation toward dopamine and acetaminophen based on AuNPs@TCnA/GN modified glassy carbon electrode", 《ANALYTICA CHIMICA ACTA》 *
严睿文: "聚苯胺/铂微电极的制备、表征及电化学性能研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113804737A (zh) * 2021-08-26 2021-12-17 宁德师范学院 聚苯胺负载的银/氧化亚铜多元纳米复合材料及修饰电极的制备方法
CN113804737B (zh) * 2021-08-26 2024-02-13 宁德师范学院 聚苯胺负载的银/氧化亚铜多元纳米复合材料及修饰电极的制备方法
CN113884560A (zh) * 2021-09-30 2022-01-04 宁德师范学院 石墨烯基Pt-Pd双金属纳米复合材料及其制备方法
CN113884560B (zh) * 2021-09-30 2023-04-28 宁德师范学院 石墨烯基Pt-Pd双金属纳米复合材料及其制备方法

Also Published As

Publication number Publication date
CN110514727B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
Wang et al. A novel ratiometric electrochemical biosensor for sensitive detection of ascorbic acid
Liu et al. Horseradish peroxidase supported on porous graphene as a novel sensing platform for detection of hydrogen peroxide in living cells sensitively
Yazhen et al. A novel methyl parathion electrochemical sensor based on acetylene black–chitosan composite film modified electrode
Yang et al. Electrochemical sensor based on molecularly imprinted polymer film via sol–gel technology and multi-walled carbon nanotubes-chitosan functional layer for sensitive determination of quinoxaline-2-carboxylic acid
Wang et al. Au-nanoclusters incorporated 3-amino-5-mercapto-1, 2, 4-triazole film modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite
CN110514728B (zh) 高灵敏的Fe-PANI/Pt@Au多巴胺电化学检测电极及其制备
Huang et al. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode
Norouzi et al. A novel acetylcholinesterase biosensor based on chitosan-gold nanoparticles film for determination of monocrotophos using FFT continuous cyclic voltammetry
Breczko et al. Electrochemical oxidation and determination of dopamine in the presence of uric and ascorbic acids using a carbon nano-onion and poly (diallyldimethylammonium chloride) composite
Özel et al. Chitosan coated carbon fiber microelectrode for selective in vivo detection of neurotransmitters in live zebrafish embryos
Kuralay et al. Carbon nanotube–chitosan modified disposable pencil graphite electrode for Vitamin B12 analysis
Moreno et al. Selective detection of dopamine in the presence of ascorbic acid using carbon nanotube modified screen-printed electrodes
Zhao et al. Poly (isonicotinic acid) modified glassy carbon electrode for electrochemical detection of norepinephrine
Wei et al. Simultaneous detection of ascorbic acid, dopamine, and uric acid using a novel electrochemical sensor based on palladium nanoparticles/reduced graphene oxide nanocomposite
Zhang et al. Highly sensitive electrochemical sensor based on Pt nanoparticles/carbon nanohorns for simultaneous determination of morphine and MDMA in biological samples
Johnson et al. Measurement of basal neurotransmitter levels using convolution-based nonfaradaic current removal
Zhu et al. Graphene‐Modified Carbon Fiber Microelectrode for the Detection of Dopamine in Mice Hippocampus Tissue
Zhang et al. Fabrication of poly (orthanilic acid)–multiwalled carbon nanotubes composite film-modified glassy carbon electrode and its use for the simultaneous determination of uric acid and dopamine in the presence of ascorbic acid
Babaei et al. A sensor for simultaneous determination of dopamine and morphine in biological samples using a multi-walled carbon nanotube/chitosan composite modified glassy carbon electrode
Broderick State‐of‐the‐art microelectrodes for in vivo voltammetry
Tian et al. Amperometric detection of glucose based on immobilizing glucose oxidase on g-C3N4 nanosheets
CN110514727A (zh) 基于铁掺杂聚苯胺/铂的多巴胺选择性电化学检测电极及其制备
Qu et al. Electrochemical sensing platform based on palladium modified ceria nanoparticles
Apetrei et al. Study of different carbonaceous materials as modifiers of screen-printed electrodes for detection of catecholamines
Yu et al. [C3 (OH) 2mim][BF4]-Au/Pt biosensor for glutamate sensing in vivo integrated with on-line microdialysis system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200505