CN110512249A - 碳氮化钛及羟基磷灰石复合涂层的制备方法 - Google Patents

碳氮化钛及羟基磷灰石复合涂层的制备方法 Download PDF

Info

Publication number
CN110512249A
CN110512249A CN201810495299.0A CN201810495299A CN110512249A CN 110512249 A CN110512249 A CN 110512249A CN 201810495299 A CN201810495299 A CN 201810495299A CN 110512249 A CN110512249 A CN 110512249A
Authority
CN
China
Prior art keywords
titanium alloy
preparation
composite coating
titanium carbonitride
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810495299.0A
Other languages
English (en)
Other versions
CN110512249B (zh
Inventor
黄洁雯
朱峻逸
王天驰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201810495299.0A priority Critical patent/CN110512249B/zh
Publication of CN110512249A publication Critical patent/CN110512249A/zh
Application granted granted Critical
Publication of CN110512249B publication Critical patent/CN110512249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种碳氮化钛/羟基磷灰石复合涂层的制备方法。所述方法先以预处理后的钛合金为阴极,石墨为阳极,以尿素、甲酰胺和氯化钾的混合水溶液为电解液,逐步提升电压,电压击穿后继续提升至150V以上,阴极等离子沉积碳氮化钛,然后将沉积碳氮化钛的钛合金置于硝酸钙与磷酸氢二钠的混合溶液中,160~190℃下进行水热反应,得到碳氮化钛/羟基磷灰石复合涂层。本发明结合阴极等离子沉积与水热法,制得的碳氮化钛/羟基磷灰石复合涂层,在硬度、摩擦性能、耐蚀性以及生物活性上都有了显著提升,有效扩宽了钛合金在生物医学领域的应用。

Description

碳氮化钛及羟基磷灰石复合涂层的制备方法
技术领域
本发明属于金属表面处理技术领域,涉及一种碳氮化钛及羟基磷灰石复合涂层的制备方法。
背景技术
钛合金由于具有高强度、强度高、耐蚀性好、耐热高、生物相容性等特点,广泛应用于交通、航空、航天、生物、医学等民用及军工领域,在国民经济和国防建设中具有不可替代的重要作用。但钛合金属生物惰性材料,不能与骨形成化学键,此外钛合金的硬度较低,耐磨性不好,严重限制了钛合金在生物医学骨移植构件中的应用。目前处理钛合金的主要研究集中于微弧氧化(MAO),等离子喷涂,以及电化学沉积等方法(王凤彪,狄士春.多孔ZrO2/HA医用钛合金微弧氧化复合陶瓷膜层生物力学性能研究[J].稀有金属材料与工程材料,2012,41(2):299~303)。但这些方法存在工艺繁琐、成本高、难于控制等缺点,不利于广泛应用。
阴极等离子沉积是一种直接在钛等合金表面沉积陶瓷涂层的新技术,基本过程为将待处理工件放入盛有特定电解液的电解槽内,并与电源负极相连作为阴极,一般采用石墨或铂与电源正极相连作为阳极。接通电源后,在电场作用下,工件表面会发生电化学、热化学、等离子体化学等一系列复杂的物理化学反应,最终形成陶瓷涂层(关永军,夏原,等离子体电解沉积的现状[J].力学进展2004,34(2):237~250)。黄洁雯等用一步法用阴极等离子沉积的方法制备含羟基磷灰石的复合涂层,然而制得的羟基磷灰石含量少,且形态不均匀(Jiewen Huang,et al.,Characterization and one-step synthesis ofHydroxyapatite-Ti(C,N)-TiO2composite coating by cathodic plasma electrolyticsaturation and accompanying electrochemical deposition on titanium alloy[J]Surface&Coatings Technology 324(2017)463–470)。
发明内容
本发明针对钛及钛合金表面硬度低,耐磨性不好以及生物活性差等问题,提供一种结合强度高,具有优异耐磨耐蚀性以及生物活性的碳氮化钛及羟基磷灰石复合涂层的制备方法。
本发明的技术方案是:
碳氮化钛/羟基磷灰石复合涂层的制备方法,具体步骤如下:
步骤1,将钛合金部件砂纸打磨光滑,浸入乙醇溶液中超声处理,干燥,得到预处理后的钛合金;
步骤2,预处理后的钛合金为阴极,石墨为阳极,电解液为尿素、甲酰胺和氯化钾的混合水溶液,逐步提升电压,电压击穿后继续提升至150V以上,阴极等离子沉积15~30min,沉积结束后,将沉积碳氮化钛的钛合金清洗,烘干;
步骤3,将沉积碳氮化钛的钛合金置于硝酸钙与磷酸氢二钠的混合溶液中,160~190℃下进行水热反应6~9h,反应结束后得到碳氮化钛/羟基磷灰石复合涂层。
优选地,步骤1中,所述的超声时间为30min。
优选地,步骤2中,所述的升压速度为2~5V/s。
优选地,步骤2中,所述的尿素浓度为150~200g/L,甲酰胺浓度为400~500g/L,氯化钾的浓度为10~20g/L。
优选地,步骤3中,所述的硝酸钙的浓度为10~20g/L,磷酸二氢钠的浓度为6~12g/L。
优选地,步骤3中,所述的水热反应温度为190℃,反应时间为6h。
与现有技术相比,本发明具有以下优点:
(1)本发明综合利用了阴极等离子沉积与水热反应的优点,阴极等离子沉积制得的碳氮化钛多孔结构复合涂层结合强度好,钛合金打磨清洗后就可以处理,无电镀,化学镀等繁琐的预处理。
(2)等离子电解沉积与水热法工艺简单、效率高、不受工件形状的限制,并且所采用的电解液污染小、成本低、可重复性好。
(3)制备的复合涂层在耐磨,耐蚀以及生物活性上都得到了显著提升,摩擦系数约为0.4,腐蚀电流为1.4×10-6A/cm2
附图说明
图1是实施例1中制得的含复合涂层的钛合金X射线衍射图谱。
图2是实施例1中制得的复合涂层的SEM图。
图3为制备的复合涂层的摩擦系数示意图。
图4为对比例1的复合涂层的SEM图。
图5为对比例2的复合涂层的SEM图。
具体实施方式
下面通过实施例和附图对本发明进一步详述。
实施例1
(1)将钛合金用砂纸打磨光滑,将光滑的钛合金浸入乙醇溶液中超声处理,干燥,得到预处理后的钛合金;
(2)采用尿素-甲酰胺的体系为电解液,尿素浓度为150g/L,甲酰胺浓度为400g/L,氯化钾浓度为10g/L;
(3)对钛合金进行阴极等离子电解处理,以3V/s的速度逐步提升电压为150V,保持时间在15min。反应时使用水冷处理,使反应时溶液温度在40℃左右。结束后取出钛合金并清洗,烘干。
(4)将上述处理的钛合金置入反应釜中,使用硝酸钙浓度为10g/L,磷酸二氢钠浓度为6g/L的混合水溶液为水热体系。
(5)设置反应温度为190℃,反应时间为6h。
测得复合涂层的厚度在40μm。在0.8N的载荷下,以碳化硅钢球为对磨材料,在摩擦试验机上进行10min往复式摩擦磨损试验,测得平均摩擦系数为0.36,在SBF模拟体液中进行电动位极化曲线测试,腐蚀电流为1.38×10-6A/cm2
图1为实施例1中制得的含复合涂层的钛合金X射线衍射图谱,图2是实施例1中制得的复合涂层的SEM图,从图中可以轻易看到羟基磷灰石(HA)的特征峰,以及其分布和均匀的棒状形态。
实施例2
(1)将钛合金用砂纸打磨光滑,将光滑的钛合金浸入乙醇溶液中超声处理,干燥,得到预处理后的钛合金;
(2)采用尿素-甲酰胺的体系为电解液,尿素浓度为180g/L,甲酰胺浓度为450g/L,氯化钾浓度为10g/L;
(3)对钛合金进行阴极等离子电解处理,以3V/s的速度逐步提升电压为160V,保持时间在15min。反应时使用水冷处理,使反应时溶液温度在40℃左右。结束后取出钛合金并清洗,烘干。
(4)将上述处理的钛合金置入反应釜中,使用硝酸钙浓度为15g/L,磷酸二氢钠浓度为9g/L的混合水溶液为水热体系。
(5)设置反应温度为170℃,反应时间为8h。
测得复合涂层的厚度在60μm。在0.8N的载荷下,以碳化硅钢球为对磨材料,在摩擦试验机上进行10min往复式摩擦磨损试验,测得平均摩擦系数为0.42,在SBF模拟体液中进行电动位极化曲线测试,腐蚀电流为1.45×10-6A/cm2
实施例3
(1)将钛合金用砂纸打磨光滑,将光滑的钛合金浸入乙醇溶液中超声处理,干燥,得到预处理后的钛合金;
(2)采用尿素—甲酰胺的体系为电解液,尿素浓度为200g/L,甲酰胺浓度为500g/L,氯化钾浓度为10g/L;
(3)对钛合金进行阴极等离子电解处理,以3V/s的速度逐步提升电压为180V,保持时间在15min。反应时使用水冷处理,使反应时溶液温度在40℃左右。结束后取出钛合金并清洗,烘干。
(4)将上述处理的钛合金置入反应釜中,使用硝酸钙浓度为20g/L,磷酸二氢钠浓度为12g/L的混合水溶液为水热体系。
(5)设置反应温度为180℃,反应时间为9h。
测得复合涂层的厚度在72μm。在0.8N的载荷下,以碳化硅钢球为对磨材料,在摩擦试验机上进行10min往复式摩擦磨损试验,测得平均摩擦系数为0.43,在SBF模拟体液中进行电动位极化曲线测试,腐蚀电流为1.56×10-6A/cm2
对比例1
本对比例与实施例1基本相同,唯一不同的是稳定电压为130V。得到涂层SEM图如图4所示,可以看到表面涂层并没有碳氮化钛的多孔结构,这是电压未能击穿表面的结果。
对比例2
本对比例与实施例1基本相同,唯一不同的是水热温度为220℃,得到的涂层SEM图如图5所示,可以看到水热法制得的羟基磷灰石形貌不均,含量很少,这是由于温度太高的结果。

Claims (7)

1.碳氮化钛/羟基磷灰石复合涂层的制备方法,其特征在于,具体步骤如下:
步骤1,将钛合金部件砂纸打磨光滑,浸入乙醇溶液中超声处理,干燥,得到预处理后的钛合金;
步骤2,预处理后的钛合金为阴极,石墨为阳极,电解液为尿素、甲酰胺和氯化钾的混合水溶液,逐步提升电压,电压击穿后继续提升至150V以上,阴极等离子沉积15~30min,沉积结束后,将沉积碳氮化钛的钛合金清洗,烘干;
步骤3,将沉积碳氮化钛的钛合金置于硝酸钙与磷酸氢二钠的混合溶液中,160~190℃下进行水热反应6~9h,反应结束后得到碳氮化钛/羟基磷灰石复合涂层。
2.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的超声时间为30min。
3.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的升压速度为2~5V/s。
4.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的尿素浓度为150~200g/L,甲酰胺浓度为400~500g/L,氯化钾的浓度为10~20g/L。
5.根据权利要求1所述的制备方法,其特征在于,步骤3中,所述的硝酸钙的浓度为10~20g/L,磷酸二氢钠的浓度为6~12g/L。
6.根据权利要求1所述的制备方法,其特征在于,步骤3中,所述的水热反应温度为190℃。
7.根据权利要求1所述的制备方法,其特征在于,步骤3中,所述的水热反应时间为6h。
CN201810495299.0A 2018-05-22 2018-05-22 碳氮化钛及羟基磷灰石复合涂层的制备方法 Active CN110512249B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810495299.0A CN110512249B (zh) 2018-05-22 2018-05-22 碳氮化钛及羟基磷灰石复合涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810495299.0A CN110512249B (zh) 2018-05-22 2018-05-22 碳氮化钛及羟基磷灰石复合涂层的制备方法

Publications (2)

Publication Number Publication Date
CN110512249A true CN110512249A (zh) 2019-11-29
CN110512249B CN110512249B (zh) 2021-04-27

Family

ID=68622097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810495299.0A Active CN110512249B (zh) 2018-05-22 2018-05-22 碳氮化钛及羟基磷灰石复合涂层的制备方法

Country Status (1)

Country Link
CN (1) CN110512249B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112276097A (zh) * 2020-12-02 2021-01-29 山东理工大学 一种3d打印钛合金复杂零部件的表面抛光方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311328A (zh) * 2008-02-20 2008-11-26 福建师范大学 一种制备钛基羟基磷灰石/氧化钛纳米管复合涂层的方法
CN101757684A (zh) * 2009-06-05 2010-06-30 新疆医科大学 一种棒状纳米羟基磷灰石代骨材料的制备及其应用
CN102560595A (zh) * 2012-01-05 2012-07-11 哈尔滨工业大学 医用钛金属表面制备羟基磷灰石及多孔二氧化钛复合涂层的方法
CN105779955A (zh) * 2016-03-10 2016-07-20 中国矿业大学 一种髋关节假体柄表面纳米生物活性涂层及其制备方法
CN106967956A (zh) * 2017-05-11 2017-07-21 中国矿业大学 一种可屏蔽有害离子释放的多孔羟基磷灰石/氮化钛生物活性涂层及用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311328A (zh) * 2008-02-20 2008-11-26 福建师范大学 一种制备钛基羟基磷灰石/氧化钛纳米管复合涂层的方法
CN101757684A (zh) * 2009-06-05 2010-06-30 新疆医科大学 一种棒状纳米羟基磷灰石代骨材料的制备及其应用
CN102560595A (zh) * 2012-01-05 2012-07-11 哈尔滨工业大学 医用钛金属表面制备羟基磷灰石及多孔二氧化钛复合涂层的方法
CN105779955A (zh) * 2016-03-10 2016-07-20 中国矿业大学 一种髋关节假体柄表面纳米生物活性涂层及其制备方法
CN106967956A (zh) * 2017-05-11 2017-07-21 中国矿业大学 一种可屏蔽有害离子释放的多孔羟基磷灰石/氮化钛生物活性涂层及用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
朱峻逸: ""钛合金表面碳氮化钛/羟基磷灰石涂层的制备及性能研究"", 《万方数据》 *
杨奔峰,: ""Ti-6Al-4V表面Ti(C,N)复合膜的液相等离子体制备工艺研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112276097A (zh) * 2020-12-02 2021-01-29 山东理工大学 一种3d打印钛合金复杂零部件的表面抛光方法

Also Published As

Publication number Publication date
CN110512249B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
Benea et al. Preparation of titanium oxide and hydroxyapatite on Ti–6Al–4V alloy surface and electrochemical behaviour in bio-simulated fluid solution
CN105624753B (zh) 一种医用多孔钛及钛合金均匀沉积羟基磷灰石涂层工艺
Gopi et al. A comparative study on the direct and pulsed current electrodeposition of hydroxyapatite coatings on surgical grade stainless steel
Chakraborty et al. Synthesis of calcium hydrogen phosphate and hydroxyapatite coating on SS316 substrate through pulsed electrodeposition
Hariprasad et al. Role of electrolyte additives on in-vitro corrosion behavior of DC plasma electrolytic oxidization coatings formed on Cp-Ti
ugli Mukhtorov et al. IMPROVING THE STRENGTH OF DETAILS BY CHROMING THE SURFACES
Khusanboyev et al. IMPROVING THE STRENGTH OF DETAILS BY CHROMING THE SURFACES
CN105274603B (zh) 镁或镁合金表面含碳纳米管的复合改性涂层及其制备方法
CN104674320A (zh) 一种钛或钛合金表面耐磨抑菌生物活性陶瓷膜制备方法和应用
CN103908699B (zh) 一种钛合金表面的HA/TiO2层及其制备方法
Lin et al. Preparation of hydroxyapatite coating on smooth implant surface by electrodeposition
CN103361702A (zh) 牙种植体表面改性的一种方法
Sarao et al. Characterization and in vitro corrosion investigations of thermal sprayed hydroxyapatite and hydroxyapatite-titania coatings on Ti alloy
Wei et al. Biomimetic apatite deposited on microarc oxidized anatase-based ceramic coating
CN107881544A (zh) 一种纳米磷酸钙镶嵌有序氧化钛纳米阵列膜层的制备方法
Zeng et al. Preparation and characterization of electrodeposited Ni-CeO2 nanocomposite coatings with high current density
Chitsaz-Khoyi et al. The effect of hydroxyapatite nanoparticles on electrochemical and mechanical performance of TiC/N coating fabricated by plasma electrolytic saturation method
Loftis et al. Nanoscale electropolishing of high-purity nickel with an ionic liquid
Li et al. Corrosion behavior of ZrO2-TiO2 composite coatings produced on titanium alloy via plasma electrolytic oxidation
CN103981523A (zh) 一种超亲水性Ti6Ai7Ni表面喷砂酸蚀处理方法
Soleymani Naeini et al. Synthesis of composite coating containing TiO 2 and HA nanoparticles on titanium substrate by AC plasma electrolytic oxidation
CN110512249A (zh) 碳氮化钛及羟基磷灰石复合涂层的制备方法
Gopi et al. Evaluation of the mechanical and corrosion protection performance of electrodeposited hydroxyapatite on the high energy electron beam treated titanium alloy
CN105543934A (zh) 一种医用钛种植体微弧氧化膜层及制备方法
CN105862096A (zh) 一种电刷镀-烧结法制备fha生物活性涂层的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant