CN110511941B - Method for increasing plant biomass and thus increasing yield by overexpressing abscisic acid receptors - Google Patents

Method for increasing plant biomass and thus increasing yield by overexpressing abscisic acid receptors Download PDF

Info

Publication number
CN110511941B
CN110511941B CN201910821609.8A CN201910821609A CN110511941B CN 110511941 B CN110511941 B CN 110511941B CN 201910821609 A CN201910821609 A CN 201910821609A CN 110511941 B CN110511941 B CN 110511941B
Authority
CN
China
Prior art keywords
plant
promoter
seq
abscisic acid
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910821609.8A
Other languages
Chinese (zh)
Other versions
CN110511941A (en
Inventor
吕建
陈希
滕文涛
刘志强
尚永申
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Syngenta Crop Protection AG Switzerland
Syngenta Biotechnology China Co Ltd
Original Assignee
Syngenta Crop Protection AG Switzerland
Syngenta Biotechnology China Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syngenta Crop Protection AG Switzerland, Syngenta Biotechnology China Co Ltd filed Critical Syngenta Crop Protection AG Switzerland
Priority to CN201910821609.8A priority Critical patent/CN110511941B/en
Publication of CN110511941A publication Critical patent/CN110511941A/en
Application granted granted Critical
Publication of CN110511941B publication Critical patent/CN110511941B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/8223Vegetative tissue-specific promoters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The present application relates to the field of transgenics and gene editing, in particular to transgenics and gene editing in plants, such as crops. The present invention provides a method for increasing plant biomass and thus increasing yield by overexpressing an abscisic acid receptor. The invention increases biomass in plants, such as crops, particularly corn.

Description

Method for increasing plant biomass and thus increasing yield by overexpressing abscisic acid receptors
Technical Field
The present application relates to the field of transgenics and gene editing, in particular to transgenics and gene editing in plants, such as crops. The present invention provides a method for increasing plant biomass and thus increasing yield by overexpressing an abscisic acid receptor. The invention increases biomass in plants, such as crops, particularly corn.
Background
Increasing crop yield is a necessary condition to ensure sustainable development in human society. It is expected that the world population will increase to 98 billion by 2050; this requires a 56% increase in agriculture over the calories provided in 2010. Based on the existing agricultural yield increase rate, the human needs to increase 15 hundred million acres of agricultural land to meet the needs of 2050 years. The agricultural land is influenced by factors such as climate, ecology, economic mode and the like, and the existing agricultural land area is not easy to guarantee. Therefore, further improvement of crop yield is the most effective method.
The first green revolution solves the problem of over-high/lodging of plants caused by applying chemical fertilizers; by utilizing the dwarf gene, the lodging resistance of the crops is greatly improved, and the yield of the crops in unit area is further improved. By applying chemical fertilizers and dwarfing/semi-dwarfing crops, the yield of wheat, rice, barley and sorghum is greatly improved; but this effect is not apparent on maize. Yield improvement in maize depends largely on the use of heterosis; by optimizing the hybridization combinations, an annual yield increase of 1% can be provided.
With the development of biotechnology, some genes that can improve yield were discovered and utilized. When the rice contains homozygous Osdep1 gene, the yield of the single plant is improved by 40% compared with the control [1 ]. OsGW5 can regulate grain width to improve grain weight and yield [2 ]. DELLA mutants, which can lead to plant dwarfing, are widely used to increase the Harvest Index (Harvest Index) in the Green leather hit [3 ]. Silencing ZmNAC7 can increase maize biomass, thus increasing maize yield [4 ]. According to a classical yield model, the yield is equal to source multiplied by harvest index, and the yield can be greatly improved by increasing the source; the source is often referred to as aerial biomass. As an example, the rice pyl1/4/6 mutant increased aerial biomass and thus increased yield [5 ].
Abscisic acid is a plant growth regulating hormone, is generated and enriched at roots under drought conditions, enters leaves through a conduit to regulate water potential or antioxidant capacity. In addition, studies have shown that abscisic acid can also be produced in leaves. Abscisic acid generally activates abscisic acid-dependent signaling pathways by binding to its receptor and altering the interaction of the receptor with protein phosphatases, thereby modulating the phosphorylation state of downstream phosphokinases. The abscisic acid receptor PYR/PYL/RCAR is a type of abscisic acid-binding protein, either in monomeric form or in dimeric form. In arabidopsis, there are 15 abscisic acid receptors; in wheat, there are 9 abscisic acid receptors.
Abscisic acid can regulate the corresponding balance of growth and stress; exogenous application of abscisic acid can increase the biomass of duckweed [6 ]. Tri-mutation Pyl1/4/6 in rice can increase yield, but makes the mutant more susceptible to drought stress [5 ]. This drought sensitivity is not a problem on rice because rice has water throughout the growing season; however, drought is common in crops such as wheat, corn, and soybean.
Disclosure of Invention
In general, the invention verifies that some corn abscisic acid receptors can increase crop biomass by an overexpression method, thereby improving crop yield; and can improve crop biomass without affecting water utilization efficiency.
In particular, the present invention relates to a method for increasing the biomass and thus the yield of a plant, comprising overexpressing in said plant a polynucleotide sequence encoding an abscisic acid receptor. In a preferred embodiment, the abscisic acid receptor is the abscisic acid receptor of the plant itself or of another species. In a preferred embodiment, one or more abscisic acid receptors are overexpressed. In a preferred embodiment, the amino acid sequence of the abscisic acid receptor is selected from the group consisting of SEQ ID NOs 2 and 4. In a preferred embodiment, the polynucleotide sequence encoding an abscisic acid receptor is selected from the group consisting of SEQ ID NOs 1 and 3. In a preferred embodiment, the overexpression is driven by a plant ubiquitin promoter or a plant actin promoter. In a further preferred embodiment, the plant ubiquitin promoter is the maize ubiquitin promoter prZmUbi1, the sequence of which is shown in SEQ ID NO. 5. In a further preferred embodiment, the plant actin promoter is the rice actin promoter, prAct1, the sequence of which is shown in SEQ ID No. 6. In a preferred embodiment, the overexpression is driven by a plant-inducible promoter or a plant organ-specific promoter. In a further preferred embodiment, the plant-inducible promoter is the Arabidopsis thaliana drought-inducible promoter prAtRD29A shown in SEQ ID NO 28 or other drought-inducible promoters. In a further preferred embodiment, said plant organ-specific promoter is the green organ-specific promoter prOsPSI33kd shown in SEQ ID NO:27, the stomata-specific promoter prAt1G22690 shown in SEQ ID NO:29 or a similar promoter. In a preferred embodiment, the overexpression is achieved by modulating DNA methylation or histone modification or variable cleavage. In a preferred embodiment, said overexpression is achieved by means of gene editing. In a preferred embodiment, the plant is selected from the group consisting of: maize, wheat, rice, sorghum, arabidopsis, soybean, tomato, sunflower, spinach and oilseed rape. In a preferred embodiment, the method increases the vigor of the crop at the seedling stage. In a preferred embodiment, the method increases silage corn biomass.
Drawings
FIG. 1 shows a map of ZmPYL-C binary vector.
FIG. 2 shows a map of ZmPYL-H binary vector.
Sequence Listing information
SEQ ID NO:1 is cZmPYL-C (coding box sequence).
SEQ ID NO:2 is cZmPYL-C (protein sequence).
SEQ ID NO:3 is cZmPYL-H (coding box sequence).
SEQ ID NO:4 is cZmPYL-H (protein sequence).
SEQ ID NO:5 is prZmUbi1 (maize ubiquitin promoter).
SEQ ID NO 6 is prAct1 (rice actin promoter).
SEQ ID NO. 7 is tUbi1 (maize ubiquitin terminator).
SEQ ID NO. 8 shows prHvLPT2 (barley aleurone layer-specific lipocalin promoter).
SEQ ID NO 9 is cRED (red fluorescent protein gene).
SEQ ID NO:10 is tPI-15 (tomato proteinase inhibitor II terminator).
SEQ ID NO:11 is cPAT (soybean codon-optimized phosphinothricin acetyltransferase gene).
SEQ ID NO:12 is t35S (cauliflower mosaic virus 35S terminator).
SEQ ID NO:13 is cPMI (mannose-6-phosphate isomerase gene).
SEQ ID NO:14 is tNOS (Agrobacterium nopaline synthase gene terminator).
SEQ ID NO 15 is ZmADH1 forward primer.
SEQ ID NO 16 is ZmADH1 reverse primer.
SEQ ID NO 17 is the ZmADH1 probe.
18 is PMI forward primer.
19 is PMI reverse primer.
20 is a PMI probe.
SEQ ID NO 21 is the Red forward primer.
SEQ ID NO. 22 is the Red reverse primer.
SEQ ID NO. 23 is the Red probe.
SEQ ID NO. 24 is the ZmEF forward primer.
SEQ ID NO. 25 is a ZmEF reverse primer.
SEQ ID NO 26 is the ZmEF probe.
SEQ ID NO:27 is prOsPSI33kd (33 kd gene promoter of rice photosynthesis center I).
SEQ ID NO. 28 is prAtRD29A (Arabidopsis drought-corresponding gene 29A promoter).
SEQ ID NO:29 is prAt1G22690 (Arabidopsis gibberellin-regulated gene promoter).
Detailed Description
Embodiments of the present invention will be described in detail below with reference to examples, but those skilled in the art will appreciate that the following examples are only illustrative of the present invention and should not be construed as limiting the scope of the present invention. The examples, in which specific conditions are not specified, were conducted under conventional conditions or conditions recommended by the manufacturer. The reagents or instruments used are not indicated by the manufacturer, and are all conventional products commercially available.
Example 1 overexpression of abscisic acid receptors from maize in maize
1.1. Binary vector construction
The coding frame sequences of the individual receptors (Table 1) were selected, designed with BsmBI cleavage sites at both ends, and synthesized in Kinry (GenScript). BsmBI was digested and ligated into BamHI/SpeI fragmented intermediate vectors. The spectinomycin positive clone (Spec +) was verified by PvuI/NotI cleavage. The correct clones were further verified by sequencing for junction error. The maize ubiquitin promoter (SEQ ID NO:5) was used for the expression of abscisic acid receptors. See fig. 1-2.
TABLE 1 maize abscisic acid receptor
Abscisic acid Acceptor numbering Gene Transcript
ZmPYL-C GRMZM2G169695 GRMZM2G169695_T01
ZmPYL-H GRMZM2G048733 GRMZM2G048733_T01
1.2. Agrobacterium transformation of maize
The maize transformation variety in the experiment was JHAX. The agrobacterium transformation method is adopted, and the concrete operation is shown in reference [7 ]. The vector contains an expression cassette of a mannose-6-phosphate isomerase gene (PMI, SEQ ID NO:13) as a screening marker in plants; PMI positive plants were selected for copy number analysis (using primers and probes shown in SEQ ID NO: 18-20).
Identification of transgenic copy number in T0 generation
10 mg of leaves were collected from each PMI-positive shoot, and genomic DNA was extracted by the modified Tris-SDS method [8 ]. TaqMan primers and probes for the internal reference gene and the target gene were designed using PrimerExpress 3.0 software of Applied biosystems, USA, and synthesized by Invitrogen, and the sequence information is shown in tables 2 and 3.
TABLE 2 primer and Probe sequences (copy number) for real-time fluorescent quantitative PCR of reference genes
Figure BDA0002187698370000061
TABLE 3 primer and probe sequences (copy number) for real-time fluorescent quantitative PCR of genes of interest
Figure BDA0002187698370000062
T0 plants with 1 copy transgene were transplanted into the greenhouse (table 4).
TABLE 4 transgene copy number analysis
Figure BDA0002187698370000063
T2 generation seed breeding
T0 with 1 copy transgene was selfed in the greenhouse to produce T1 generation seeds. Transgenic copy number (same as 1.3) was checked by Taqman, and T1 generation plants with 1 copy transgene were retained. When the T1 transgenic plant blooms, manually emasculation is carried out; feeding the ears with wild-type JHAX pollen produced T2 seeds (table 4). Transgenic positive plants and non-transgenic plants were isolated from T2 seeds, and T2 generation plants were used for phenotypic analysis.
Example 2 overexpression of ZmPYL-C increased maize shoot stage biomass without affecting susceptibility to drought.
20 transgenic and non-transgenic T2 seeds were picked out by RED fluorescent labeling (RED, gene sequence shown in SEQ ID NO: 9) of the aleurone layer of the seeds. A9 cm × 9cm square pot was prepared and filled with culture soil of similar weight. T2 seeds were sown directly in the middle of the square pot at1 cm depth. Watering and fertilizing are carried out normally until the period of V3 is reached. The aerial parts were harvested, dried to constant weight, biomass was measured and statistically analyzed using T-test.
Overexpression of ZmPYL-C significantly increased the biomass accumulation during the seedling stage (Table 5).
TABLE 5 comparison of overexpression of ZmPYL-C with control Biomass
Figure BDA0002187698370000071
Water Use Efficiency (Water Use Efficiency) is the amount of Water required to accumulate dry matter per weight; the less water is needed, which reflects the improvement of drought-resistant ability of the plant. The stronger the drought avoidance ability is at the early stage of drought and/or under mild drought, the better the plants can cope with drought stress.
50 seeds of transgenic and non-transgenic T2 generations were each picked by RED fluorescence labeling (RED) of the aleurone layer of the seeds. A9 cm × 9cm square pot was prepared and filled with culture soil of similar weight. T2 seeds were sown directly in the middle of the square pot at1 cm depth. Watering and fertilizing are carried out normally until the period of V3 is reached. Selecting 30 transgenic plants and 30 non-transgenic plants with similar sizes; after being placed in full water for 2 hours, the cover is sealed by a plastic cover, and then the water is controlled to be dry. The remaining shoots, aerial parts harvested, and initial fresh (initial FW) and initial dry (initial DW) weights were weighed. Before drought treatment, weighing the total weight of pots and plants; after controlling water for 7 days, weighing the total weight of the pots and the plants; the difference between the two is the cumulative water usage. At the same time, the aerial parts of the plants were harvested and the final fresh weight (final FW) and the final dry weight (final DW) were weighed. The total water usage is cumulative water usage- (final fresh weight-initial fresh weight), and the water usage efficiency is total water usage/(final dry weight-initial dry weight). Statistical analysis was performed using T-test.
Based on significance analysis (P value less than 0.05), overexpression of ZmPYL-C did not affect water use efficiency (table 6), i.e., did not increase or decrease drought resistance. In conclusion, the biomass at the seedling stage can be improved by over-expressing ZmPYL-C, so that the yield is further improved; meanwhile, the sensitivity to drought is not influenced.
TABLE 6 comparison of Water use efficiency of overexpression of ZmPYL-C with control
Figure BDA0002187698370000081
Example 3 overexpression of ZmPYL-H increased maize shoot stage biomass without affecting drought sensitivity.
By the same validation method, over-expression of ZmPYL-H can significantly increase seedling stage biomass (Table 7) without affecting drought sensitivity (Table 8).
TABLE 7 comparison of overexpression of ZmPYL-H with control Biomass
Figure BDA0002187698370000082
TABLE 8 comparison of Water use efficiency of overexpression of ZmPYL-H with control
Figure BDA0002187698370000091
And (4) conclusion:
the plant biomass can be improved by over-expressing the abscisic acid receptor, so that the yield is improved; meanwhile, the sensitivity to drought is not influenced. Over-expression of a single abscisic acid receptor, or multiple receptors, can significantly increase biomass and thus yield.
Reference to the literature
[1]Huang X,Qian Q,Liu Z,Sun H,He S,Luo D,Xia G,Chu C,Li J,FuX.Natural variation at the DEP1 locus enhances grain yield in rice.NatGenet.2009Apr;41(4):494-7.
[2]Liu J,Chen J,Zheng X,Wu F,Lin Q,Heng Y,Tian P,Cheng Z,Yu X,Zhou K,Zhang X,Guo X,Wang J,Wang H,Wan J.GW5 acts in the brassinosteroid signalingpathway to regulate grain width and weight in rice.Nat Plants.2017Apr 10;3:17043.
[3]Serrano-Mislata A,Bencivenga S,Bush M,Schiessl K,Boden S,SablowskiR.DELLA genes restrict inflorescence meristem function independently of plantheight.Nat Plants.2017Sep;3(9):749-754.
[4]Zhang J,Fengler KA,Van Hemert JL,Gupta R,Mongar N,Sun J,Allen WB,Wang Y,Weers B,Mo H,Lafitte R,Hou Z,Bryant A,Ibraheem F,Arp J,Swaminathan K,Moose SP,Li B,Shen B.Identification and characterization of a novel stay-green QTL that increases yield in maize.Plant Biotechnol J.2019Apr 29.doi:10.1111/pbi.13139.
[5]Miao C,Xiao L,Hua K,Zou C,Zhao Y,Bressan RA,Zhu JK.Mutations in asubfamily of abscisic acid receptor genes promote rice growth andproductivity.Proc Natl Acad Sci U S A.2018Jun 5;115(23):6058-6063.
[6]Liu Y,Chen X,Wang X,Fang Y,Huang M,Guo L,Zhang Y,Zhao H.Improvingbiomass and starch accumulation of bioenergy crop duckweed(Landoltiapunctata)by abscisic acid application.Sci Rep.2018Jun 22;8(1):9544.
[7]Ishida Y,Hiei Y,Komari T.Agrobacterium-mediated transformation ofmaize.Nat Protoc.2007;2(7):1614-21.
[8]Li H,Li J,Cong XH,Duan YB,Li L,Wei PC,Lu XZ,Yang JB.Improvement ofAgrobacterium-mediated transformation in Hi-II maize(Zea mays)using standardbinary vectors.Plant Cell Rep.2008Feb;27(2):297-305.
Sequence listing
<110> Xianzhengda crops Protection shares company (Syngenta Crop Protection AG)
Syngenta Biotechnology China Co., Ltd. (Syngenta Biotechnology China Co., Ltd.)
<120> method for increasing plant biomass and thus increasing yield by overexpressing abscisic acid receptor
<130>81879-CN-REG-ORG-NAT-1
<141>2019-09-02
<160>29
<170>PatentIn version 3.5
<210>1
<211>702
<212>DNA
<213> Artificial sequence
<220>
<223> cZmPYL-C (coding frame sequence)
<400>1
atgagagaga gaaacagctc gatcgatcaa gaacaccaac gaggctctag ctccagatcg 60
acaatgccgt tcgcagcctc aaggacgtca cagcagcagc acagccgtgt ggccaccaac 120
gggagggccg tggcggtgtg cgcgggtcac gcgggcgtgc ccgacgaggt ggcgcggcac 180
cacgagcacg ctgtggcagc ggggcaatgc tgcgccgcca tggtgcagtc catcgcagcg 240
ccggtggacg cggtgtggtc gctggtgcgt cgcttcgacc agccgcagcg gtacaagcgc 300
ttcatcagga gctgccacct cgtggacggc gacggcgccg aggtggggtc cgtgcgggag 360
ctcctgctcg tgtccgggct gcccgccgag agcagccgcg agcggcttga gatccgggac 420
gacgagcggc gggtgatcag cttccgggtc ctgggcggcg accaccgcct ggccaactac 480
cgctccgtga ccaccgtgca cgaggcggcg ccgtcgcagg acgggcgccc gctcaccatg 540
gtcgtcgagt cctacgtggt ggacgtgccg ccggggaaca ccgtcgagga gacgcgcatc 600
ttcgtggaca ccatcgttcg gtgcaacctc cagtccctcg agggcacggt catcaggcag 660
ctggagatcg cggcaatgcc gcacgacgac aaccagaact ga 702
<210>2
<211>233
<212>PRT
<213> Artificial sequence
<220>
<223> cZmPYL-C (protein sequence)
<400>2
Met Arg Glu Arg Asn Ser Ser Ile Asp Gln Glu His Gln Arg Gly Ser
1 5 10 15
Ser Ser Arg Ser Thr Met Pro Phe Ala Ala Ser Arg Thr Ser Gln Gln
20 25 30
Gln His Ser Arg Val Ala Thr Asn Gly Arg Ala Val Ala Val Cys Ala
35 40 45
Gly His Ala Gly Val Pro Asp Glu Val Ala Arg His His Glu His Ala
50 55 60
Val Ala Ala Gly Gln Cys Cys Ala Ala Met Val Gln Ser Ile Ala Ala
65 70 75 80
Pro Val Asp Ala Val Trp Ser Leu Val Arg Arg Phe Asp Gln Pro Gln
85 90 95
Arg Tyr Lys Arg Phe Ile Arg Ser Cys His Leu Val Asp Gly Asp Gly
100 105 110
Ala Glu Val Gly Ser Val Arg Glu Leu Leu Leu Val Ser Gly Leu Pro
115 120 125
Ala Glu Ser Ser Arg Glu Arg Leu Glu Ile Arg Asp Asp Glu Arg Arg
130 135 140
Val Ile Ser Phe Arg Val Leu Gly Gly Asp His Arg Leu Ala Asn Tyr
145 150 155 160
Arg Ser Val Thr Thr Val His Glu Ala Ala Pro Ser Gln Asp Gly Arg
165 170 175
Pro Leu Thr Met Val Val Glu Ser Tyr Val Val Asp Val Pro Pro Gly
180 185 190
Asn Thr Val Glu Glu Thr Arg Ile Phe Val Asp Thr Ile Val Arg Cys
195 200 205
Asn Leu Gln Ser Leu Glu Gly Thr Val Ile Arg Gln Leu Glu Ile Ala
210 215 220
Ala Met Pro His Asp Asp Asn Gln Asn
225 230
<210>3
<211>576
<212>DNA
<213> Artificial sequence
<220>
<223> cZmPYL-H (coding frame sequence)
<400>3
atggtggtgg agatggacgg aggcgtggga gtagcagcag caggaggagg aggagcgcag 60
acgccggcgc cgccgccgcc gcggcggtgg cgcttggcgg acgagcggtg cgacctgcgc 120
gccatggaga cggactacgt gcggcggttc caccggcacg agccccgcga ccaccagtgc 180
tcctccgccg tcgccaagca catcaaggcg cctgtccacc ttgtctggtc cctggtgagg 240
cggttcgacc agccacagct cttcaagccc ttcgtgagcc ggtgtgagat gaaggggaac 300
atcgagatcg gtagcgtcag ggaggtcaac gtcaagtccg ggctgccggc cacaagaagc 360
acggagaggc tcgagctgtt agacgacgac gagcgcattc tcagcgtcag gttcgttgga 420
ggcgatcaca ggctgcaggt atgctctgtt cttcatctat ctatattctg tgctgcccat 480
gcgagatatt ttgcccacca cctcaaatgc gtcctggagt tcctctgcca gatgcatctt 540
gatgtgctgc cctgcgacga tgccatcctc gagtga 576
<210>4
<211>191
<212>PRT
<213> Artificial sequence
<220>
<223> cZmPYL-H (protein sequence)
<400>4
Met Val Val Glu Met Asp Gly Gly Val Gly Val Ala Ala Ala Gly Gly
1 5 10 15
Gly Gly Ala Gln Thr Pro Ala Pro Pro Pro Pro Arg Arg Trp Arg Leu
20 25 30
Ala Asp Glu Arg Cys Asp Leu Arg Ala Met Glu Thr Asp Tyr Val Arg
35 40 45
Arg Phe His Arg His Glu Pro Arg Asp His Gln Cys Ser Ser Ala Val
50 55 60
Ala Lys His Ile Lys Ala Pro Val His Leu Val Trp Ser Leu Val Arg
65 70 75 80
Arg Phe Asp Gln Pro Gln Leu Phe Lys Pro Phe Val Ser Arg Cys Glu
85 90 95
Met Lys Gly Asn Ile Glu Ile Gly Ser Val Arg Glu Val Asn Val Lys
100 105 110
Ser Gly Leu Pro Ala Thr Arg Ser Thr Glu Arg Leu Glu Leu Leu Asp
115 120 125
Asp Asp Glu Arg Ile Leu Ser Val Arg Phe Val Gly Gly Asp His Arg
130 135 140
Leu Gln Val Cys Ser Val Leu His Leu Ser Ile Phe Cys Ala Ala His
145 150 155 160
Ala Arg Tyr Phe Ala His His Leu Lys Cys Val Leu Glu Phe Leu Cys
165 170 175
Gln Met His Leu Asp Val Leu Pro Cys Asp Asp Ala Ile Leu Glu
180 185 190
<210>5
<211>1993
<212>DNA
<213> Artificial sequence
<220>
<223> prZmUbi1 (maize ubiquitin promoter)
<400>5
ctgcagtgca gcgtgacccg gtcgtgcccc tctctagaga taatgagcat tgcatgtcta 60
agttataaaa aattaccaca tatttttttt gtcacacttg tttgaagtgc agtttatcta 120
tctttataca tatatttaaa ctttactcta cgaataatat aatctatagt actacaataa 180
tatcagtgtt ttagagaatc atataaatga acagttagac atggtctaaa ggacaattga 240
gtattttgac aacaggactc tacagtttta tctttttagt gtgcatgtgt tctccttttt 300
ttttgcaaat agcttcacct atataatact tcatccattt tattagtaca tccatttagg 360
gtttagggtt aatggttttt atagactaat ttttttagta catctatttt attctatttt 420
agcctctaaa ttaagaaaac taaaactcta ttttagtttt tttatttaat aatttagata 480
taaaatagaa taaaataaag tgactaaaaa ttaaacaaat accctttaag aaattaaaaa 540
aactaaggaa acatttttct tgtttcgagt agataatgcc agcctgttaa acgccgtcga 600
cgagtctaac ggacaccaac cagcgaacca gcagcgtcgc gtcgggccaa gcgaagcaga 660
cggcacggca tctctgtcgc tgcctctgga cccctctcga gagttccgct ccaccgttgg 720
acttgctccg ctgtcggcat ccagaaattg cgtggcggag cggcagacgt gagccggcac 780
ggcaggcggc ctcctcctcc tctcacggca ccggcagcta cgggggattc ctttcccacc 840
gctccttcgc tttcccttcc tcgcccgccg taataaatag acaccccctc cacaccctct 900
ttccccaacc tcgtgttgtt cggagcgcac acacacacaa ccagatctcc cccaaatcca 960
cccgtcggca cctccgcttc aaggtacgcc gctcgtcctc cccccccccc cctctctacc 1020
ttctctagat cggcgttccg gtccatggtt agggcccggt agttctactt ctgttcatgt 1080
ttgtgttaga tccgtgtttg tgttagatcc gtgctgctag cgttcgtaca cggatgcgac 1140
ctgtacgtca gacacgttct gattgctaac ttgccagtgt ttctctttgg ggaatcctgg 1200
gatggctcta gccgttccgc agacgggatc gatttcatga ttttttttgt ttcgttgcat 1260
agggtttggt ttgccctttt cctttatttc aatatatgcc gtgcacttgt ttgtcgggtc 1320
atcttttcat gctttttttt gtcttggttg tgatgatgtg gtctggttgg gcggtcgttc 1380
tagatcggag tagaattctg tttcaaacta cctggtggat ttattaattt tggatctgta 1440
tgtgtgtgcc atacatattc atagttacga attgaagatg atggatggaa atatcgatct 1500
aggataggta tacatgttga tgcgggtttt actgatgcat atacagagat gctttttgtt 1560
cgcttggttg tgatgatgtg gtgtggttgg gcggtcgttc attcgttcta gatcggagta 1620
gaatactgtt tcaaactacc tggtgtattt attaattttg gaactgtatg tgtgtgtcat 1680
acatcttcat agttacgagt ttaagatgga tggaaatatc gatctaggat aggtatacat 1740
gttgatgtgg gttttactga tgcatataca tgatggcata tgcagcatct attcatatgc 1800
tctaaccttg agtacctatc tattataata aacaagtatg ttttataatt attttgatct 1860
tgatatactt ggatgatggc atatgcagca gctatatgtg gattttttta gccctgcctt 1920
catacgctat ttatttgctt ggtactgttt cttttgtcga tgctcaccct gttgtttggt 1980
gttacttctg cag 1993
<210>6
<211>2181
<212>DNA
<213> Artificial sequence
<220>
<223> prAct1 (Rice actin promoter)
<400>6
tgcagcccat ccctcagccg cctttcacta tcttttttgc ccgagtcatt gtcatgtgaa 60
ccttggcatg tataatcggt gaattgcgtc gattttcctc ttataggtgg gccaatgaat 120
ccgtgtgatcgcgtctgatt ggctagagat atgtttcttc cttgttggat gtattttcat 180
acataatcat atgcatacaa atatttcatt acactttata gaaatggtca gtaataaacc 240
ctatcactat gtctggtgtt tcattttatt tgcttttaaa cgaaaattga cttcctgatt 300
caatatttaa ggatcgtcaa cggtgtgcag ttactaaatt ctggtttgta ggaactatag 360
taaactattc aagtcttcac ttattgtgca ctcacctctc gccacatcac cacagatgtt 420
attcacgtct taaatttgaa ctacacatca tattgacaca atattttttt taaataagcg 480
attaaaacct agcctctatg tcaacaatgg tgtacataac cagcgaagtt tagggagtaa 540
aaaacatcgc cttacacaaa gttcgcttta aaaaataaag agtaaatttt actttggacc 600
acccttcaac caatgtttca ctttagaacg agtaatttta ttattgtcac tttggaccac 660
cctcaaatct tttttccatc tacatccaat ttatcatgtc aaagaaatgg tctacataca 720
gctaaggaga tttatcgacg aatagtagct agcatactcg aggtcattca tatgcttgag 780
aagagagtcg ggatagtcca aaataaaaca aaggtaagat tacctggtca aaagtgaaaa 840
catcagttaa aaggtggtat aaagtaaaat atcggtaata aaaggtggcc caaagtgaaa 900
tttactcttt tctactatta taaaaattga ggatgttttt gtcggtactt tgatacgtca 960
tttttgtatg aattggtttt taagtttatt cgcttttgga aatgcatatc tgtatttgag 1020
tcgggtttta agttcgtttg cttttgtaaa tacagaggga tttgtataag aaatatcttt 1080
aaaaaaaccc atatgctaat ttgacataat ttttgagaaa aatatatatt caggcgaatt 1140
aattctcaca atgaacaata ataagattaa aatagctttc ccccgttgca gcgcatgggt 1200
attttttcta gtaaaaataa aagataaact tagactcaaa acatttacaa aaacaacccc 1260
taaagttcct aaagcccaaa gtgctatcca cgatccatag caagcccagc ccaacccaac 1320
ccaacccaac ccaccccagt ccagccaact ggacaatagt ctccacaccc ccccactatc 1380
accgtgagtt gtccgcacgc accgcacgtc tcgcagccaa aaaaaaaaaa agaaagaaaa 1440
aaaagaaaaa gaaaaaacag caggtgggtc cgggtcgtgg gggccggaaa cgcgaggagg 1500
atcgcgagcc agcgacgagg ccggccctcc ctccgcttcc aaagaaacgc cccccatcgc 1560
cactatatac ataccccccc ctctcctccc atccccccaa ccctaccacc accaccacca 1620
ccacctccac ctcctccccc ctcgctgccg gacgacgagc tcctcccccc tccccctccg 1680
ccgccgccgc gccggtaacc accccgcccc tctcctcttt ctttctccgt tttttttttc 1740
cgtctcggtc tcgatctttg gccttggtag tttgggtggg cgagaggcgg cttcgtgcgc 1800
gcccagatcg gtgcgcggga ggggcgggat ctcgcggctg gggctctcgc cggcgtggat 1860
cgatccggcc cggatctcgc ggggaatggg gctctcggat gtagatctgc gatccgccgt 1920
tgttggggga gatgatgggg ggtttaaaat ttccgccatg ctaaacaaga tcaggaagag 1980
gggaaaaggg cactatggtt tatattttta tatatttctg ctgcttcgtc aggcttagat 2040
gtgctagatc tttctttctt ctttttgtgg gtagaatttg aatccctcag cattgttcat 2100
cggtagtttt tcttttcatg atttgtgaca aatgcagcct cgtgcggagc ttttttgtag 2160
gtagaagctg gctgacgccg g 2181
<210>7
<211>1035
<212>DNA
<213> Artificial sequence
<220>
<223> tUbi1 (maize ubiquitin terminator)
<400>7
gtcatgggtc gtttaagctg ccgatgtgcc tgcgtcgtct ggtgccctct ctccatatgg 60
aggttgtcaa agtatctgct gttcgtgtca tgagtcgtgt cagtgttggt ttaataatgg 120
accggttgtg ttgtgtgtgc gtactaccca gaactatgac aaatcatgaa taagtttgat 180
gtttgaaatt aaagcctgtg ctcattatgt tctgtctttc agttgtctcc taatatttgc 240
ctgcaggtac tggctatcta ccgtttctta cttaggaggt gtttgaatgc actaaaacta 300
atagttagtg gctaaaatta gttaaaacat ccaaacacca tagctaatag ttgaactatt 360
agctattttt ggaaaattag ttaatagtga ggtagttatt tgttagctag ctaattcaac 420
taacaatttt tagccaacta acaattagtt tcagtgcatt caaacacccc cttaatgtta 480
acgtggttct atctaccgtc tcctaatata tggttgattg ttcggtttgt tgctatgcta 540
ttgggttctg attgctgcta gttcttgctg aatccagaag ttctcgtagt atagctcaga 600
ttcatattat ttatttgagt gataagtgat ccaggttatt actatgttag ctaggttttt 660
tttacaagga taaattatct gtgatcataa ttcttatgaa agctttatgt ttcctggagg 720
cagtggcatg caatgcatga cagcaacttg atcacaccag ctgaggtaga tacggtaaca 780
aggttcttaa atctgttcac caaatcattg gagaacacac atacacattc ttgccagtct 840
tggttagaga aatttcatga caaaatgcca aagctgtctt gactcttcac ttttggccat 900
gagtcgtgac ttagtttggt ttaatggacc ggttctccta gcttgttcta ctcaaaactg 960
ttgttgatgc gaataagttg tgatggttga tctctggatt ttgttttgct ctcaatagtg 1020
gacgagatta gatag 1035
<210>8
<211>856
<212>DNA
<213> Artificial sequence
<220>
<223> prHvLPT2 (barley aleurone layer specific lipocalin promoter)
<400>8
ctctagagct agtggatctc gatgtgtagt ctacgagaag ggttaaccgt ctcttcgtga 60
gaataaccgt ggcctaaaaa taagccgatg aggataaata aaatgtggtg gtacagtact 120
tcaagaggtt tactcatcaa gaggatgctt ttccgatgag ctctagtagt acatcggacc 180
tcacatacct ccattgtggt gaaatatttt gtgctcattt agtgatgggt aaattttgtt 240
tatgtcactc taggttttga catttcagtt ttgccactct taggttttga caaataattt 300
ccattccgcg gcaaaagcaa aacaatttta ttttactttt accactctta gctttcacaa 360
tgtatcacaa atgccactct agaaattctg tttatgccac agaatgtgaa aaaaaacact 420
cacttatttg aagccaaggt gttcatggca tggaaatgtg acataaagta acgttcgtgt 480
ataagaaaaa attgtactcc tcgtaacaag agacggaaac atcatgagac aatcgcgttt 540
ggaaggcttt gcatcacctt tggatgatgc gcatgaatgg agtcgtctgc ttgctagcct 600
tcgcctaccg cccactgagt ccgggcggca actaccatcg gcgaacgacc cagctgacct 660
ctaccgaccg gacttgaatg cgctaccttc gtcagcgacg atggccgcgt acgctggcga 720
cgtgcccccg catgcatggc ggcacatggc gagctcagac cgtgcgtggc tggctacaaa 780
tacgtacccc gtgagtgccc tagctagaaa cttacacctg caactgcgag agcgagcgtg 840
tgagtgtagc cgagta 856
<210>9
<211>678
<212>DNA
<213> Artificial sequence
<220>
<223> cRed (Red fluorescent protein gene)
<400>9
atggcctcct ccgagaacgt catcaccgag ttcatgcgct tcaaggtgcg catggagggc 60
accgtgaacg gccacgagtt cgagatcgag ggcgagggcg agggccgccc ctacgagggc 120
cacaacaccg tgaagctgaa ggtgaccaag ggcggccccc tgcccttcgc ctgggacatc 180
ctgtcccccc agttccagta cggctccaag gtgtacgtga agcaccccgc cgacatcccc 240
gactacaaga agctgtcctt ccccgagggc ttcaagtggg agcgcgtgat gaacttcgag 300
gacggcggcg tggcgaccgt gacccaggac tcctccctgc aggacggctg cttcatctac 360
aaggtgaagt tcatcggcgt gaacttcccc tccgacggcc ccgtgatgca gaagaagacc 420
atgggctggg aggcctccac cgagcgcctg tacccccgcg acggcgtgct gaagggcgag 480
acccacaagg ccctgaagct gaaggacggc ggccactacc tggtggagtt caagtccatc 540
tacatggcca agaagcccgt gcagctgccc ggctactact acgtggacgc caagctggac 600
atcacctccc acaacgagga ctacaccatc gtggagcagt acgagcgcac cgagggccgc 660
caccacctgt tcctgtag 678
<210>10
<211>318
<212>DNA
<213> Artificial sequence
<220>
<223> tPI-15 (tomato proteinase inhibitor II terminator)
<400>10
agacttgtcc atcttctgga ttggccaact taattaatgt atgaaataaa aggatgcaca 60
catagtgaca tgctaatcac tataatgtgg gcatcaaagt tgtgtgttat gtgtaattgc 120
tagttatctg aataaaagag aaagagatca tccatatttc ttatcctaaa tgaatgtcac 180
gtgtctttat aattctttga tgaaccagat gcatttcatt aaccaaatcc atatacatat 240
aaatattaat catatataat taatatcaat tgggttagca aaacaaatct agtctaggtg 300
tgttttgcga atgcggcc 318
<210>11
<211>552
<212>DNA
<213> Artificial sequence
<220>
<223> cPAT (Soybean codon-optimized phosphinothricin acetyltransferase gene)
<400>11
atgtctccag agagaaggcc agttgagatt agacctgcta ctgcggccga tatggcagct 60
gtttgtgata ttgttaacca ttatattgag acttctactg ttaacttcag aactgagcca 120
caaactcctc aagagtggat tgatgatctt gagagacttc aagatagata cccttggctt 180
gttgctgagg ttgagggagt tgttgctgga attgcttatg ctggaccttg gaaggctaga 240
aacgcttatg attggactgt tgagtctact gtttatgttt ctcatagaca tcaaagactt 300
ggacttggat ctactcttta tactcatctt cttaagtcta tggaggctca aggattcaag 360
tctgttgttg ctgttattgg acttccaaac gatccatctg ttagacttca tgaggctctt 420
ggatatactg ctagaggaac tcttagagct gctggatata agcatggagg atggcatgat 480
gttggattct ggcaaagaga tttcgagctt ccagctccac caagaccagt tagaccagtt 540
actcaaattt ga 552
<210>12
<211>70
<212>DNA
<213> Artificial sequence
<220>
<223> t35S (cauliflower mosaic virus 35S terminator)
<400>12
cttagtatgt atttgtattt gtaaaatact tctatcaata aaatttctaa ttcctaaaac 60
caaaatccag 70
<210>13
<211>1176
<212>DNA
<213> Artificial sequence
<220>
<223> cPIM (6-phosphomannose isomerase gene)
<400>13
atgcaaaaac tcattaactc agtgcaaaac tatgcctggg gcagcaaaac ggcgttgact 60
gaactttatg gtatggaaaa tccgtccagc cagccgatgg ccgagctgtg gatgggcgca 120
catccgaaaa gcagttcacg agtgcagaat gccgccggag atatcgtttc actgcgtgat 180
gtgattgaga gtgataaatc gactctgctc ggagaggccg ttgccaaacg ctttggcgaa 240
ctgcctttcc tgttcaaagt attatgcgca gcacagccac tctccattca ggttcatcca 300
aacaaacaca attctgaaat cggttttgcc aaagaaaatg ccgcaggtat cccgatggat 360
gccgccgagc gtaactataa agatcctaac cacaagccgg agctggtttt tgcgctgacg 420
cctttccttg cgatgaacgc gtttcgtgaa ttttccgaga ttgtctccct actccagccg 480
gtcgcaggtg cacatccggc gattgctcac tttttacaac agcctgatgc cgaacgttta 540
agcgaactgt tcgccagcct gttgaatatg cagggtgaag aaaaatcccg cgcgctggcg 600
attttaaaat cggccctcga tagccagcag ggtgaaccgt ggcaaacgat tcgtttaatt 660
tctgaatttt acccggaaga cagcggtctg ttctccccgc tattgctgaa tgtggtgaaa 720
ttgaaccctg gcgaagcgat gttcctgttc gctgaaacac cgcacgctta cctgcaaggc 780
gtggcgctgg aagtgatggc aaactccgat aacgtgctgc gtgcgggtct gacgcctaaa 840
tacattgata ttccggaact ggttgccaat gtgaaattcg aagccaaacc ggctaaccag 900
ttgttgaccc agccggtgaa acaaggtgca gaactggact tcccgattcc agtggatgat 960
tttgccttct cgctgcatga ccttagtgat aaagaaacca ccattagcca gcagagtgcc 1020
gccattttgt tctgcgtcga aggcgatgca acgttgtgga aaggttctca gcagttacag 1080
cttaaaccgg gtgaatcagc gtttattgcc gccaacgaat caccggtgac tgtcaaaggc 1140
cacggccgtt tagcgcgtgt ttacaacaag ctgtaa 1176
<210>14
<211>253
<212>DNA
<213> Artificial sequence
<220>
<223> tNOS (Agrobacterium nopaline synthase gene terminator)
<400>14
gatcgttcaa acatttggca ataaagtttc ttaagattga atcctgttgc cggtcttgcg 60
atgattatca tataatttct gttgaattac gttaagcatg taataattaa catgtaatgc 120
atgacgttat ttatgagatg ggtttttatg attagagtcc cgcaattata catttaatac 180
gcgatagaaa acaaaatata gcgcgcaaac taggataaat tatcgcgcgc ggtgtcatct 240
atgttactag atc 253
<210>15
<211>21
<212>DNA
<213> Artificial sequence
<220>
<223> forward primer ZmADH1
<400>15
gaacgtgtgt tgggtttgca t 21
<210>16
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> ZmADH1 reverse primer
<400>16
tccagcaatc cttgcacctt 20
<210>17
<211>24
<212>DNA
<213> Artificial sequence
<220>
<223> ZmADH1 Probe
<400>17
tgcagcctaa ccatgcgcag ggta 24
<210>18
<211>29
<212>DNA
<213> Artificial sequence
<220>
<223> PMI Forward primer
<400>18
gctgtaagag cttactgaaa aaattaaca 29
<210>19
<211>18
<212>DNA
<213> Artificial sequence
<220>
<223> PMI reverse primer
<400>19
cgatctgcag gtcgacgg 18
<210>20
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> PMI Probe
<400>20
tgccgccaac gaatcaccgg 20
<210>21
<211>23
<212>DNA
<213> Artificial sequence
<220>
<223> Red Forward primer
<400>21
aagtccatct acatggccaa gaa 23
<210>22
<211>21
<212>DNA
<213> Artificial sequence
<220>
<223> Red reverse primer
<400>22
gtgggaggtg atgtccagct t 21
<210>23
<211>27
<212>DNA
<213> Artificial sequence
<220>
<223> Red Probe
<400>23
cagctgcccg gctactacta cgtggac 27
<210>24
<211>17
<212>DNA
<213> Artificial sequence
<220>
<223> ZmEF Forward primer
<400>24
gcgccgtcac cgtatcc 17
<210>25
<211>18
<212>DNA
<213> Artificial sequence
<220>
<223> ZmEF reverse primer
<400>25
gctcgtcggg cgtcagta 18
<210>26
<211>27
<212>DNA
<213> Artificial sequence
<220>
<223> ZmEF Probe
<400>26
atcagaggcg agcagaaacc acaccac 27
<210>27
<211>2049
<212>DNA
<213> Artificial sequence
<220>
<223> prOsPSI33kd (33 kd gene promoter of Rice photosynthesis center I)
<400>27
ggcggattca ctgccattgt tgacgttaag tataaacttt aaccatcaac tcctgcgtta 60
aaaaaataaa atacactatc aaaacttagt ggtaggagtt tactactaac catttccatt 120
agttttgata catataagta tgcgggtcaa ataaggaaaa aatacatccg tcatctgaca 180
aaaatgaagc tctggccaat caagcgcgag cacaaggact aaagggccca tctgactaat 240
caagcgcgag cacaagaact aaagggccca cctgactgtc aaaaccgatt tgagataggg 300
ccaaaccatc tttaaccgtc ataagagtcc acgtatcagt aactgtccaa aatcggtggc 360
cagaaggcgg aggcctagtt cggctgaaca agccgtggtg cccctggcta cccctttcaa 420
tgtggcagct ccccattgga ttgactatgg ctgttatgtg tgcaccaacc tcactaatca 480
ccattacaac catcatttgg cactatgaaa ggaggacctc aacacacttc acaacacaca 540
acaaagtaaa gttttttttt acttagttta cttgagtgat aaatattctc atcgatgcgg 600
gttcgttgct tagttgcaac tgctctagta ctaggactct ataaagaagg aagtttctgt 660
ggaaggttag agattgtgtg ctccacgcaa agtgaggtgg gtagcaggtg gtgacagccc 720
tgcccgtact ttgcatccct ccacgttcgg gcatatcata tagctcaagg ccagactcaa 780
cctaacagat taagggatag ccggtgcgaa acatacgata gagttctatc tttaacttaa 840
gtcaactagt gaagtccata tgaatcctct cttgccaatc ttatcatcaa ttgttgtcct 900
tgggggaatt ctgtttgtag atagtacaca cacgtcttta tttttgatac ccttaaaata 960
ctctaagaga aaatgctaca tcattatttg tgcgcttacg gatttatcag tatgcgtagc 1020
aaataccaac agccaccacc atagagtata gatgagaaaa gtattactct attgtttgtc 1080
tatttctaga agagtataga tgagaaaagt attactctat tgttgtggat atatatatat 1140
ataatgtgat tcagttagga aaatttacaa atagctgttg accatttcca tctacaacga 1200
tgtaaggccc aatgtttttt ttttataatt cctgtttcat ctaacacatt acaaatgtcg 1260
gtcttatgag cgagatcttt aatttttagc attttctttg ggttccctgt gccttcaaga 1320
gaataggttc gtttgtctct tccattcctg acgtggcaag ccttcgttgg ctggaagtag 1380
gatcttcaca gcgccagccc cacaaatgaa agagcccacc accacacgcc ggggaaggag 1440
tggcacctgg gcgtgccacg tcgacgtcca gctcagcatc accatagccc caagccacca 1500
atgggaggcc acgccttatc caatcctctt atcctcctct gccccccttg ctctgcgata 1560
gataacactg tcccgccctc acaaaacgcc cttcacgata caacccacac ggacacggcc 1620
acaccaccca ccaactgaga gctgagcagg cgagcgagcg gacatcgcag catcgctcca 1680
agccgcggcc accctgtagc agccggccaa gctcggcggc cgggcctcct ccgccgcgct 1740
gccatcgcgc ccgtcttcgc acgtcgccag ggcgttcggc gtcgacaccg gtgccgccgg 1800
caggatcacg tgctccctgc agtccgacat ccgggaggtc gccaacaagt gcgccgatcc 1860
cgccaagctc gccggcttcg ccctcgccac ctcagctctg ctcgtctcgg taagacctta 1920
attaggattt aggagtatgt tgcatggcgc gatggccaag gccaaggtgg aaacgatcga 1980
attactatat atgtaacgcc gtgcatgtgg tggccggccg gtgtagggcg ccagcgcgga 2040
gggtaaacc 2049
<210>28
<211>1506
<212>DNA
<213> Artificial sequence
<220>
<223> prAtRD29A (Arabidopsis thaliana drought corresponding gene 29A promoter)
<400>28
gttagcgtca gatatttaat tattcgaaga tgattgtgat agatttaaaa ttatcctagt 60
caaaaagaaa gagtaggttg agcagaaaca gtgacatctg ttgtttgtac catacaaatt 120
agtttagatt attggttaac atgttaaatg gctatgcatg tgacatttag accttatcgg 180
aattaatttg tagaattatt aattaagatg ttgattagtt caaacaaaaa ttttatatta 240
aaaaatgtaa acgaatattt tgtatgttca gtgaaagtaa aacaaattaa attaacaaga 300
aacttataga agaaaatttt tactatttaa gagaaagaaa aaaatctatc atttaatctg 360
agtcctaaaa actgttatac ttaacagtta acgcatgatt tgatggagga gccatagatg 420
caattcaatc aaactgaaat ttctgcaaga atctcaaaca cggagatctc aaagtttgaa 480
agaaaattta tttcttcgac tcaaaacaaa cttacgaaat ttaggtagaa cttatataca 540
ttatattgta attttttgta acaaaatgtt tttattatta ttatagaatt ttactggtta 600
aattaaaaat gaatagaaaa ggtgaattaa gaggagagag gaggtaaaca ttttcttcta 660
ttttttcata ttttcaggat aaattattgt aaaagtttac aagatttcca tttgactagt 720
gtaaatgagg aatattctct agtaagatca ttatttcatc tacttctttt atcttctacc 780
agtagaggaa taaacaatat ttagctcctt tgtaaataca aattaatttt ccttcttgac 840
atcattcaat tttaatttta cgtataaaat aaaagatcat acctattaga acgattaagg 900
agaaatacaa ttcgaatgag aaggatgtgc cgtttgttat aataaacagc cacacgacgt 960
aaacgtaaaa tgaccacatg atgggccaat agacatggac cgactactaa taatagtaag 1020
ttacatttta ggatggaata aatatcatac cgacatcagt tttgaaagaa aagggaaaaa 1080
aagaaaaaat aaataaaaga tatactaccg acatgagttc caaaaagcaa aaaaaaagat 1140
caagccgaca cagacacgcg tagagagcaa aatgactttg acgtcacacc acgaaaacag 1200
acgcttcata cgtgtccctt tatctctctc agtctctcta taaacttagt gagaccctcc 1260
tctgttttac tcacaaatat gcaaactaga aaacaatcat caggaataaa gggtttgatt 1320
acttctattg gaaagaaaaa aatctttgga aaatcgatca aacagaggaa ccaccactca 1380
acacacacca gtagcaccca ggtagattct aatttcagaa acttatattt tttttaagtg 1440
acaatcctct gaatttactt aaacttattg tgatttatgg atacagaagt agttgaacat 1500
aaaacc 1506
<210>29
<211>1870
<212>DNA
<213> Artificial sequence
<220>
<223> prAt1G22690 (Arabidopsis gibberellin regulatory gene promoter)
<400>29
tctcgggtca ttttcctttc tccctcacaa ttaatgtaga ctttagcaat ttgcacgctg 60
tgctttgtct ttatatttag taacacaaac attttgactt gtcttgtaga gtttttctct 120
tttatttttc tatccaatat gaaaactaaa agtgttctcg tatacatata ttaaaattaa 180
agaaacctat gaaaacacca atacaaatgc gatattgttt tcagttcgac gtttcatgtt 240
tgttagaaaa tttctaatga cgtttgtata aaatagacaa ttaaacgcca aacactacat 300
ctgtgttttc gaacaatatt gcgtctgcgt ttccttcatc tatctctctc agtgtcacaa 360
tgtctgaact aagagacagc tgtaaactat cattaagaca taaactacca aagtatcaag 420
ctaatgtaaa aattactctc atttccacgt aacaaattga gttagcttaa gatattagtg 480
aaactaggtt tgaattttct tcttcttctt ccatgcatcc tccgaaaaaa gggaaccaat 540
caaaactgtt tgcatatcaa actccaacac tttacagcaa atgcaatcta taatctgtga 600
tttatccaat aaaaacctgt gatttatgtt tggctccagc gatgaaagtc tatgcatgtg 660
atctctatcc aacatgagta attgttcaga aaataaaaag tagctgaaat gtatctatat 720
aaagaatcat ccacaagtac tattttcaca cactacttca aaataactaa tcaagaaatt 780
tgaagaagtt gattgtggtg gcttttgtta cgctgatcat ctcttttctt ctgctttctc 840
aggtacgccg ctcgtcctcc cccccccccc ctctctacct tctctagatc ggcgttccgg 900
tccaaggtta gggcccggta gttctacttc tgttcatgtt tgtgttagat ccgtgtttgt 960
gttagatccg tgctgctagc gttcgtacac ggatgcgacc tgtacgtcag acacgttctg 1020
attgctaact tgccagtgtt tctctttggg gaatcctggg atggctctag ccgttccgca 1080
gacgggatcg atttcatgat tttttttgtt tcgttgcata gggtttggtt tgcccttttc 1140
ctttatttca atatatgccg tgcacttgtt tgtcgggtca tcttttcatg cttttttttg 1200
tcttggttgt gatgatgtgg tctggttggg cggtcgttct agatcggagt agaattctgt 1260
ttcaaactac ctggtggatt tattaatttt ggatctgtat gtgtgtgcca tacatattca 1320
tagttacgaa ttgaagatga tggatggaaa tatcgatcta ggataggtat acatgttgat 1380
gcgggtttta ctgatgcata tacagagatg ctttttgttc gcttggttgt gatgatgtgg 1440
tgtggttggg cggtcgttca ttcgttctag atcggagtag aatactgttt caaactacct 1500
ggtgtattta ttaattttgg aactgtatgt gtgtgtcata catcttcata gttacgagtt 1560
taagatggat ggaaatatcg atctaggata ggtatacatg ttgatgtggg ttttactgat 1620
gcatatacat gatggcatat gcagcatcta ttcatatgct ctaaccttga gtacctatct 1680
attataataa acaagtatgt tttataatta ttttgatctt gatatacttg gatgatggca 1740
tatgcagcag ctatatgtgg atttttttag ccctgccttc atacgctatt tatttgcttg 1800
gtactgtttc ttttgtcgat gctcaccctg ttgtttggtg ttacttctgc aggtacttgc 1860
agagtaaacc 1870

Claims (10)

1. A method of increasing seedling vigor in a maize plant at seedling stage comprising overexpressing in said maize plant a polynucleotide sequence encoding an abscisic acid receptor, wherein the amino acid sequence of the abscisic acid receptor is selected from the group consisting of SEQ ID NOs 2 and 4.
2. A method of increasing seedling vigor in a maize plant at seedling stage comprising overexpressing in said maize plant a polynucleotide sequence encoding an abscisic acid receptor, wherein said polynucleotide sequence encoding an abscisic acid receptor is selected from the group consisting of SEQ ID NOs 1 and 3.
3. The method of claim 1 or 2, wherein the overexpression is driven by a plant ubiquitin promoter or a plant actin promoter.
4. The method of claim 3, wherein the plant ubiquitin promoter is the maize ubiquitin promoter prZmUbi1, the sequence of which is shown in SEQ ID NO 5.
5. The method of claim 3, wherein the plant actin promoter is the rice actin promoter, prAct1, the sequence of which is shown in SEQ ID NO 6.
6. The method of claim 1 or 2, wherein the overexpression is driven by a plant inducible promoter or a plant organ specific promoter.
7. The method of claim 6, wherein the plant-inducible promoter is the Arabidopsis drought-inducible promoter prAtRD29A shown in SEQ ID NO 28 or other drought-inducible promoters.
8. The method of claim 6, wherein said plant organ-specific promoter is the green organ-specific promoter prOsPSI33kd shown in SEQ ID NO. 27, the stomata-specific promoter prAt1G22690 shown in SEQ ID NO. 29, or a similar promoter.
9. The method of claim 1 or 2, wherein the overexpression is achieved by modulating DNA methylation or histone modification or variable cleavage.
10. The method according to claim 1 or 2, wherein said overexpression is achieved by means of gene editing.
CN201910821609.8A 2019-09-02 2019-09-02 Method for increasing plant biomass and thus increasing yield by overexpressing abscisic acid receptors Active CN110511941B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910821609.8A CN110511941B (en) 2019-09-02 2019-09-02 Method for increasing plant biomass and thus increasing yield by overexpressing abscisic acid receptors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910821609.8A CN110511941B (en) 2019-09-02 2019-09-02 Method for increasing plant biomass and thus increasing yield by overexpressing abscisic acid receptors

Publications (2)

Publication Number Publication Date
CN110511941A CN110511941A (en) 2019-11-29
CN110511941B true CN110511941B (en) 2020-09-08

Family

ID=68630192

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910821609.8A Active CN110511941B (en) 2019-09-02 2019-09-02 Method for increasing plant biomass and thus increasing yield by overexpressing abscisic acid receptors

Country Status (1)

Country Link
CN (1) CN110511941B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102643810B1 (en) * 2020-03-20 2024-03-06 포항공과대학교 산학협력단 A method of mass production of target gene in plants
CN111893135A (en) * 2020-08-14 2020-11-06 河北科技大学 Transgenic expression vector and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136274A1 (en) * 2012-03-13 2013-09-19 University Of Guelph Myb55 promoter and use thereof
KR20150017452A (en) * 2013-08-06 2015-02-17 중앙대학교 산학협력단 Method for improving the resistance to the drought stress using rcar2 in plants
CN104592370A (en) * 2013-10-31 2015-05-06 中国科学院植物研究所 OsPYL9 protein, OsPYL9 protein coding gene and applications of OsPYL9 protein
WO2017087633A1 (en) * 2015-11-18 2017-05-26 Purdue Research Foundation Pyl9 and uses thereof
CN109593775A (en) * 2017-09-30 2019-04-09 中国科学院上海生命科学研究院 A kind of method and its application that the ABA receptor PYL family gene combination improving rice yield knocks out

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9518268B2 (en) * 2013-07-19 2016-12-13 Purdue Research Foundation Drought tolerant transgenic plants and method of making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136274A1 (en) * 2012-03-13 2013-09-19 University Of Guelph Myb55 promoter and use thereof
KR20150017452A (en) * 2013-08-06 2015-02-17 중앙대학교 산학협력단 Method for improving the resistance to the drought stress using rcar2 in plants
CN104592370A (en) * 2013-10-31 2015-05-06 中国科学院植物研究所 OsPYL9 protein, OsPYL9 protein coding gene and applications of OsPYL9 protein
WO2017087633A1 (en) * 2015-11-18 2017-05-26 Purdue Research Foundation Pyl9 and uses thereof
CN109593775A (en) * 2017-09-30 2019-04-09 中国科学院上海生命科学研究院 A kind of method and its application that the ABA receptor PYL family gene combination improving rice yield knocks out

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Genetic manipulation of abscisic acid receptors enables modulation of water use efficiency;Ryosuke Mega et al.;《Plant Signaling & Behavior》;20190716;第1-3页 *
The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth;Lu Xing et al.;《Scientific Reports》;20160603;第6卷;第1-13页 *
The Maize ABA Receptors ZmPYL8, 9, and 12 Facilitate Plant Drought Resistance;Zhenghua He et al.;《Frontiers in Plant Science》;20180404;第9卷(第422期);第1-12页 *
玉米潜在脱落酸受体基因的克隆及功能鉴定;来从显;《中国优秀硕士学位论文全文数据库 农业科技辑》;20130615(第6期);D047-183 *
玉米脱落酸受体基因家族的生物信息学分析;李鸿杰等;《核农学报》;20151231;第29卷(第9期);第1657-1667页 *

Also Published As

Publication number Publication date
CN110511941A (en) 2019-11-29

Similar Documents

Publication Publication Date Title
US20220251593A1 (en) Genes and uses for plant enhancement
WO2010075143A1 (en) Genes and uses for plant enhancement
CN101981195B (en) Plants having increased yield-related traits and method for making same
CN101605902B (en) Plants having enhanced yield-related traits and/or increased abiotic stress resistance, and a method for making the same
CN102925455A (en) Plants having improved growth characteristics and a method for making the same
CN101218347B (en) Plants having increased yield and a method for making the same
CN101351556B (en) Plants having improved growth characteristics and a method for making the same
US8853494B2 (en) Stress tolerant transgenic crop plants
CN108998470B (en) Application of soybean MYB32 transcription factor coding gene GmMYB32
US20230250443A1 (en) Transgenic maize plant exhibiting increased yield and drought tolerance
CN105063063A (en) Plants having enhanced yield-related traits and method for making the same
CN110511941B (en) Method for increasing plant biomass and thus increasing yield by overexpressing abscisic acid receptors
CN101128590B (en) Plants having increased yield and method for making the same
CN1906304B (en) Plants having increased yield and method for making the same
CN101874116B (en) Plants having increased yield-related traits and a method for making the same
CN103172715A (en) Plant epidermal hair controlling gene and application thereof
CN105802931B (en) CRK4 protein and application of encoding gene thereof in regulation and control of plant stem and leaf growth
CN101548016B (en) Plants having enhanced yield-related traits and a method for making the same using consensus sequences from the yabby protein family
US20150353950A1 (en) Transgenic plants
CN109837265A (en) The method for improving drought tolerance in plants ability
CN104744579A (en) Application of stress resistance related protein GmL16 in regulating stress resistance of plant
CN117264964A (en) Application of wheat TaGSKB protein and encoding gene thereof in regulation and control of plant stress tolerance
CN104099368A (en) Plants having improved characteristics and a method for making the same
CN111073905B (en) Application of soybean mitogen-activated protein kinase GmMMK1 coding gene
CN101180398A (en) Plants having increased yield and a method for making thesame

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant