CN110504844A - 一种大容量岸电系统的温度优化方法 - Google Patents

一种大容量岸电系统的温度优化方法 Download PDF

Info

Publication number
CN110504844A
CN110504844A CN201910874844.1A CN201910874844A CN110504844A CN 110504844 A CN110504844 A CN 110504844A CN 201910874844 A CN201910874844 A CN 201910874844A CN 110504844 A CN110504844 A CN 110504844A
Authority
CN
China
Prior art keywords
voltage
large capacity
loss
bank electricity
optimization method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910874844.1A
Other languages
English (en)
Inventor
余昆
顾昉渊
陈星莺
黄堃
陈振宇
杨斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Jiangsu Electric Power Co Ltd
Hohai University HHU
NARI Group Corp
Nari Technology Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Jiangsu Electric Power Co Ltd
Hohai University HHU
NARI Group Corp
Nari Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Jiangsu Electric Power Co Ltd, Hohai University HHU, NARI Group Corp, Nari Technology Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201910874844.1A priority Critical patent/CN110504844A/zh
Publication of CN110504844A publication Critical patent/CN110504844A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种大容量岸电系统的温度优化方法,该方法分别对变频器中的整流器模块和逆变器模块进行调制,利用改变PWM调制度M的方法来减小整流模块中输出直流电压的幅值,进而通过减小后的直流电压幅值来改变逆变侧电力电子模块的温升,使逆变侧的温升减小,使器件运行在更加安全稳定的环境中,同时直流电压幅值的减小也降低了材料耐压等级的要求,选材更加低廉和多样化。

Description

一种大容量岸电系统的温度优化方法
技术领域
本发明涉及一种大容量岸电系统的温度优化方法,属于整流器控制技术领域。
背景技术
近年来,气候变化问题已成为影响人类社会发展和全球政治经济格局的重大战略课题。交通运输作为国家能源消费和温室气体排放的重点行业之一,是国家推进节能减排工作的重要领域。船舶岸电技术,国外又称岸上供电、船舶电力替代系统(AlternativeMaritime Power System,AMP)或岸上连接等,是指由岸上电源代替船舶辅机,为船舶提供在港停泊期间所有用电的一种港区大气污染控制方式。岸电使用期间,船舶应关闭所有辅机,使用岸上电源对船上照明设备、通信设备、控制设备等进行供电,以保障船舶靠泊期间的正常营运和对船舶排放废气的有效控制。
在船舶岸电岸基供电系统的研究方面,国外各个港口根据自身的实际电气条件选取不同的供电模式,逐步发展出了低压岸电/低压船舶、高压岸电/低压船舶、高压岸电/高压船舶三种供电模式和60Hz或50Hz两种供电频率;由于船岸频率不匹配,涉及到了变频技术。目前为止,发展出了低压岸电低压上船、低压岸电高压上船、高压岸电低压上船和高压岸电高压上船四种方式,国内港口根据船舶供电需求将变频技术结合到供电方式设计中,又可以将以上四种方式分为带变频装置和不带变频装置两种。由于变频器频繁地开关动作,带变频器整流模块的船舶电力替代系统会产生较大的电能损耗,并且温度升高影响系统可靠性。
发明内容
发明目的:本发明提出一种大容量岸电系统的温度优化方法,减小逆变侧温升。
技术方案:本发明采用的技术方案为一种大容量岸电系统的温度优化方法,包括以下步骤:
对PWM调制变频器,建立IGBT导通电压的时域表达式;
将所述时域表达式与载波方程联立,解出占空比;
计算出单个IGBT的总损耗;
计算续流二极管总损耗;
建立温升和损耗之间的关系式,由该关系式为依据对温度进行优化。
所述IGBT导通电压的时域表达式为:
其中vCE为IGBT导通电压,VP是调制波幅值,ω是调制波的角频率,为电压电流相位差,t为时间。
所述载波方程包括第一直线1和第二直线2,其方程分别表示为:
第一直线1:
第二直线2:
其中T为载波周期,VT为载波幅值,t为时间,v为电压;
联立时域表达式与载波方程得到:
其中t1和t2时刻,载波曲线与IGBT导通电压曲线相交,由式(1)可以得出占空比τ(t)的推导如下所示:
其中调制度
所述单个IGBT的总损耗PQ由通态损耗PSS和开关损耗PSW共同组成,即: PQ=PSS+PSW
所述续流二极管总损耗PD便由通态损耗PDC和关断损耗Prr共同组成,即:PD=PDC+Prr
所述温升和损耗之间的关系式为:
式中,ΔTj为温升值;P为电力电子器件损耗的功率;Rthi为第i阶热网络模型的等效热阻抗;n为热网络模型的阶数。
有益效果:本发明分别对变频器中的整流器模块和逆变器模块进行调制,利用改变PWM调制度M的方法来减小整流模块中输出直流电压的幅值,进而通过减小后的直流电压幅值来改变逆变侧电力电子模块的温升,使逆变侧的温升减小,使器件运行在更加安全稳定的环境中,同时直流电压幅值的减小也降低了材料耐压等级的要求,选材更加低廉和多样化。
附图说明
图1为IGBT管电流电压特性曲线图;
图2为双极性PWM调制原理图;
图3为整流器仿真波形。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等同形式的修改均落于本申请所附权利要求所限定的范围。
根据导电载流子不同,单个IGBT只在栅极电压的正半周波或负半周波内有电流流过沟道,所以单个IGBT的通态损耗PSS为:
上式中,vCE为IGBT导通电压,iC为PWM逆变输出电流(即流过IGBT沟道的电流),τ(t)为占空比。vCE和iC是非线性关系,其典型的电流电压特性曲线如图1所示,用直线进行拟合对其电流电压特性曲线进行线性化,可得到拟合直线(图1中虚线):
vCE=VCE0+rCE×iC(t)
其中,VCE0为门槛电压,rCE为IGBT的通态等效电阻,如图1所示,门槛电压VCE0为所述拟合直线在横轴上的截距,而通态等效电阻rCE为拟合直线的倒数。
如图2所示,对于载波上的第一直线1和第二直线2,其方程分别表示为:
第一直线1:
第二直线2:
其中T为载波周期,VT为载波幅值,t为时间,v为电压。
令电压vCE的时域表达式为:其中VP是调制波幅值,ω是调制波的角频率,为电压电流相位差,t为时间。
在t1和t2时刻,载波的幅值与双极性调制波的幅值相同,所以可以产生联立:
由式(1)可以得出占空比τ(t)的推导如下所示:
其中,调制度
经过上述计算得到结果:
采用单极性PWM调制变频器时,其占空比为而采用双极性PWM调制变频器时,其占空比为其中M为调制比;t 为时间。
令逆变过程输出电流iC的时域表达式为iC(t)=ICPsin(ωt),其中ICP为IGBT逆变输出电流的幅值。
在单极性PWM调制的情况下,单个IGBT的通态损耗为:
在双极性PWM调制的情况下,单个IGBT的通态损耗为:
令IGBT的开关频率为fSW,则在栅极电压的半个周期内IGBT要开通和关断各fSW次,所以单个IGBT的开关损耗PSW为:
其中,ESW(on)表示IGBT开通一次损耗的能量;ESW(off)表示IGBT关断一次损耗的能量。
经验表明,可以将ESW(on)和ESW(off)按线性化折算得到满足工程计算需求的公式,代入开关损耗可得:
其中,ESW(on)P为在额定电流ICN和额定电压VCEN条件下IGBT开通一次时损失的能量;ESW(off)P为在额定电流ICN和额定电压VCEN条件下IGBT关断一次时损失的能量;Vdc为直流母线电压;ICN为额定工作电流;VCEN为额定工作电压。
因此,单个IGBT的总损耗PQ便由通态损耗和开关损耗共同组成,即: PQ=PSS+PSW
续流二极管的推导方式与IGBT导通损耗的推导方式一样,其中,续流二极管导通电压vF和续流二极管的PWM逆变输出电流iC的典型曲线与IGBT中的类似,得到其拟合直线关系式:vF=VF0+rF×iC(t)。
其中,VF0为二极管的门槛电压;rF为二极管的通态等效电阻。
当采用单极性PWM调制时,续流二极管通态损耗PDC的公式为:
当采用双极性PWM调制时,续流二极管通态损耗PDC的公式为:
由于续流二极管的开关特性,续流二极管的开通损耗可以忽略不计,仅计算其关断损耗。与IGBT的开关损耗计算公式推导方式一致,续流二极管的关断损耗Prr公式为:
其中,EDiode(off)P为在额定电流ICN和额定电压VCEN下续流二极管关断一次损失的能量。
单个续流二极管的总损耗PD便由通态损耗和关断损耗共同组成,即: PD=PDC+Prr
通过热电比拟原理来建立损耗与温度的关系,基于此以IGBT芯片所产生的损耗热量为热源,将热参数转化为对应的电参数。
通过计算,我们得到其关系为:
式中,ΔTj为温升值;P为电力电子器件损耗的功率;Rthi为第i阶热网络模型的等效热阻抗;n为热网络模型的阶数。
通过Simulink仿真,得到了整流器输出电压的波形如图3所示,进而对IGBT 模块的温升进行计算。在初始条件为:温度20℃,额定电压1200V,额定电流 300A,开关频率20kHz,功率因数的前提条件下,得计算结果分别为:
(1)直流侧电压800V的情况,即调制比M为0.8时
IGBT:
1)单个通态损耗:37.0451W
2)单个开关损耗:68.4720W
3)总损耗:633.1026W
4)温升:62.04℃
续流二极管:
1)单个通态损耗:12.4357W
2)单个开关损耗:17.1187W
3)总损耗:177.3264W
4)温升:34.22℃
(2)直流侧电压750V的情况,调制比M为0.85时
IGBT:
1)单个通态损耗:37.0451W
2)单个开关损耗:51.3540W
3)总损耗:530.3946W
4)温升:51.98℃
续流二极管:
1)单个通态损耗:12.4357W
2)单个开关损耗:12.8385W
3)总损耗:151.6452W
4)温升:29.27℃。

Claims (6)

1.一种大容量岸电系统的温度优化方法,其特征在于,包括以下步骤:
对PWM调制变频器,建立IGBT导通电压的时域表达式;
将所述时域表达式与载波方程联立,解出占空比;
计算出单个IGBT的总损耗;
计算续流二极管总损耗;
建立温升和损耗之间的关系式,由该关系式为依据对温度进行优化。
2.根据权利要求1所述的大容量岸电系统的温度优化方法,其特征在于,所述IGBT导通电压的时域表达式为:
其中vCE为IGBT导通电压,VP是调制波幅值,ω是调制波的角频率,为电压电流相位差,t为时间。
3.根据权利要求2所述的大容量岸电系统的温度优化方法,其特征在于,所述载波方程包括第一直线1和第二直线2,其方程分别表示为:
第一直线1:
第二直线2:
其中T为载波周期,VT为载波幅值,t为时间,v为电压;
联立时域表达式与载波方程得到:
其中t1和t2时刻,载波曲线与IGBT导通电压曲线相交,由式(1)可以得出占空比τ(t)的推导如下所示:
其中调制度
4.根据权利要求1所述的大容量岸电系统的温度优化方法,其特征在于,所述单个IGBT的总损耗PQ由通态损耗PSS和开关损耗PSW共同组成,即:PQ=PSS+PSW
5.根据权利要求1所述的大容量岸电系统的温度优化方法,其特征在于,所述续流二极管总损耗PD便由通态损耗PDC和关断损耗Prr共同组成,即:PD=PDC+Prr
6.根据权利要求1所述的大容量岸电系统的温度优化方法,其特征在于,所述温升和损耗之间的关系式为:
式中,ΔTj为温升值;P为电力电子器件损耗的功率;Rthi为第i阶热网络模型的等效热阻抗;n为热网络模型的阶数。
CN201910874844.1A 2019-09-17 2019-09-17 一种大容量岸电系统的温度优化方法 Pending CN110504844A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910874844.1A CN110504844A (zh) 2019-09-17 2019-09-17 一种大容量岸电系统的温度优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910874844.1A CN110504844A (zh) 2019-09-17 2019-09-17 一种大容量岸电系统的温度优化方法

Publications (1)

Publication Number Publication Date
CN110504844A true CN110504844A (zh) 2019-11-26

Family

ID=68592039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910874844.1A Pending CN110504844A (zh) 2019-09-17 2019-09-17 一种大容量岸电系统的温度优化方法

Country Status (1)

Country Link
CN (1) CN110504844A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080140351A1 (en) * 2005-09-28 2008-06-12 Kerkman Russel J Junction temperature prediction method and apparatus for use in a power conversion module
CN105825019A (zh) * 2016-03-22 2016-08-03 三峡大学 一种绝缘栅双极晶体管igbt模块温度求解算法
CN106407583A (zh) * 2016-09-28 2017-02-15 温州大学 一种用于大功率船舶岸电变流系统的高效热设计方法
CN106443400A (zh) * 2016-09-14 2017-02-22 河北工业大学 一种igbt模块的电‑热‑老化结温计算模型建立方法
CN108108573A (zh) * 2018-01-15 2018-06-01 北京理工大学 一种igbt功率模块结温动态预测方法
CN110133465A (zh) * 2019-05-16 2019-08-16 上海金脉电子科技有限公司 Igbt模块结温的计算方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080140351A1 (en) * 2005-09-28 2008-06-12 Kerkman Russel J Junction temperature prediction method and apparatus for use in a power conversion module
CN105825019A (zh) * 2016-03-22 2016-08-03 三峡大学 一种绝缘栅双极晶体管igbt模块温度求解算法
CN106443400A (zh) * 2016-09-14 2017-02-22 河北工业大学 一种igbt模块的电‑热‑老化结温计算模型建立方法
CN106407583A (zh) * 2016-09-28 2017-02-15 温州大学 一种用于大功率船舶岸电变流系统的高效热设计方法
CN108108573A (zh) * 2018-01-15 2018-06-01 北京理工大学 一种igbt功率模块结温动态预测方法
CN110133465A (zh) * 2019-05-16 2019-08-16 上海金脉电子科技有限公司 Igbt模块结温的计算方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘博阳: "车载变流器功率损耗分析与热设计研究", 《中国优秀硕士学位论文全文数据库(工程科技Ⅱ辑)》 *

Similar Documents

Publication Publication Date Title
CN107465347B (zh) 适用于llc谐振型变换器的能量双向控制策略
CN102545257B (zh) 太阳能光伏发电单相并网逆变器的控制方法
CN201774458U (zh) 基于mmc无变压器的四象限高压变频电源拓扑结构
CN102055347A (zh) 基于mmc无变压器的四象限高压变频电源拓扑结构
CN102638186A (zh) 一种三相电压型整流器及其控制方法
CN103066679A (zh) 一种通用型通信基站太阳能风能集中供电系统及其控制方法
CN107888096B (zh) 一种三相两桥臂三电平混合整流器
CN103746591A (zh) 一种h6单相非隔离光伏并网逆变器及其调制方法
CN106849728B (zh) 带续流开关的箝位型三相非隔离光伏逆变器的控制方法
CN103064460B (zh) 光伏逆变器的mppt控制装置及方法
CN104393767B (zh) 基于双有源桥电路的双模式直流‑直流变换器及其控制装置
CN110138005A (zh) 一种级联多模态光伏并网逆变器及其调制方法
CN102684518A (zh) 基于瞬时电流前馈控制的高频冗余pwm整流装置及方法
CN105044411A (zh) 一种负载电流含直流分量的功率模块通流试验平台
CN106992546A (zh) 一种柔性直流配电网的自适应功率控制系统
CN102082523A (zh) 混合控制级联多电平逆变器的控制方法和多电平逆变器
CN105024401B (zh) 提高光伏发电系统的利用率的光伏逆变器电路
CN105186910A (zh) 二极管辅助升降压逆变器最大升压和最小开关频率脉宽调制方法
CN202183738U (zh) 自生成级联电源的级联型多电平逆变电路
CN110504844A (zh) 一种大容量岸电系统的温度优化方法
CN110460228A (zh) 一种能量控制电路及控制方法
CN202221967U (zh) 一种基于空间矢量新型算法的三相pwm整流装置
CN104038071A (zh) 一种基于移相全桥的逆变式电弧喷涂电源
CN210982623U (zh) 一种晶闸管控制变压器特性测试电路
CN206790118U (zh) 一种变电站站用电系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191126