CN110496232A - 磁性-金二聚体多功能纳米探针及其制备方法、应用 - Google Patents

磁性-金二聚体多功能纳米探针及其制备方法、应用 Download PDF

Info

Publication number
CN110496232A
CN110496232A CN201910841268.0A CN201910841268A CN110496232A CN 110496232 A CN110496232 A CN 110496232A CN 201910841268 A CN201910841268 A CN 201910841268A CN 110496232 A CN110496232 A CN 110496232A
Authority
CN
China
Prior art keywords
nanoparticle
peg
dispersion liquid
pvp
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910841268.0A
Other languages
English (en)
Other versions
CN110496232B (zh
Inventor
宋江鲁奇
胡锦航
李欢
于跃
延翔
姚博
周慧鑫
贾秀萍
周峻
高永晟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Electronic Science and Technology
Original Assignee
Xian University of Electronic Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Electronic Science and Technology filed Critical Xian University of Electronic Science and Technology
Priority to CN201910841268.0A priority Critical patent/CN110496232B/zh
Publication of CN110496232A publication Critical patent/CN110496232A/zh
Application granted granted Critical
Publication of CN110496232B publication Critical patent/CN110496232B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1854Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly(meth)acrylate, polyacrylamide, polyvinylpyrrolidone, polyvinylalcohol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种磁性‑金二聚体多功能纳米探针,该纳米探针由一个聚乙二醇(PEG)修饰的金(Au)纳米粒子,和一个聚乙烯吡咯烷酮(PVP)修饰的四氧化三铁超顺磁纳米粒子,通过N‑乙酰‑L‑半胱氨酸(NAC)偶联组成,并且形状为葫芦形;还公开了一种磁性‑金二聚体多功能纳米探针及应用。本发明通过NAC交联剂将金纳米粒子和超顺磁纳米粒子偶联为二聚体,有可操作性强、可批量生产、重复性高等优点,具有很高的实用价值。

Description

磁性-金二聚体多功能纳米探针及其制备方法、应用
技术领域
本发明属于医用纳米材料和纳米生物医学技术领域,具体涉及一种磁性-金二聚体多功能纳米探针及其制备方法、应用。
背景技术
纳米材料由于具有宏观、介观尺度材料一系列不具备的光、电、磁、声性质,在医学、能源、机械、交通、航天、农业等领域具有重要的应用前景。近些年来,由于科学发展和技术进步,人们对微纳米尺度材料的操控能力越来越精准,一系列具有优异特性的先进功能材料也被不断开发出来。
在肿瘤诊疗领域,一个重要的研究领域就是对肿瘤细胞的精准监测和高效杀灭。目前,使用较多的是生物荧光标记来在细胞水平监测肿瘤的产生、转移。然而,现今采用的有机染料分子具有光化学稳定性差、生物相容性差等优点。另一方面,在肿瘤治疗领域,临床采用手术切除、放射治疗和化学治疗等主流技术手段。这些治疗方式均有各种各样的缺点,诸如副作用大、易复发、肿瘤细胞易转移等。因此,开发针对肿瘤细胞具有诊断、治疗多功能的纳米探针具有重要的灵床意义。
发明内容
有鉴于此,本发明的主要目的在于提供一种磁性-金二聚体多功能纳米探针及其制备方法、应用。
为达到上述目的,本发明的技术方案是这样实现的:
本发明实施例提供一种磁性-金二聚体多功能纳米探针,该纳米探针由一个聚乙二醇(PEG)修饰的金(Au)纳米粒子,和一个聚乙烯吡咯烷酮(PVP)修饰的四氧化三铁超顺磁纳米粒子,通过N-乙酰-L-半胱氨酸(NAC)偶联组成,并且形状为葫芦形。
上述方案中,所述聚乙二醇的分子量为100~10000;所述聚乙烯吡咯烷酮的分子量为8000~1000000。
本发明实施例还提供一种根据据上述方案所述的磁性-金二聚体多功能纳米探针的制备方法,该方法包括以下步骤:
步骤1,金纳米粒子的修饰:将金纳米粒子的分散液加入到PEG溶液中,搅拌反应,通过超滤膜过滤后,重新分散在PBS缓冲液中,获得Au-PEG的PBS分散液;
步骤2,磁性纳米粒子的修饰:将Fe3O4纳米粒子的分散液加入到PVP溶液中,搅拌反应,离心提纯,重新分散在PBS缓冲液中,获得Fe3O4-PVP的PBS分散液;
步骤3,金纳米粒子和磁性纳米粒子的偶联:将所述Au-PEG的PBS分散液和Fe3O4-PVP的PBS分散液逐次加入到NAC溶液中,搅拌反应,控制温度;通过超滤膜过滤后,重新分散在PBS缓冲液中,获得Au-Fe3O4二聚体的PBS分散液。
上述方案中,所述步骤1中,所述金纳米粒子的尺寸范围为5~100nm,表面基团为氨基、羧基、酰胺基;所述聚乙二醇的分子量为100~10000;是超滤膜的截留分子量(MWCO)为300~50000。
上述方案中,所述步骤1中,金纳米粒子分散液的浓度为1~20mmol/L;PEG溶液的浓度为0.01~20mol/L;所述金纳米粒子和PEG溶液混合时,金纳米粒子和PEG的摩尔比为1:1~1:200;搅拌反应的时间为0.1~2h;所述Au-PEG的PBS分散液中,Au纳米粒子的浓度为1~100mmol/L。
上述方案中,所述步骤2中,Fe3O4纳米粒子的尺寸为15~150nm,表面基团羟基、羧基、氨基;所述聚乙烯吡咯烷酮的分子量为8000~1000000;
上述方案中,所述步骤2中,Fe3O4纳米粒子分散液的浓度为1~20mmol/L;PVP溶液的浓度为0.1~200mol/L;Fe3O4纳米粒子和PVP溶液混合时,Fe3O4纳米粒子和PVP的摩尔比为1:1~1:100;搅拌反应的时间为0.5~10h;离心时转速范围为5000~10000rpm,时间为0.2~1h;所述Fe3O4-PVP的PBS分散液中,Fe3O4纳米粒子的浓度为1~100mmol/L。
上述方案中,所述步骤3中,NAC溶液的浓度为0.1~100mmol/L;所述超滤膜的截留分子量(MWCO)为300~50000。
上述方案中,所述步骤3中,Au-PEG的PBS分散液和Fe3O4-PVP的PBS分散液逐次加入到NAC溶液时,次序为Au-PEG先与NAC溶液混合搅拌,再加入Fe3O4-PVP混合搅拌;混合时,Au-PEG与Fe3O4-PVP纳米粒子的摩尔比为1:0.01~1:100;Au-PEG与NAC的摩尔比为1:1~1:100;搅拌反应的温度为60~80℃,反应时间为0.5~10h。
本发明实施例还提供制备方法制备的磁性-金二聚体多功能纳米探针,作为磁共振成像造影剂、光热诊疗剂或者纳米载体的用途。
与现有技术相比,本发明通过NAC交联剂将金纳米粒子和超顺磁纳米粒子偶联为二聚体,有可操作性强、可批量生产、重复性高等优点,具有很高的实用价值。
附图说明
图1为本发明实施例提供一种磁性-金二聚体多功能纳米探针的制备流程图;
图2为本发明实施例提供一种磁性-金二聚体多功能纳米探针的磁滞回线;
图3为本发明实施例提供一种磁性-金二聚体多功能纳米探针对正常乳腺细胞毒性图;
图4为本发明实施例提供一种磁性-金二聚体多功能纳米探针在光照和交变磁场下的温度变化曲线;
图5为本发明实施例提供一种磁性-金二聚体多功能纳米探针在光照下的温度变化曲线;
图6为本发明实施例提供一种磁性-金二聚体多功能纳米探针的磁共振(T2-weight)成像效果。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种磁性-金二聚体多功能纳米探针,由一个聚乙二醇(PEG)修饰的金(Au)纳米粒子,和一个聚乙烯吡咯烷酮(PVP)修饰的四氧化三铁超顺磁纳米粒子,通过N-乙酰-L-半胱氨酸(NAC)偶联组成,并且形状为葫芦形。
所述聚乙二醇的分子量为100~10000,;聚乙烯吡咯烷酮的分子量为8000~1000000。
本发明提供的多功能纳米探针具有金纳米粒子的光热治疗、荧光增强、拉曼增强和吸收增强效果,以及四氧化三铁纳米粒子的超顺磁性、磁热和光热效果,可以同时实现磁共振成像造影、磁热治疗、光热治疗;如果将本纳米探针作为载体,进一步可以实现荧光增强、药物输送等功能;
此外,本发明提供的二聚体多功能纳米探针具有优良的生物相容性,可以用于生物医学研究和应用。
本发明实施例还提供一种磁性-金二聚体多功能纳米探针的制备方法,如图1所示,包括以下步骤:
(1)金纳米粒子的修饰:
将金纳米粒子的分散液加入到PEG溶液中,搅拌反应,使用超滤膜过滤,重新分散在PBS缓冲液中,得到Au-PEG的PBS分散液;
具体地,将浓度为1~20mmol/L的金纳米粒子(尺寸为5~100nm,表面基团为氨基、羧基、酰胺基)分散液加入到浓度为0.01~20mol/L的PEG溶液中(分子量为100~10000),控制金纳米粒子和PEG的摩尔比为1:1~1:200,搅拌,反应时间为0.1~2h;使用截留分子量(MWCO)为300~50000的超滤膜过滤,产物重新分散在PBS缓冲液中,使Au-PEG的浓度为1~100mmol/L。
(2)磁性纳米粒子的修饰:
将Fe3O4纳米粒子的分散液加入到PVP溶液中,搅拌反应,离心提纯,重新分散在PBS缓冲液中,得到Fe3O4-PVP的PBS分散液;
具体地,将浓度为1~20mmol/L的Fe3O4纳米粒子(尺寸为15~150nm,表面基团羟基、羧基、氨基)分散液加入到浓度为0.1~200mol/L PVP溶液中(分子量为8000~1000000),控制Fe3O4纳米粒子和PVP的摩尔比为1:1~1:100,搅拌,反应时间为0.5~10h;使用离心机(转速5000~10000rpm)离心0.2~1h;产物分散在PBS缓冲液中,使Fe3O4-PVP的浓度为1~100mmol/L。
(3)金纳米粒子和磁性纳米粒子的偶联:
将Au-PEG的PBS分散液和Fe3O4-PVP的PBS分散液逐次加入到NAC溶液中,搅拌反应,控制温度;然后使用超滤膜过滤,重新分散在PBS缓冲液中,得到Au-Fe3O4二聚体的PBS分散液。
具体地,将步骤(1)得到的Au-PEG的PBS分散液加入到浓度为0.1~100mmol/L的NAC溶液中,控制Au-PEG与NAC的摩尔比为1:1~1:100,控制温度为60~80℃,搅拌反应时间为0.5~10h;然后加入步骤(2)得到的Fe3O4-PVP的PBS分散液,控制Au-PEG与Fe3O4-PVP纳米粒子的摩尔比为1:0.01~1:100,搅拌反应时间为0.5~10h;使用截留分子量(MWCO)为300~50000的超滤膜过滤,产物重新分散在PBS缓冲液中,得到Au-Fe3O4二聚体纳米探针的PBS分散液。
以下通过实施例对优选实施方式作具体阐述。
实施例中,所选的Au纳米粒子的尺寸为40nm左右,四氧化三铁的尺寸为40nm左右;未修饰之前,Au纳米粒子分散液的浓度为1mmol/L,Fe3O4纳米粒子分散液的浓度为5mmol/L;PEG的分子量为400,PVP的分子量为10000,NAC的浓度为10mmol/L。
实施例1:
(1)将金纳米粒子(表面基团为氨基、羧基、酰胺基)分散液加入到浓度为0.01~20mol/L的PEG溶液中,控制金纳米粒子和PEG的摩尔比为1:1~1:200,搅拌,反应时间为0.1~2h;使用截留分子量(MWCO)为300~50000的超滤膜过滤,产物重新分散在PBS缓冲液中,使Au-PEG的浓度为1~100mmol/L。
(2)将Fe3O4纳米粒子(表面基团羟基、羧基、氨基)分散液加入到浓度为0.1~200mol/L PVP溶液中,控制Fe3O4纳米粒子和PVP的摩尔比为1:1~1:100,搅拌,反应时间为0.5~10h;使用离心机(转速5000~10000rpm)离心0.2~1h;产物分散在PBS缓冲液中,使Fe3O4-PVP的浓度为1~100mmol/L。
(3)将步骤(1)得到的Au-PEG的PBS分散液加入到NAC溶液中,控制Au-PEG与NAC的摩尔比为1:1~1:100,控制温度为60~80℃,搅拌反应时间为0.5~10h;然后加入步骤(2)得到的Fe3O4-PVP的PBS分散液,控制Au-PEG与Fe3O4-PVP纳米粒子的摩尔比为1:0.01~1:100,搅拌反应时间为0.5~10h;使用截留分子量(MWCO)为300~50000的超滤膜过滤,产物重新分散在PBS缓冲液中,得到Au-Fe3O4二聚体纳米探针的PBS分散液。
实施例2:
(1)将金纳米粒子(表面基团羧基)分散液加入到浓度为0.01mol/L的PEG溶液中,控制金纳米粒子和PEG的摩尔比为1:10,搅拌,反应时间为1h;使用截留分子量(MWCO)为4000的超滤膜过滤,产物重新分散在PBS缓冲液中,使Au-PEG的浓度为10mmol/L。
(2)将Fe3O4纳米粒子(表面基团羧基)分散液加入到浓度为0.1mol/L PVP溶液中,控制Fe3O4纳米粒子和PVP的摩尔比为1:20,搅拌,反应时间为1h;使用离心机(转速8000rpm)离心0.5h;产物分散在PBS缓冲液中,使Fe3O4-PVP的浓度为5mmol/L。
(3)将步骤(1)得到的Au-PEG的PBS分散液加入到NAC溶液中,控制Au-PEG与NAC的摩尔比为1:10,控制温度为60℃,搅拌反应时间为0.5h;然后加入步骤(2)得到的Fe3O4-PVP的PBS分散液,控制Au-PEG与Fe3O4-PVP纳米粒子的摩尔比为1:1.1,搅拌反应时间为0.5h;使用截留分子量(MWCO)为4000的超滤膜过滤,产物重新分散在PBS缓冲液中,得到Au-Fe3O4二聚体纳米探针的PBS分散液。
实施例3:
(1)将金纳米粒子(表面基团羧基)分散液加入到浓度为0.2mol/L的PEG溶液中,控制金纳米粒子和PEG的摩尔比为1:10,搅拌,反应时间为1h;使用截留分子量(MWCO)为4000的超滤膜过滤,产物重新分散在PBS缓冲液中,使Au-PEG的浓度为10mmol/L。
(2)将Fe3O4纳米粒子(表面基团羧基)分散液加入到浓度为0.2mol/L PVP溶液中,控制Fe3O4纳米粒子和PVP的摩尔比为1:20,搅拌,反应时间为1h;使用离心机(转速8000rpm)离心0.5h;产物分散在PBS缓冲液中,使Fe3O4-PVP的浓度为5mmol/L。
(3)将步骤(1)得到的Au-PEG的PBS分散液加入到NAC溶液中,控制Au-PEG与NAC的摩尔比为1:10,控制温度为60℃,搅拌反应时间为0.5h;然后加入步骤(2)得到的Fe3O4-PVP的PBS分散液,控制Au-PEG与Fe3O4-PVP纳米粒子的摩尔比为1:1.1,搅拌反应时间为0.5h;使用截留分子量(MWCO)为4000的超滤膜过滤,产物重新分散在PBS缓冲液中,得到Au-Fe3O4二聚体纳米探针的PBS分散液。
实施例4:
(1)将金纳米粒子(表面基团羧基)分散液加入到浓度为0.02mol/L的PEG溶液中,控制金纳米粒子和PEG的摩尔比为1:15,搅拌,反应时间为1h;使用截留分子量(MWCO)为4000的超滤膜过滤,产物重新分散在PBS缓冲液中,使Au-PEG的浓度为10mmol/L。
(2)将Fe3O4纳米粒子(表面基团羧基)分散液加入到浓度为0.2mol/L PVP溶液中,控制Fe3O4纳米粒子和PVP的摩尔比为1:20,搅拌,反应时间为1.5h;使用离心机(转速8500rpm)离心0.5h;产物分散在PBS缓冲液中,使Fe3O4-PVP的浓度为5mmol/L。
(3)将步骤(1)得到的Au-PEG的PBS分散液加入到NAC溶液中,控制Au-PEG与NAC的摩尔比为1:10,控制温度为60℃,搅拌反应时间为0.5h;然后加入步骤(2)得到的Fe3O4-PVP的PBS分散液,控制Au-PEG与Fe3O4-PVP纳米粒子的摩尔比为1:1.1,搅拌反应时间为0.5h;使用截留分子量(MWCO)为4000的超滤膜过滤,产物重新分散在PBS缓冲液中,得到Au-Fe3O4二聚体纳米探针的PBS分散液。
实施例5:
(1)将金纳米粒子(表面基团羧基)分散液加入到浓度为1mol/L的PEG溶液中,控制金纳米粒子和PEG的摩尔比为1:15,搅拌,反应时间为1h;使用截留分子量(MWCO)为4000的超滤膜过滤,产物重新分散在PBS缓冲液中,使Au-PEG的浓度为10mmol/L。
(2)将Fe3O4纳米粒子(表面基团羧基)分散液加入到浓度为1mol/L PVP溶液中,控制Fe3O4纳米粒子和PVP的摩尔比为1:10,搅拌,反应时间为1.5h;使用离心机(转速8500rpm)离心1h;产物分散在PBS缓冲液中,使Fe3O4-PVP的浓度为5mmol/L。
(3)将步骤(1)得到的Au-PEG的PBS分散液加入到NAC溶液中,控制Au-PEG与NAC的摩尔比为1:10,控制温度为60℃,搅拌反应时间为0.5h;然后加入步骤(2)得到的Fe3O4-PVP的PBS分散液,控制Au-PEG与Fe3O4-PVP纳米粒子的摩尔比为1:1.1,搅拌反应时间为0.5h;使用截留分子量(MWCO)为4000的超滤膜过滤,产物重新分散在PBS缓冲液中,得到Au-Fe3O4二聚体纳米探针的PBS分散液。
实施例6:
(1)将金纳米粒子(表面基团羧基)分散液加入到浓度为0.02mol/L的PEG溶液中,控制金纳米粒子和PEG的摩尔比为1:8,搅拌,反应时间为1h;使用截留分子量(MWCO)为4000的超滤膜过滤,产物重新分散在PBS缓冲液中,使Au-PEG的浓度为10mmol/L。
(2)将Fe3O4纳米粒子(表面基团羧基)分散液加入到浓度为0.2mol/L PVP溶液中,控制Fe3O4纳米粒子和PVP的摩尔比为1:12,搅拌,反应时间为1.5h;使用离心机(转速8500rpm)离心0.5h;产物分散在PBS缓冲液中,使Fe3O4-PVP的浓度为5mmol/L。
(3)将步骤(1)得到的Au-PEG的PBS分散液加入到NAC溶液中,控制Au-PEG与NAC的摩尔比为1:10,控制温度为60℃,搅拌反应时间为0.5h;然后加入步骤(2)得到的Fe3O4-PVP的PBS分散液,控制Au-PEG与Fe3O4-PVP纳米粒子的摩尔比为1:1.1,搅拌反应时间为0.5h;使用截留分子量(MWCO)为4000的超滤膜过滤,产物重新分散在PBS缓冲液中,得到Au-Fe3O4二聚体纳米探针的PBS分散液。
实施例7:
以与实施例1基本相同的方式,不同之处在于,将步骤(3)中的搅拌温度换成65℃。
所述磁性-金二聚体多功能纳米探针的性能测试:
使用振动样品磁强计对实施例1得到的探针进行磁化强度测试,结果如图2所示。可以看到,探针的磁滞回线矫顽力为0,显示了超顺磁性;且其饱和磁化强度大于1emu/g,具有优良的超顺磁性。
采用本领域公知的方法对实施例2得到的探针进行细胞毒性测试,结果如图3所示;可以看到,在使用浓度不高于3.2μmmol/L的探针与乳腺细胞孵育24h后,细胞的存活率高于80%,表明探针具有优良的生物相容性。
采用本领域公知的方法,用交变电磁场发生仪(400KHz,6.3kA/m)处理实实施例3得到的探针,测试其温度变化,结果如图4所示。当处理时间超过20min时,温度上升45℃,说明本发明得到的纳米探针具有良好的磁热效果。
测试实施例4得到的磁性纳米探针的光照下的升温曲线,结果如图5所示。在光照20min之后,温度上升25℃,说明本发明得到的纳米探针具有良好的光热效果。
采用本领域公知的方法对实施例5制得的探针的磁共振T2成像,结果如图6所示。可以看到本发明得到的磁性纳米探针具有良好的磁共振成像造影功能。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (10)

1.一种磁性-金二聚体多功能纳米探针,其特征在于,该纳米探针由一个聚乙二醇(PEG)修饰的金(Au)纳米粒子,和一个聚乙烯吡咯烷酮(PVP)修饰的四氧化三铁超顺磁纳米粒子,通过N-乙酰-L-半胱氨酸(NAC)偶联组成,并且形状为葫芦形。
2.根据权利要求1所述的磁性-金二聚体多功能纳米探针,其特征在于,所述聚乙二醇的分子量为100~10000;所述聚乙烯吡咯烷酮的分子量为8000~1000000。
3.一种根据据权利要求1或2所述的磁性-金二聚体多功能纳米探针的制备方法,其特征在于,该方法包括以下步骤:
步骤1,金纳米粒子的修饰:将金纳米粒子的分散液加入到PEG溶液中,搅拌反应,通过超滤膜过滤后,重新分散在PBS缓冲液中,获得Au-PEG的PBS分散液;
步骤2,磁性纳米粒子的修饰:将Fe3O4纳米粒子的分散液加入到PVP溶液中,搅拌反应,离心提纯,重新分散在PBS缓冲液中,获得Fe3O4-PVP的PBS分散液;
步骤3,金纳米粒子和磁性纳米粒子的偶联:将所述Au-PEG的PBS分散液和Fe3O4-PVP的PBS分散液逐次加入到NAC溶液中,搅拌反应,控制温度;通过超滤膜过滤后,重新分散在PBS缓冲液中,获得Au-Fe3O4二聚体的PBS分散液。
4.根据权利要求3所述的磁性-金二聚体多功能纳米探针的制备方法,其特征在于,所述步骤1中,所述金纳米粒子的尺寸范围为5~100nm,表面基团为氨基、羧基、酰胺基;所述聚乙二醇的分子量为100~10000;是超滤膜的截留分子量(MWCO)为300~50000。
5.根据权利要求3或4所述的磁性-金二聚体多功能纳米探针的制备方法,其特征在于,所述步骤1中,金纳米粒子分散液的浓度为1~20mmol/L;PEG溶液的浓度为0.01~20mol/L;所述金纳米粒子和PEG溶液混合时,金纳米粒子和PEG的摩尔比为1:1~1:200;搅拌反应的时间为0.1~2h;所述Au-PEG的PBS分散液中,Au纳米粒子的浓度为1~100mmol/L。
6.根据权利要求5所述的磁性-金二聚体多功能纳米探针的制备方法,其特征在于,所述步骤2中,Fe3O4纳米粒子的尺寸为15~150nm,表面基团羟基、羧基、氨基;所述聚乙烯吡咯烷酮的分子量为8000~1000000。
7.根据权利要求6所述的磁性-金二聚体多功能纳米探针的制备方法,其特征在于,所述步骤2中,Fe3O4纳米粒子分散液的浓度为1~20mmol/L;PVP溶液的浓度为0.1~200mol/L;Fe3O4纳米粒子和PVP溶液混合时,Fe3O4纳米粒子和PVP的摩尔比为1:1~1:100;搅拌反应的时间为0.5~10h;离心时转速范围为5000~10000rpm,时间为0.2~1h;所述Fe3O4-PVP的PBS分散液中,Fe3O4纳米粒子的浓度为1~100mmol/L。
8.根据权利要求7所述的磁性-金二聚体多功能纳米探针的制备方法,其特征在于,所述步骤3中,NAC溶液的浓度为0.1~100mmol/L;所述超滤膜的截留分子量(MWCO)为300~50000。
9.根据权利要求8所述的磁性-金二聚体多功能纳米探针的制备方法,其特征在于,所述步骤3中,Au-PEG的PBS分散液和Fe3O4-PVP的PBS分散液逐次加入到NAC溶液时,次序为Au-PEG先与NAC溶液混合搅拌,再加入Fe3O4-PVP混合搅拌;混合时,Au-PEG与Fe3O4-PVP纳米粒子的摩尔比为1:0.01~1:100;Au-PEG与NAC的摩尔比为1:1~1:100;搅拌反应的温度为60~80℃,反应时间为0.5~10h。
10.如权利要求3~9任意一项制备方法制备的磁性-金二聚体多功能纳米探针,作为磁共振成像造影剂、光热诊疗剂或者纳米载体的用途。
CN201910841268.0A 2019-09-06 2019-09-06 磁性-金二聚体多功能纳米探针及其制备方法、应用 Active CN110496232B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910841268.0A CN110496232B (zh) 2019-09-06 2019-09-06 磁性-金二聚体多功能纳米探针及其制备方法、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910841268.0A CN110496232B (zh) 2019-09-06 2019-09-06 磁性-金二聚体多功能纳米探针及其制备方法、应用

Publications (2)

Publication Number Publication Date
CN110496232A true CN110496232A (zh) 2019-11-26
CN110496232B CN110496232B (zh) 2020-11-17

Family

ID=68591325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910841268.0A Active CN110496232B (zh) 2019-09-06 2019-09-06 磁性-金二聚体多功能纳米探针及其制备方法、应用

Country Status (1)

Country Link
CN (1) CN110496232B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113804633A (zh) * 2021-09-15 2021-12-17 中国石油大学(华东) 基于Au-Fe3O4纳米材料的沙门氏菌识别免疫探针的制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104308182A (zh) * 2014-10-22 2015-01-28 江南大学 一种具有fret效应的金纳米粒子二聚体的组装方法
CN104528636A (zh) * 2014-12-18 2015-04-22 上海纳米技术及应用国家工程研究中心有限公司 一种磁性颗粒表面修饰金纳米颗粒的功能化方法
CN106310257A (zh) * 2016-08-26 2017-01-11 上海交通大学 一种单分散荧光磁性纳米探针及制备和应用
CN106377769A (zh) * 2016-08-26 2017-02-08 上海交通大学 一种靶向超顺磁单分散纳米花探针及其制备与应用
CN107245069A (zh) * 2017-06-13 2017-10-13 佛山科学技术学院 一种双环醇‑乙酰半胱氨酸偶联物及其制备方法和用途
CN108993534A (zh) * 2018-08-06 2018-12-14 武汉工程大学 一种修饰密度高、均匀性好的纳米金/银磁性催化剂的制备方法
CN110006722A (zh) * 2019-04-01 2019-07-12 华南师范大学 一种四氧化三铁/金结构纳米颗粒的制备方法及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104308182A (zh) * 2014-10-22 2015-01-28 江南大学 一种具有fret效应的金纳米粒子二聚体的组装方法
CN104528636A (zh) * 2014-12-18 2015-04-22 上海纳米技术及应用国家工程研究中心有限公司 一种磁性颗粒表面修饰金纳米颗粒的功能化方法
CN106310257A (zh) * 2016-08-26 2017-01-11 上海交通大学 一种单分散荧光磁性纳米探针及制备和应用
CN106377769A (zh) * 2016-08-26 2017-02-08 上海交通大学 一种靶向超顺磁单分散纳米花探针及其制备与应用
CN107245069A (zh) * 2017-06-13 2017-10-13 佛山科学技术学院 一种双环醇‑乙酰半胱氨酸偶联物及其制备方法和用途
CN108993534A (zh) * 2018-08-06 2018-12-14 武汉工程大学 一种修饰密度高、均匀性好的纳米金/银磁性催化剂的制备方法
CN110006722A (zh) * 2019-04-01 2019-07-12 华南师范大学 一种四氧化三铁/金结构纳米颗粒的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HENG YU,ET AL: "Dumbbell-like Bifunctional Au-Fe3O4Nanoparticles", 《NANO LETTERS》 *
N. ARSALANI ET AL: "Synthesis and characterization of PVP-functionalizedsuperparamagnetic Fe3O4 nanoparticles as an MRI contrast agent", 《EXPRESS POLYMER LETTERS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113804633A (zh) * 2021-09-15 2021-12-17 中国石油大学(华东) 基于Au-Fe3O4纳米材料的沙门氏菌识别免疫探针的制备方法及其应用
CN113804633B (zh) * 2021-09-15 2023-07-11 中国石油大学(华东) 基于Au-Fe3O4纳米材料的沙门氏菌识别免疫探针的制备方法及其应用

Also Published As

Publication number Publication date
CN110496232B (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
Yu et al. Magnetic particle imaging: a novel in vivo imaging platform for cancer detection
Hurley et al. Predictable heating and positive MRI contrast from a mesoporous silica-coated iron oxide nanoparticle
Bahadur et al. Biomaterials and magnetism
Quarta et al. Fluorescent-magnetic hybrid nanostructures: preparation, properties, and applications in biology
Hayashi et al. One-pot biofunctionalization of magnetic nanoparticles via thiol− ene click reaction for magnetic hyperthermia and magnetic resonance imaging
Strable et al. Synthesis and characterization of soluble iron oxide− dendrimer composites
Mahajan et al. Magnetic quantum dots in biotechnology–synthesis and applications
Barakat Magnetically modulated nanosystems: a unique drug-delivery platform
Cho et al. Functionalized gold nanorods for thermal ablation treatment of bladder cancer
WO2008048074A1 (en) Use of core-shell gold nanoparticle which contains magnetic nanoparticles for mri t2 contrast agent, cancer diagnostic and therapy
Samal et al. Multilayered magnetic gelatin membrane scaffolds
Ilyas et al. Selective conjugation of proteins by mining active proteomes through click-functionalized magnetic nanoparticles
CN101983172A (zh) 同性磁球作三维靶向
Aseri et al. Magnetic nanoparticles: Magnetic nano-technology using biomedical applications and future prospects
CN102406951A (zh) 一种巯基聚乙二醇修饰的光磁复合纳米材料及其应用
Jia et al. Facile fabrication of monodisperse CoFe 2 O 4 nanocrystals@ dopamine@ DOX hybrids for magnetic-responsive on-demand cancer theranostic applications
CN104027824A (zh) 具有抗体介导的光磁双模态介孔硅纳米颗粒的制备方法
CN106692991A (zh) 一种具有双加热和显像功能的靶向纳米磁粒及其制备方法和用途
CN108175858A (zh) 一种硫化亚锡纳米光热剂及其制备方法
CN1693416B (zh) 一种荧光微球及其喷雾干燥制备方法和应用
Dembski et al. Core-shell nanoparticles and their use for in vitro and in vivo diagnostics
Ahsan et al. Smart magnetically engineering colloids and biothin films for diagnostics applications
CN110496232A (zh) 磁性-金二聚体多功能纳米探针及其制备方法、应用
CN110559453B (zh) 一种用于显像指导的磁性纳米颗粒及其制备方法
CN110251688A (zh) 一种Gd掺杂碳点负载Fe3O4多模态成像探针的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant