CN110492917A - A kind of digital beamf orming array and realize transceiver channel amplitude, phase automatic calibration method - Google Patents

A kind of digital beamf orming array and realize transceiver channel amplitude, phase automatic calibration method Download PDF

Info

Publication number
CN110492917A
CN110492917A CN201910709956.1A CN201910709956A CN110492917A CN 110492917 A CN110492917 A CN 110492917A CN 201910709956 A CN201910709956 A CN 201910709956A CN 110492917 A CN110492917 A CN 110492917A
Authority
CN
China
Prior art keywords
channel
calibration
channels
amplitude
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910709956.1A
Other languages
Chinese (zh)
Other versions
CN110492917B (en
Inventor
洪伟
郭翀
田玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201910709956.1A priority Critical patent/CN110492917B/en
Publication of CN110492917A publication Critical patent/CN110492917A/en
Application granted granted Critical
Publication of CN110492917B publication Critical patent/CN110492917B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/084Equal gain combining, only phase adjustments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

It the invention discloses a kind of digital beamf orming array and realizes transceiver channel amplitude, phase automatic calibration method, a transmission lines is embedded on aerial array bore face, transmission line two is terminated with calibration transceiver channel;When transmitting calibration, each transmission channel is successively motivated, while recording signal amplitude and phase value that two calibration receiving channels sample, can be calculated amplitude of all transmission channels relative to reference channel, phase difference;When receiving calibration, all receiving channels of system are in running order, the calibration transmission channel of excitation two sides in succession, records calibration signal amplitude, the phase value that all receiving channels sample, and can be derived from amplitude of all receiving channels relative to reference channel, phase difference.The method that digital beamf orming array transceiver channel provided by the invention is calibrated automatically reduces the introducing of a large amount of directional couplers without the limitation in place and manpower on hardware, the self calibration suitable for extensive digital beamf orming array.

Description

Full-digital beam forming array and method for realizing automatic calibration of amplitude and phase of transmitting and receiving channel
Technical Field
The invention belongs to the technical field of calibration of microwave and millimeter wave communication systems, and particularly relates to a full-digital beam forming array and a method for realizing automatic calibration of amplitude and phase of a receiving and transmitting channel.
Background
The mobile communication technology has evolved through the 2G, 3G, 4G era, and will gradually enter the 5G era nowadays. Compared with 4G technology, 5G is expected to achieve 1000 times of increase in network capacity while achieving less than 1ms of data transmission delay. In order to achieve the above objective, Ultra-dense networking (Ultra-dense), millimeter Wave (mm-Wave), massive antenna array (MassiveMIMO), and other key technologies are adopted. The full-digital beam forming system can conveniently and quickly realize beam forming and multi-beam and downlink data precoding in a digital domain, and reduces the use of an analog phase shifter, so the full-digital beam forming system is the most direct and effective system scheme for realizing large-scale MIMO.
The digital beamforming system is an amplitude, phase coherent system. In order to realize accurate beam forming, in addition to considering frequency coherence and clock synchronization of the whole system, amplitude and phase calibration, referred to as channel amplitude/phase calibration, needs to be performed on the whole system. Due to the large number of channels, how to realize the fast and accurate amplitude/phase calibration of the system is worth researching. Existing calibration techniques are mostly directed to active phased systems. The all-digital multi-beam system has inherent architectural features and thus may vary in the manner of calibration. There are a large number of active devices in a digital beamforming system. The change of external factors such as temperature, time and the like can cause the change of the electrical characteristics of the device, thereby changing the amplitude and the phase of a receiving and transmitting channel of a system and influencing the precision of beam forming. On the other hand, for a base station that is mounted overhead, it is impractical to perform a darkroom calibration or floor calibration again on the system. Therefore, how to realize amplitude/phase automatic calibration of system channels and ensure accurate beam forming is worth researching.
At present, the self-calibration mode of the commonly used digital beam forming system is multi-purpose to calibrate the receiving channel, and the mode of calibrating the transmitting channel or the receiving channel simultaneously is mentioned. Meanwhile, in hardware, a directional coupler is usually arranged at the final stage of each radio frequency channel, and the energy of the coupled part is used for realizing system calibration, so that the complexity of system hardware is increased.
Methods for embedding transmission lines in antenna arrays for detection of array channels were earlier applied in large phased array calibration. Since the all-digital beamforming system does not require channel combining, it has some differences in calibration method from the phased array system. Coupling the channel energy using embedded transmission lines in the array is simpler in hardware than the final stage of the channel plus coupler. Meanwhile, the automatic calibration of the full digital beam forming array channel can be better completed by utilizing the symmetry of the array path and the similarity of the coupling of the units and the transmission lines.
Disclosure of Invention
The purpose of the invention is as follows: aiming at the problems, the invention provides a method for realizing the automatic calibration of the amplitude and the phase of a transmitting-receiving channel of a full digital beam forming system, which can realize the automatic calibration of the transmitting-receiving channel and simplify a calibration hardware circuit as much as possible.
The technical scheme is as follows: the automatic calibration scheme of the amplitude and the phase of the receiving and transmitting channel of the all-digital beam forming system needs to add a microstrip transmission line on the aperture surface of an antenna array on hardware. The antenna units are in a rectangular patch form, the unit structures are the same, the unit structures are arranged at equal intervals to form an array, and the whole array is arranged on a printed circuit board. The coupling transmission line is in a microstrip transmission line form, is also printed on the printed circuit board, is spaced from the antenna array by a certain distance, and has a certain distance to each antenna unit. The antenna structure is symmetrical, and the whole array structure is a repeated arrangement of unit structures. The two ends of the coupling transmission line are connected with corresponding calibration channels, and the calibration channels have a transceiving mode and are switched by a switch.
The antenna array structure of the invention is as follows: an all-digital beam forming array comprises an antenna unit (1), a coupling transmission line (2), calibration channels (3) and (4) with transceiving modes, and an array transceiving channel (5), wherein the array size is 1 multiplied by N, and N is the total number of the channels; the antenna units (1) are connected with the transceiving channels (5) and are in one-to-one correspondence, and the antenna units (1) and the transceiving channels (5) are periodically and repeatedly arranged; the coupling transmission line (2) is located on the array antenna aperture surface, the position of the coupling transmission line (2) to each antenna unit (1) is fixed, the whole antenna structure is symmetrical, and the two ends of the coupling transmission line (2) are respectively connected with a calibration channel (3) and a calibration channel (4) with a transceiving mode.
Moreover, the method for automatically calibrating the amplitude and the phase of the transmitting and receiving channel based on the antenna array structure comprises the following steps:
(1) recording the calibration channels (3) and (4) as P1、P2The antenna system is in the transmitting state to transmit the calibration signal, and the two calibration channels P1、P2In a receiving state, sequentially exciting each transmitting channel, and recording the amplitude and the phase of signals received by the calibration channels at the two ends of the coupling transmission line;
(2) calculating the channel amplitude and phase difference of two adjacent transmitting channels by using the characteristics of path symmetry and about equal coupling quantity of each unit to the coupling transmission line, and using vector betat n,n+1Represents;
(3) calculating the amplitude and phase difference of all transmitting channels relative to the reference channel by using the vector alphat L,nIndicating that the self calibration of the transmitting channel is completed;
(4) the antenna system is in receiving state, firstly only one side of the calibration channel P is excited1The other side of the calibration channel P2In a receiving state, the signal matching is calibrated, and the amplitude and phase values of the coupling signals sampled by each receiving channel in the array are recorded;
(5) exciting only the calibration channel P2Calibration channel P1In receiving state, the amplitude and phase of the coupling signal sampled by each receiving channel are recorded, the amplitude and phase difference of adjacent receiving channels are calculated by using the characteristics of path symmetry and equal coupling quantity between each unit and the coupling transmission line, and the vector beta is usedr n,n+1Represents;
(6) calculating the amplitude and phase difference of all receiving channels relative to the reference channel by using the vector alphar L,nIndicating that self-calibration of the receive channel is complete.
Further, in the step (2), the channel amplitude and the phase difference of two adjacent transmitting channels are calculated, and the method comprises the following steps:
(2.1) numbering the receiving and transmitting channels of the all-digital beam forming array from left to right sequentially by numbers 1,2, …, wherein N represents the total number of the channels, randomly selecting one channel with the number of L as a reference channel, and calibrating according to the reference channel to obtain amplitude values and phase values of all transmitting and receiving channels;
(2.2) hypothesis TnRepresenting the channel state information of the nth transmitting channel in the array, wherein N belongs to N, the phase and the amplitude of the N are random quantities, and the N needs to be calibrated and solved, CnIndicating the amount of coupling, L, of the nth antenna element to the transmission linejnThe transmission signal representing the nth transmission channel is coupled to the transmission line and then transmitted through the transmission line until the path sampled by the jth calibration channel, j being 1,2, i.e. P1、P2
(2.3) at t1At the moment, only the nth transmitting channel is excited, the rest channels are in an unexcited state or a state of maximum channel attenuation value, and the coupling signal between the antenna and the coupling transmission line is calibrated by the channel P1And P2Collecting the sampled signals respectively by an,bnExpressed as:
wherein, anAfter the signal representing the nth transmitting channel is coupled to the transmission line, the signal is transmitted through the calibrated channel P1Collecting the obtained signals; bnAfter the signal representing the nth transmitting channel is coupled to the transmission line, the signal is transmitted through the calibrated channel P2Collecting the obtained signals; deltan+1,nRepresents the calibration channel P caused by the difference of the transmission paths of the transmitted calibration signal of the nth channel relative to the (n + 1) th channel2The difference between the sampled signal values, indexed by directivity, can be expressed as:
wherein,signal transmission to P representing transmission of nth transmission channel2The amount of transmission of the channel is calibrated,transmitting signal of n +1 transmitting channel to P2Calibrating the transmission quantity of the channel;
(2.4) at t2At the moment, only the (n + 1) th channel is excited, the rest channels are in an unexcited state or a state of maximum channel attenuation value, the coupling signals between the antenna and the transmission line are collected by the calibration channels P1 and P2, an+1After the signal representing the (n + 1) th transmitting channel is coupled to the transmission line, the signal is transmitted through the calibrated channel P1Collecting the obtained signals; bn+1After the signal representing the (n + 1) th transmitting channel is coupled to the transmission line, the signal is transmitted through the calibrated channel P2Collecting the obtained signals; deltan,n+1Represents the calibration channel P caused by the difference of the transmission paths of the transmission signals of the (n + 1) th channel relative to the nth channel1Differences between sampled signal values, subscripts directional, an+1,bn+1The value of (d) can be expressed as:
the antenna elements are identical in the array and the entire array structure is symmetrical, with the following assumptions:
Cn≈Cn+1,δn+1,n≈δn,n+1 (8)
combining hypothesis (8), with (6)/(3), (7)/(4), we obtained:
further, obtaining:
will be kappan,n+1The amplitude of (d) is expressed in dB and the angle is expressed in rad as (13):
wherein mag _ dB represents that the vector signal takes the amplitude and is expressed in a dB form, and arg represents that the vector signal takes the angle; calibration factor beta of adjacent channelst n,n+1Expressed as:
βt n,n+1is a vector and is also a relative quantity, expressed in the form ofThe amplitude of the signal represents the amplitude difference of the n +1 th transmitting channel relative to the nth transmitting channel, and the phase of the signal represents the n +1 th transmitting channelPhase difference of the emission channel relative to the nth emission channel;
let beta bet n,n+1=Tn+1/Tn=κn,n+1Substituting it into the formula (9) to obtain the delta actually requiredn,n+1Is's guess value δ'n,n+1The estimated value δ'n,n+1With the true value deltan,n+1The relationship of (c) is expressed as:
i.e. deltan,n+1Is's guess value δ'n,n+1Compared with the real value, the amplitude is the same, and the phase position has pi ambiguity;
(2.5) obtaining S parameters of the antenna array through simulation, taking a simulation result as a judgment basis, and excluding a speculative value delta'n,n+1The middle phase has a pi fuzzy value, so that the real delta is obtainedn,n+1And betat n,n+1
(2.6) and so on to obtain the adjacent channel calibration factor beta of all the transmitting channelst i,i+1Wherein, i is 1,2, N-1, N represents the total number of channels.
Further, the self-calibration of the transmitting channel is completed in the step (3), and the method comprises the following steps: channel calibration factor alpha of nth transmitting channel relative to reference channel in arrayt L,nCan be expressed as:
therefore, amplitude and phase calibration of all the transmitting channels relative to the reference channel L can be completed, namely, the amplitude and phase self-calibration process of the transmitting channels of the whole array is completed.
Further, the specific method of the step (4) is as follows:
setting the array in a receiving state, all channels in a working state, at t1At the moment, the channel P is calibrated1In the transmitting state, a calibration signal is injected into the array through the coupling line to calibrate the switchWay P2In the receiving state, only for signal matching, all receiving channels sample the signals coupled from the transmission line simultaneously, in the process, the signals p sampled by the nth and the (n + 1) th receiving channelsn,pn+1Can be expressed as:
wherein R isnRepresenting channel state information of the nth receive channel in the array, whose phase and amplitude are unknown and which needs to be calibrated, CnIndicating the amount of coupling, L, of the transmission line to the nth antenna elementn,1Representing the transmission of the calibration signal transmitted by the 1 st calibration channel through the transmission line up to the transmission path taken by the nth receive channel sample, δn+1,nThe calibration signal obtained by sampling the nth channel and the (N + 1) th channel is represented, the subscript has directivity due to the amplitude and phase difference of signals caused by different path transmission, and N is 1,2, … and N-1.
Further, the specific method of step (5) is as follows:
is set at t2At the moment, the channel P is calibrated2In the transmit state, a calibration signal is injected into the array through the coupling line to calibrate channel P1In the receiving state, for signal matching purposes only, all receiving channels sample the signal coupled from the transmission line simultaneously, so that the signals q sampled by the n-th and n + 1-th receiving channelsn,qn+1Can be expressed as:
from equations (17) - (20), in combination with hypothesis (8), one can obtain:
with the transmitting channel calibration processes (11) - (15), adjacent receiving channel calibration factors can be obtainedCo-emission calibration factor betat n,n+1Likewise, it is also a vector and is a relative value, whose magnitude represents the magnitude difference of the (n + 1) th reception channel with respect to the nth reception channel, and phase represents the phase difference of the (n + 1) th reception channel with respect to the nth reception channel.
Further, the specific method of step (6) is as follows: calibration coefficients for the nth receive channel relative to the reference channel (L-channel) in the arrayCan be expressed as:
therefore, the amplitude and phase self-calibration process of all receiving channels can be completed.
Has the advantages that: compared with the prior art, the technical scheme of the invention has the following beneficial technical effects:
the invention discloses a method for automatically calibrating amplitude and phase of a receiving and transmitting channel of a full-digital beam forming array, which can simultaneously realize the automatic calibration of the amplitude and phase of the receiving and transmitting channel of the array. Meanwhile, compared with other self-calibration schemes, the method simplifies a calibration hardware circuit, has short calibration time, and ensures that the hardware cost is lower when the automatic calibration scheme is adopted in the all-digital large-scale antenna array, and the normal working state of the system is hardly influenced.
Drawings
FIG. 1 is a diagram of a calibration hardware embodiment of the present invention;
FIG. 2 is a diagram illustrating a calibration process for a transmit channel in accordance with an embodiment of the present invention;
FIG. 3 is a diagram illustrating a calibration process for a receive channel according to an embodiment of the present invention;
FIG. 4 is a flow chart of the present invention;
FIG. 5 is a beam forming pattern obtained by self-calibration of a 1 × 8 all-digital beam array through a transmitting channel according to the present invention;
fig. 6 is a beam synthesis directional diagram obtained by self-calibration of a receiving channel of a 1 × 8 all-digital beam array obtained by actual measurement according to the present invention.
Detailed Description
The technical solution of the present invention will be further described with reference to the following detailed description and accompanying drawings.
The specific embodiment discloses an automatic amplitude and phase calibration method for a receiving and transmitting channel of a full digital beamforming array, as shown in fig. 1. The antenna unit is shown as 1, the unit adopts a rectangular patch form, each unit has the same structure and is arranged in an array at equal intervals, and the whole array is arranged on a printed circuit board. The antenna structure is symmetrical, and the whole array structure is a repeated arrangement of unit structures. And 2, a coupling transmission line, which is printed on the printed circuit board in the form of a microstrip transmission line and spaced apart from the antenna array. Through spatial electromagnetic coupling, energy radiated by each antenna element can be coupled to the transmission line. Similarly, the energy on the transmission line may be coupled to each antenna element. The spacing determines the amount of coupling of the antenna elements to the transmission line and the spacing of the coupling line to each antenna element is the same. 3. And 4, two calibration channels, which are respectively connected at two ends of the coupled transmission line, and sample the calibration signal coupled to the transmission line by the system transmitting channel (transmitting channel calibration) or provide the system receiving channel with a calibration signal source (receiving channel calibration). The calibration channel has a transmit-receive mode and is switched by a switch. And 5, a system transceiving channel which has two modes of receiving and transmitting and uses a switch for mode switching. They correspond to the antenna units one to one, and the channel energy is radiated out through the antenna units. The system channels are numbered 1,2, …, N from left to right, and the reference channel is the lth channel. The full digital beam forming system needs to know the amplitude and phase difference of each channel relative to the reference channel, and the amplitude and phase difference of each channel is an unknown quantity and can be calculated by using the automatic calibration method.
The self-calibration process of the array transmit-receive channel is further described with reference to the accompanying drawings:
(1) as shown in fig. 2, the system transmit channel is self-calibrated. Let T benChannel state information (N ∈ N) representing the nth transmit channel in the array, whose phase and amplitude are unknown, CnRepresenting the amount of coupling, P, of the nth antenna element to the transmission line1、P2Respectively, calibration channel 3 and calibration channel 4, L in FIG. 1jnAfter the transmit signal representing the nth transmit channel is coupled onto the transmission line, it is transmitted through the transmission line until the path sampled by the jth calibration channel, j being 1, 2.
As shown in FIG. 2(a) (b), at t1At the moment, only the nth transmitting channel is excited, the rest channels are in an unexcited state or a state of maximum channel attenuation value, a black solid frame represents the excited state, and a slash frame represents the unexcited state, which are the same as the following. Thus, the coupling signal between the antenna and the transmission line will be calibrated to the channel P1And P2Collecting the sampled signals respectively by an,bnExpressed as:
wherein, anAfter the signal representing the nth transmitting channel is coupled to the transmission line, the signal is transmitted through the calibrated channel P1Collecting the obtained signals; bnThe signal representing the nth transmission channel is coupled to the transmission line and passes throughTransmitting calibrated channel P2Collecting the obtained signals; deltan+1,nRepresents the calibration channel P caused by the difference of the transmission paths of the transmitted calibration signal of the nth channel relative to the (n + 1) th channel2The difference between the sampled signal values, indexed by directivity, can be expressed as:
wherein,signal transmission to P representing transmission of nth transmission channel2Calibrate the traffic of the channel (when the other ports match). In the same way, the method for preparing the composite material,transmitting signal of n +1 transmitting channel to P2Calibrate the traffic of the channel (when the other ports match).
(2) As shown in FIGS. 2(c) and (d), at t2At the moment, only the (n + 1) th channel is excited, and the rest channels are in an unexcited state or a state of maximum channel attenuation value. Thus, the coupling signal between the antenna and the transmission line will be collected by the calibration channels P1 and P2, an+1After the signal representing the (n + 1) th transmitting channel is coupled to the transmission line, the signal is transmitted through the calibrated channel P1Collecting the obtained signals; bn+1After the signal representing the (n + 1) th transmitting channel is coupled to the transmission line, the signal is transmitted through the calibrated channel P2Collecting the obtained signals; deltan,n+1Represents the calibration channel P caused by the difference of the transmission paths of the transmission signals of the (n + 1) th channel relative to the nth channel1Differences between sampled signal values, subscripts directional, an+1,bn+1The value of (d) can be expressed as:
because the antenna elements are identical in the array and the overall array structure is symmetrical, the following assumptions hold:
Cn≈Cn+1,δn+1,n≈δn,n+1 (8)
combining hypothesis (8), with (6)/(3), (7)/(4), we obtained:
further, obtaining:
will be kappan,n+1The amplitude of (d) is expressed in dB and the angle is expressed in rad as (13):
wherein mag _ dB indicates that the vector signal takes an amplitude and is expressed in dB form, and arg indicates that the vector signal takes an angle.
Calibration factor beta of adjacent channelst n,n+1It can be expressed as:
βt n,n+1is a vector and also a relative quantity, havingThe expression of (1). The amplitude of the signal represents the amplitude difference of the (n + 1) th transmitting channel relative to the nth transmitting channel, and the phase represents the phase difference of the (n + 1) th transmitting channel relative to the nth transmitting channel.
It can be seen that there is a pi ambiguity in the phase of the calculated calibration factor. To solve this problem, a decision is added, i.e. β is assumedt n,n+1=Tn+1/Tn=κn,n+1Substituting it into the formula (9) to obtain the delta actually requiredn,n+1Is's guess value δ'n,n+1. The estimated value δ'n,n+1With the true value deltan,n+1Can be expressed as:
i.e. deltan,n+1Is's guess value δ'n,n+1Compared with the true value, the amplitude is the same, and the phase position has pi ambiguity.
From (5), δn,n+1The S parameter of the antenna array can be obtained by full-wave simulation software in advance. Therefore, the estimated value δ 'can be eliminated by using the simulation result as the judgment basis'n,n+1The middle phase has a pi fuzzy value, so that the real delta is obtainedn,n+1And betat n,n+1
And analogizing in turn to obtain the adjacent channel calibration factor beta of all the transmitting channelst i,i+1Wherein, i is 1,2, N-1, N represents the total number of channels.
(4) A channel calibration coefficient α of an nth transmit channel (N ═ 1, 2., N) in the array relative to a reference channel (lth channel)t L,nCan be expressed as:
therefore, amplitude and phase calibration of all the transmitting channels relative to the L channel can be completed, namely amplitude and phase self-calibration process of the whole array transmitting channel is completed.
(5) And after the calibration of the transmitting channel is completed, the calibration of the receiving channel of the array is carried out next step. The array is in the receive state and all channels are in the active state as shown in figure 3. At t, as shown in FIG. 3(a)1At that time, calibration channel 1 is in the transmit state, injecting a calibration signal into the array through the coupled lines. The calibration channel 2 is in the receive state and is only used for signal matching purposes. All receive channels sample the signals coupled from the transmission line simultaneously. Thus, the signal p sampled by the nth and (n + 1) th receiving channels in the processn,pn+1Can be expressed as:
wherein R isnChannel state information (N ∈ N) representing the nth receive channel in the array, whose phase and amplitude are unknown, CnIndicating the amount of coupling, L, of the first transmission line to the nth antenna elementn1Which represents the transmission of the calibration signal transmitted by the 1 st calibration channel through the transmission line up to the transmission path through which the nth receive channel (N ═ 1, 2., N) samples. Deltan+1,nThe calibration signal obtained by sampling the nth channel and the (n + 1) th channel is shown, the amplitude and the phase difference of the signal caused by the transmission of different paths are shown, the subscript has directionality,
(6) at t2At that time, calibration channel 2 is in the transmit state, injecting a calibration signal into the array through the coupled lines. The calibration channel 1 is in the receive state and is only used for signal matching purposes. All receiving channels being sampled simultaneously from the transmission line couplingOf the signal of (1). Thus, the nth and (n + 1) th receive channels sample the resulting signal qn,qn+1Can be expressed as:
from equations (17) - (20) in combination with hypothesis (8), one can obtain:
with the transmitting channel calibration processes (11) - (15), adjacent receiving channel calibration factors can be obtained
(7) Calibration coefficients for the nth receive channel (N1, 2.., N) in the array relative to the reference channel (L channel)Can be expressed as:
therefore, the amplitude and phase self-calibration process of all receiving channels can be completed.
The self-calibration flow chart is shown in fig. 4.
The self-calibration process is verified in a 1 × 8 all-digital beam synthesis array, and a beam synthesis pattern obtained after the self-calibration process of the transmitting channel is shown in fig. 5, and a beam synthesis pattern obtained after the self-calibration process of the receiving channel is shown in fig. 6. The feasibility of the self-calibration process is proved through the comparison result of the patterns after the uncalibrated and calibrated.
The above description is only an embodiment of the present invention, and it should be noted that: it will be apparent to those skilled in the art that various modifications and adaptations can be made without departing from the principles of the invention and these are intended to be within the scope of the invention.

Claims (7)

1. An all-digital beam forming array is characterized in that the array antenna comprises an antenna unit (1), a coupling transmission line (2), calibration channels (3) and (4) with transceiving modes, and an array transceiving channel (5), wherein the array scale is 1 multiplied by N, and N is the total number of channels; the antenna units (1) are connected with the transceiving channels (5) in a one-to-one correspondence manner, and the antenna units (1) and the transceiving channels (5) are periodically and repeatedly arranged in an array at equal intervals as a whole; the coupling transmission line (2) is located on the array antenna aperture surface, the position of the coupling transmission line (2) to each antenna unit (1) is fixed, calibration channels (3) and (4) with a transceiving mode are connected to two ends of the coupling transmission line (2), and the whole antenna structure is symmetrical.
2. The method of claim 1, wherein the method comprises the following steps:
(1) recording the calibration channels (3) and (4) as P1、P2The antenna system is in the transmitting state to transmit the calibration signal, and the two calibration channels P1、P2In a receiving state, sequentially exciting each transmitting channel, and recording the amplitude and the phase of signals received by the calibration channels at the two ends of the coupling transmission line;
(2) calculating the channel amplitude and phase difference of two adjacent transmitting channels by using the characteristics of path symmetry and about equal coupling quantity of each unit to the coupling transmission line, and using vector betat n,n+1Represents;
(3) calculating the amplitude and phase difference of all transmitting channels relative to the reference channel by using the vector alphat L,nIndicating that the self calibration of the transmitting channel is completed;
(4) the antenna system is in receiving state, firstly only one side of the calibration channel P is excited1The other side of the calibration channel P2In a receiving state, the signal matching is calibrated, and the amplitude and phase values of the coupling signals sampled by each receiving channel in the array are recorded;
(5) exciting only the calibration channel P2Calibration channel P1In receiving state, the amplitude and phase of the coupling signal sampled by each receiving channel are recorded, the amplitude and phase difference of adjacent receiving channels are calculated by using the characteristics of path symmetry and equal coupling quantity between each unit and the coupling transmission line, and the vector beta is usedr n,n+1Represents;
(6) calculating the amplitude and phase difference of all receiving channels relative to the reference channel by using the vector alphar L,nIndicating that self-calibration of the receive channel is complete.
3. The method for automatically calibrating amplitude and phase of all-digital beamforming array transmit-receive channel according to claim 2, wherein in step (2), the channel amplitude and phase difference between two adjacent transmit channels are calculated as follows:
(2.1) numbering the receiving and transmitting channels of the all-digital beam forming array from left to right sequentially by numbers 1,2, …, wherein N represents the total number of the channels, randomly selecting one channel with the number of L as a reference channel, and calibrating according to the reference channel to obtain amplitude values and phase values of all transmitting and receiving channels;
(2.2) hypothesis TnRepresenting the channel state information of the nth transmitting channel in the array, wherein N belongs to N, the phase and the amplitude of the N are random quantities, and the N needs to be calibrated and solved, CnIndicating the amount of coupling, L, of the nth antenna element to the transmission linejnThe transmission signal representing the nth transmission channel is coupled to the transmission line and then transmitted through the transmission line until the path sampled by the jth calibration channel, j being 1,2, i.e. P1、P2
(2.3) at t1At the moment, only the nth transmitting channel is excited, and the rest channels are in an unexcited state or in a channel decay stateThe maximum decrement state, the coupling signal between the antenna and the coupling transmission line will be calibrated by the channel P1And P2Collecting the sampled signals respectively by an,bnExpressed as:
wherein, anAfter the signal representing the nth transmitting channel is coupled to the transmission line, the signal is transmitted through the calibrated channel P1Collecting the obtained signals; bnAfter the signal representing the nth transmitting channel is coupled to the transmission line, the signal is transmitted through the calibrated channel P2Collecting the obtained signals; deltan+1,nRepresents the calibration channel P caused by the difference of the transmission paths of the transmitted calibration signal of the nth channel relative to the (n + 1) th channel2The difference between the sampled signal values, indexed by directivity, can be expressed as:
wherein,signal transmission to P representing transmission of nth transmission channel2The amount of transmission of the channel is calibrated,transmitting signal of n +1 transmitting channel to P2Calibrating the transmission quantity of the channel;
(2.4) at t2At the moment, only the (n + 1) th channel is excited, the rest channels are in an unexcited state or a state of maximum channel attenuation value, the coupling signals between the antenna and the transmission line are collected by the calibration channels P1 and P2, an+1Indicates the n +1 th hairAfter the signal of the transmitting channel is coupled to the transmission line, the signal passes through the transmission calibrated channel P1Collecting the obtained signals; bn+1After the signal representing the (n + 1) th transmitting channel is coupled to the transmission line, the signal is transmitted through the calibrated channel P2Collecting the obtained signals; deltan,n+1Represents the calibration channel P caused by the difference of the transmission paths of the transmission signals of the (n + 1) th channel relative to the nth channel1Differences between sampled signal values, subscripts directional, an+1,bn+1The value of (d) can be expressed as:
the antenna elements are identical in the array and the entire array structure is symmetrical, with the following assumptions:
Cn≈Cn+1,δn+1,n≈δn,n+1 (8)
combining hypothesis (8), with (6)/(3), (7)/(4), we obtained:
further, obtaining:
will be kappan,n+1The amplitude of (d) is expressed in dB and the angle is expressed in rad as (13):
wherein mag _ dB represents that the vector signal takes the amplitude and is expressed in a dB form, and arg represents that the vector signal takes the angle; calibration factor beta of adjacent channelst n,n+1Expressed as:
βt n,n+1is a vector and is also a relative quantity, expressed in the form ofThe amplitude of the signal represents the amplitude difference of the (n + 1) th transmitting channel relative to the nth transmitting channel, and the phase represents the phase difference of the (n + 1) th transmitting channel relative to the nth transmitting channel;
let beta bet n,n+1=Tn+1/Tn=κn,n+1Substituting it into the formula (9) to obtain the delta actually requiredn,n+1Is's guess value δ'n,n+1The estimated value δ'n,n+1With the true value deltan,n+1The relationship of (c) is expressed as:
i.e. deltan,n+1Is's guess value δ'n,n+1Compared with the real value, the amplitude is the same, and the phase position has pi ambiguity;
(2.5) obtaining days by simulationThe S parameter of the line array takes the simulation result as a judgment basis and excludes the speculative value delta'n,n+1The middle phase has a pi fuzzy value, so that the real delta is obtainedn,n+1And betat n,n+1
(2.6) and so on to obtain the adjacent channel calibration factor beta of all the transmitting channelst i,i+1Wherein, i is 1,2, N-1, N represents the total number of channels.
4. The method for automatically calibrating amplitude and phase of transmit-receive channels of an all-digital beamforming array according to claim 3, wherein the self-calibration of the transmit channels is performed in step (3), and the method comprises the following steps: channel calibration factor alpha of nth transmitting channel relative to reference channel in arrayt L,nCan be expressed as:
therefore, amplitude and phase calibration of all the transmitting channels relative to the reference channel L can be completed, namely, the amplitude and phase self-calibration process of the transmitting channels of the whole array is completed.
5. The method for automatically calibrating amplitude and phase of transmit-receive channel of all-digital beam forming array according to claim 3 or 4, wherein the step (4) comprises the following steps:
setting the array in a receiving state, all channels in a working state, at t1At the moment, the channel P is calibrated1In the transmit state, a calibration signal is injected into the array through the coupling line to calibrate channel P2In the receiving state, only for signal matching, all receiving channels sample the signals coupled from the transmission line simultaneously, in the process, the signals p sampled by the nth and the (n + 1) th receiving channelsn,pn+1Can be expressed as:
wherein R isnRepresenting channel state information of the nth receive channel in the array, whose phase and amplitude are unknown and which needs to be calibrated, CnIndicating the amount of coupling, L, of the transmission line to the nth antenna elementn,1Representing the transmission of the calibration signal transmitted by the 1 st calibration channel through the transmission line up to the transmission path taken by the nth receive channel sample, δn+1,nThe calibration signal obtained by sampling the nth channel and the (N + 1) th channel is represented, the subscript has directivity due to the amplitude and phase difference of signals caused by different path transmission, and N is 1,2, … and N-1.
6. The method for automatically calibrating amplitude and phase of transmit-receive channel of all-digital beam forming array according to claim 3 or 4, wherein the step (5) comprises the following steps:
is set at t2At the moment, the channel P is calibrated2In the transmit state, a calibration signal is injected into the array through the coupling line to calibrate channel P1In the receiving state, for signal matching purposes only, all receiving channels sample the signal coupled from the transmission line simultaneously, so that the signals q sampled by the n-th and n + 1-th receiving channelsn,qn+1Can be expressed as:
from equations (17) - (20), in combination with hypothesis (8), one can obtain:
with the transmitting channel calibration processes (11) - (15), adjacent receiving channel calibration factors can be obtainedCo-emission calibration factor betat n,n+1Likewise, it is also a vector and is a relative value, whose magnitude represents the magnitude difference of the (n + 1) th reception channel with respect to the nth reception channel, and phase represents the phase difference of the (n + 1) th reception channel with respect to the nth reception channel.
7. The method for automatically calibrating amplitude and phase of all-digital beamforming array transceiving channel according to claim 6, wherein the specific method in step (6) is as follows: calibration coefficients for the nth receive channel relative to the reference channel in the arrayCan be expressed as:
therefore, the amplitude and phase self-calibration process of all receiving channels can be completed.
CN201910709956.1A 2019-07-29 2019-07-29 Full-digital beam forming array and method for realizing automatic calibration of amplitude and phase of transmitting and receiving channel Active CN110492917B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910709956.1A CN110492917B (en) 2019-07-29 2019-07-29 Full-digital beam forming array and method for realizing automatic calibration of amplitude and phase of transmitting and receiving channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910709956.1A CN110492917B (en) 2019-07-29 2019-07-29 Full-digital beam forming array and method for realizing automatic calibration of amplitude and phase of transmitting and receiving channel

Publications (2)

Publication Number Publication Date
CN110492917A true CN110492917A (en) 2019-11-22
CN110492917B CN110492917B (en) 2022-07-29

Family

ID=68549123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910709956.1A Active CN110492917B (en) 2019-07-29 2019-07-29 Full-digital beam forming array and method for realizing automatic calibration of amplitude and phase of transmitting and receiving channel

Country Status (1)

Country Link
CN (1) CN110492917B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111123220A (en) * 2019-11-29 2020-05-08 瞬联软件科技(北京)有限公司 Multichannel amplitude-phase calibration method and system for millimeter wave radar
CN111585669A (en) * 2020-04-29 2020-08-25 电子科技大学 Method for simultaneously calibrating receiving and transmitting channels of antenna array
CN112698113A (en) * 2020-12-10 2021-04-23 上海移远通信技术股份有限公司 Amplitude calibration method and device of receiving channel and network equipment
CN113296059A (en) * 2021-05-25 2021-08-24 四川九洲空管科技有限责任公司 Method for controlling and synthesizing omnidirectional directional diagram based on TCAS directional antenna transmitting wave beam
CN114512805A (en) * 2022-01-19 2022-05-17 中国电子科技集团公司第十研究所 Embedded sandwich broadband coupling calibration network
CN115694683A (en) * 2023-01-03 2023-02-03 成都实时技术股份有限公司 Digital-analog pilot frequency multichannel emission calibration method based on Lasso optimization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426300A (en) * 2011-08-31 2012-04-25 西安空间无线电技术研究所 Calibration system of amplitude and phase errors of satellite-borne wave beam formation reception channels and method thereof
CN107315183A (en) * 2017-06-01 2017-11-03 西南电子技术研究所(中国电子科技集团公司第十研究所) The calibration method of aeronautical satellite array antenna received system
CN108155958A (en) * 2017-11-22 2018-06-12 西南电子技术研究所(中国电子科技集团公司第十研究所) Extensive mimo antenna array far field calibration system
CN108549058A (en) * 2018-02-28 2018-09-18 四川九洲电器集团有限责任公司 Secondary radar broadband active phased array system and dynamic calibration method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426300A (en) * 2011-08-31 2012-04-25 西安空间无线电技术研究所 Calibration system of amplitude and phase errors of satellite-borne wave beam formation reception channels and method thereof
CN107315183A (en) * 2017-06-01 2017-11-03 西南电子技术研究所(中国电子科技集团公司第十研究所) The calibration method of aeronautical satellite array antenna received system
CN108155958A (en) * 2017-11-22 2018-06-12 西南电子技术研究所(中国电子科技集团公司第十研究所) Extensive mimo antenna array far field calibration system
CN108549058A (en) * 2018-02-28 2018-09-18 四川九洲电器集团有限责任公司 Secondary radar broadband active phased array system and dynamic calibration method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111123220A (en) * 2019-11-29 2020-05-08 瞬联软件科技(北京)有限公司 Multichannel amplitude-phase calibration method and system for millimeter wave radar
CN111123220B (en) * 2019-11-29 2023-11-07 瞬联软件科技(北京)有限公司 Multi-channel amplitude and phase calibration method and system for millimeter wave radar
CN111585669A (en) * 2020-04-29 2020-08-25 电子科技大学 Method for simultaneously calibrating receiving and transmitting channels of antenna array
CN112698113A (en) * 2020-12-10 2021-04-23 上海移远通信技术股份有限公司 Amplitude calibration method and device of receiving channel and network equipment
CN112698113B (en) * 2020-12-10 2024-07-05 上海移远通信技术股份有限公司 Amplitude calibration method and device for receiving channel and network equipment
CN113296059A (en) * 2021-05-25 2021-08-24 四川九洲空管科技有限责任公司 Method for controlling and synthesizing omnidirectional directional diagram based on TCAS directional antenna transmitting wave beam
CN113296059B (en) * 2021-05-25 2022-07-19 四川九洲空管科技有限责任公司 Method for controlling and synthesizing omnidirectional directional pattern based on TCAS directional antenna transmitting wave beam
CN114512805A (en) * 2022-01-19 2022-05-17 中国电子科技集团公司第十研究所 Embedded sandwich broadband coupling calibration network
CN114512805B (en) * 2022-01-19 2023-08-25 中国电子科技集团公司第十研究所 Buried Sandwich Broadband Coupling Calibration Network
CN115694683A (en) * 2023-01-03 2023-02-03 成都实时技术股份有限公司 Digital-analog pilot frequency multichannel emission calibration method based on Lasso optimization
CN115694683B (en) * 2023-01-03 2023-03-21 成都实时技术股份有限公司 Digital-analog pilot frequency multichannel emission calibration method based on Lasso optimization

Also Published As

Publication number Publication date
CN110492917B (en) 2022-07-29

Similar Documents

Publication Publication Date Title
CN110492917B (en) Full-digital beam forming array and method for realizing automatic calibration of amplitude and phase of transmitting and receiving channel
US10663563B2 (en) On-site calibration of array antenna systems
US6507315B2 (en) System and method for efficiently characterizing the elements in an array antenna
US8754811B1 (en) Digital beamforming phased array
Ding et al. Reputation-based trust model in vehicular ad hoc networks
CN110429964B (en) Rapid and accurate beam tracking method based on two-dimensional phased antenna array
CN108988963B (en) Test method, transmitting equipment, test equipment and test system
EP1468300A1 (en) Antenna measurement system
CN107329125A (en) Eliminate short-term burst interference signal from closed loop calibration method
CN105467371A (en) Amplitude phase calibrating device for semi-closed loop coupled phased array channels
CN115021833B (en) Phased array antenna array element channel consistency multimode parallel processing calibration method
US5926135A (en) Steerable nulling of wideband interference signals
CN111817806B (en) Automobile air interface communication performance test method and system
JP2011014980A (en) Device and method of estimating radio wave propagation parameter
Medina-Sanchez Beam steering control system for low-cost phased array weather radars: Design and calibration techniques
Re et al. FMCW radar with enhanced resolution and processing time by beam switching
Harter et al. 24GHz Digital beamforming radar with T-shaped antenna array for three-dimensional object detection
GB2289798A (en) Improvements relating to radar antenna systems
CN109905185B (en) Full-space phased array antenna calibration system and method based on aircraft
Herndon et al. Self-Calibration of the Horus All-Digital Phased Array Using Mutual Coupling
SE513340C2 (en) Calibration method for phase controlled group antenna
CN109921865A (en) A kind of the calibration bar approximate simulation calibration system and method for full airspace phased array antenna
CN115941074A (en) Active channel internal calibration method for waveguide array phased array antenna
WO2024110018A1 (en) Device and method for calibration of a phased array device
CN113473593B (en) Target passive positioning method based on single station

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant