CN110488804B - 基于大数据和人工智能的联合导航方法和机器人系统 - Google Patents

基于大数据和人工智能的联合导航方法和机器人系统 Download PDF

Info

Publication number
CN110488804B
CN110488804B CN201910807252.8A CN201910807252A CN110488804B CN 110488804 B CN110488804 B CN 110488804B CN 201910807252 A CN201910807252 A CN 201910807252A CN 110488804 B CN110488804 B CN 110488804B
Authority
CN
China
Prior art keywords
data
preset
navigation
model
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910807252.8A
Other languages
English (en)
Other versions
CN110488804A (zh
Inventor
朱定局
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Superpower Innovation Intelligent Technology Dongguan Co ltd
Nanjing Zhihuiguang Information Technology Research Institute Co ltd
Original Assignee
Superpower Innovation Intelligent Technology Dongguan Co ltd
Nanjing Zhihuiguang Information Technology Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Superpower Innovation Intelligent Technology Dongguan Co ltd, Nanjing Zhihuiguang Information Technology Research Institute Co ltd filed Critical Superpower Innovation Intelligent Technology Dongguan Co ltd
Priority to CN201910807252.8A priority Critical patent/CN110488804B/zh
Publication of CN110488804A publication Critical patent/CN110488804A/zh
Application granted granted Critical
Publication of CN110488804B publication Critical patent/CN110488804B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0088Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours

Abstract

基于大数据和人工智能的联合导航方法和机器人系统,包括:获取导航装置所属的对象的类型,获取预设类型的与所述对象相关的数据,获取预设模型,将所述预设类型的与所述对象相关的数据输入所述预设模型,通过所述预设模型计算得到的输出作为推荐的导航方式。上述方法和系统通过基于大数据和人工智能的联合导航技术,提高了联合导航方式切换的智能性、高效性。

Description

基于大数据和人工智能的联合导航方法和机器人系统
技术领域
本发明涉及信息技术领域,特别是涉及一种基于大数据和人工智能的联合导航方法和机器人系统。
背景技术
在实现本发明过程中,发明人发现现有技术中至少存在如下问题:现有技术下联合导航方式包括移动通信导航方式、卫星导航方式等导航方式、等等;现有技术下导航方式一般采用单独的导航方式,无法在多种导航方式中进行切换。
因此,现有技术还有待于改进和发展。
发明内容
基于此,有必要针对现有技术中的缺陷或不足,提供基于大数据和人工智能的联合导航方法和机器人系统,以解决现有技术中导航方式无法进行自动切换的缺点。
第一方面,本发明实施例提供一种联合导航方法,所述方法包括:
对象类型获取步骤,用于获取导航装置所属的对象的类型;
数据获取步骤,用于获取预设类型的与所述对象相关的数据;
预设模型获取步骤,用于获取预设模型;
模型计算步骤,用于将所述预设类型的与所述对象相关的数据输入所述预设模型,通过所述预设模型计算得到的输出作为推荐的导航方式。
优选地,所述方法还包括:
系统控制步骤,用于根据所述推荐的导航方式控制所述导航装置。
优选地,
所述预设类型由用户预先设置或从知识库中获取;
所述预设类型的数据包括与导航方式的选择有相关性的数据;
所述与所述对象相关的数据包括所述对象的数据、所述对象的环境数据;
所述预设类型的与所述对象相关的数据为所述预设类型的与所述对象相关的当前数据或近期数据或最近预设时段内的数据。
优选地,所述预设模型获取步骤包括:
历史大数据获取步骤,用于获取所述对象所属类型的所有对象的有效历史大数据;所述历史大数据包括迄今为止所采集的大数据;
对应数据获取步骤,用于获取所述有效历史大数据中预设类型的数据及其对应的导航方式;
深度学习模型初始化步骤,用于初始化深度学习模型;
无监督训练步骤,用于将所述有效历史大数据中所述预设类型的数据作为所述深度学习模型的输入,对所述深度学习模型进行无监督训练;
有监督训练步骤,用于将所述历史大数据中所述预设类型的数据及其对应的导航方式分别作为所述深度学习模型的输入和输出,对通过无监督训练之后的所述深度学习模型进行有监督训练;
预设模型生成步骤,用于获取有监督训练之后的所述深度学习模型作为所述预设模型。
优选地,
所述预设模型获取步骤包括:
历史大数据获取步骤,用于获取所述对象所属类型的所有对象的有效历史大数据;
对应数据获取步骤,用于获取所述有效历史大数据中预设类型的数据及其对应的导航方式;
模型数据设置步骤,用于将所述有效历史大数据中所述预设类型的数据及其对应的导航方式分别作为所述预设模型的待匹配数据及其对应的待推荐数据;
所述模型计算步骤包括:
匹配步骤,用于所述将所述预设类型的与所述对象相关的数据与所述预设模型中的每一个所述待匹配数据进行模糊匹配;
选取步骤,用于选取与所述输入的所述预设类型的与所述对象相关的数据匹配度最大的所述预设模型中的所述待匹配数据;
推荐步骤,用于从所述预设模型中获取与所选取的所述待匹配数据所对应的待推荐数据作为所述预设模型计算得到的输出,将所述输出作为推荐的导航方式。
优选地,所述有效历史大数据包括有人操作且与所述对象具有至少一种共同的导航方式的对象的历史大数据;或/和无人操作且导航方式的选择效果满足预设条件且与所述对象具有至少一种共同的导航方式的对象的历史大数据。
优选地,所述对象为车;所述车包括无人车;所述预设类型的与所述对象相关的数据包括所述车当前所在路段的路况数据、所述车当前所在路段的排气污染控制指标数据、所述车当前所在路段的噪音控制指标数据、所述车当前所在路段的限速范围、所述车的车型、所述车当前预设数据中的一种或几种。
优选地,所述对象为船;所述船包括无人船;所述预设类型的与所述对象相关的数据包括所述船当前所在航段的海况数据、所述船当前所在航段的排气污染控制指标数据、所述船当前所在航段的噪音控制指标数据、所述船当前所在航段的气象数据、所述船当前所在航段的风力数据、所述船当前需求数据、所述船的船型、所述船当前预设数据中的一种或几种。
优选地,所述对象为飞机;所述飞机包括无人机;所述预设类型的与所述对象相关的数据包括所述飞机当前所在航段的天气数据、所述飞机当前所在航段的噪音污染控制指标数据、当前所在航段的风力数据、机型、所述飞机当前预设数据中的一种或几种。
第二方面,本发明实施例提供一种系统,其特征在于,所述系统执行第一方面任一项所述的联合导航方法中的步骤;所述系统包括机器人系统。
本发明实施例具有的优点和有益效果包括:
本发明实施例通过从历史大数据学习得到预设模型,进而通过预设模型和目前数据计算得到目前应该采用的导航方式,而且所述历史数据和目前数据中包括导航系统所属对象本身的数据和环境数据,从而使得得到的预设模型和推荐的导航方式更符合对象和环境的需要、更高效,因此本发明实施例可使得导航方式的切换更为智能、高效。例如,对于无人船的导航方式的切换而言,需要考虑到的数据包括所述船当前所在航段的海况数据、当前所在航段的排气污染控制指标数据、当前所在航段的噪音控制指标数据、当前所在航段的气象数据、当前所在航段的风力数据、当前其他需求数据、当前不同导航类型所剩余的能量数据、船型、当前其他预设数据、等等中的一种或几种。其中,所述航段可以替换为海域。当前其他预设数据包括作战时对噪音、速度等的控制指标数据。而现有技术只能用一种方式进行导航,或者手动切换导航方式,手动切换对用户要求高、不智能,而且导航时没有考虑到更多环境的因素和导航系统所属对象本身的因素。
本发明实施例提供的基于大数据和人工智能的联合导航方法和机器人系统,包括:获取导航装置所属的对象的类型,获取预设类型的与所述对象相关的数据,获取预设模型,将所述预设类型的与所述对象相关的数据输入所述预设模型,通过所述预设模型计算得到的输出作为推荐的导航方式。上述方法和系统通过基于大数据和人工智能的联合导航技术,提高了联合导航的智能性、高效性。
附图说明
图1为本发明的实施例2提供的联合导航方法的流程图;
图2为本发明的实施例4提供的预设模型获取步骤的流程图;
图3为本发明的实施例5提供的预设模型获取步骤的流程图;
图4为本发明的实施例5提供的模型计算步骤的流程图;
图5为本发明的实施例11提供的联合导航系统的原理框图;
图6为本发明的实施例13提供的预设模型模块的原理框图;
图7为本发明的实施例14提供的预设模型模块的原理框图;
图8为本发明的实施例14提供的模型计算模块的原理框图。
具体实施方式
下面结合本发明实施方式,对本发明实施例中的技术方案进行详细地描述。
(一)本发明的各种实施例中的方法包括以下步骤的各种组合:
实施例1:
一种联合导航方法,包括对象类型获取步骤S100、数据获取步骤S200、预设模型获取步骤S300、模型计算步骤S400、系统控制步骤S500。
对象类型获取步骤S100,用于获取导航装置所属的对象的类型。所述导航装置是所述对象的导航装置。所述导航装置安装在所述对象上,所以所述对象是导航装置所属的对象。所述对象包括车辆、轮船、飞机等等交通工具或者其他需要安装导航装置的交通工具或系统或设备。从而根据对象类型确定所述类型的对象的导航装置的导航方式,并确定与导航方式相关的预设类型的与所述对象相关的数据。
数据获取步骤S200,用于获取预设类型的与所述对象相关的数据。从而根据预设类型的与所述对象相关的数据计算得到推荐的导航方式。
预设模型获取步骤S300,用于获取预设模型。从而通过预设模型在预设类型的与所述对象相关的数据与导航方式之间建立对应关系。其中,所述预设模型的输入格式为预设类型的与所述对象相关的数据格式,输出格式为导航方式的数据格式;导航方式的数据格式可以使用数字格式,将每一个导航方式编码成一个数字;导航方式(即导航的方式)包括使用移动通信来导航、卫星来导航、全球定位系统来导航等等、以及一种或多种导航方式联合的导航方式;
模型计算步骤S400,用于将所述预设类型的与所述对象相关的数据输入所述预设模型,通过所述预设模型计算得到的输出作为推荐的导航方式。从而为控制所述导航系统提供推荐的导航方式。其中,所述输出为所述预设模型的输出;
实施例2:
根据实施例1所述的方法,还包括系统控制步骤S500,如图1所示。
系统控制步骤S500,用于根据所述推荐的导航方式控制所述导航装置;从而使得所述导航系统能以更优的方式运行,从而提高所述对象的所述导航系统的智能性和高效性。具体用于判断所述推荐的导航方式与当前导航方式是否一致:否,则向导航装置发送将当前导航方式切换为所述推荐的导航方式的控制指令。
实施例3:
根据实施例1所述的方法,其中,
所述预设类型由用户预先设置或从知识库中获取;
所述预设类型的数据包括与导航方式的选择有相关性的数据;
所述与所述对象相关的数据包括所述对象的数据、所述对象的环境数据;
所述预设类型的与所述对象相关的数据为所述预设类型的与所述对象相关的当前数据或近期数据或最近预设时段内的数据。
实施例4:
根据实施例1所述的方法,
其中,预设模型获取步骤S300包括历史大数据获取步骤S311、对应数据获取步骤S312、深度学习模型初始化步骤S313、无监督训练步骤S314、有监督训练步骤S315、预设模型生成步骤S316,如图2所示。
历史大数据获取步骤S311,用于获取所述对象所属类型的所有对象的有效历史大数据;
对应数据获取步骤S312,用于获取所述有效历史大数据中预设类型的与所述对象相关的数据及其对应的导航方式,其中,所述预设类型的与所述对象相关的数据为预设类型的历史数据;
深度学习模型初始化步骤S313,用于初始化深度学习模型;
无监督训练步骤S314,用于将所述有效历史大数据中所述预设类型的与所述对象相关的数据作为所述深度学习模型的输入,对所述深度学习模型进行无监督训练;
有监督训练步骤S315,用于将所述历史大数据中所述预设类型的与所述对象相关的数据及其对应的导航方式分别作为所述深度学习模型的输入和输出,对通过无监督训练之后的所述深度学习模型进行有监督训练;
预设模型生成步骤S316,用于获取有监督训练之后的所述深度学习模型作为所述预设模型。
其中,所述历史大数据可以通过网络在线获取或从历史大数据库获取。所述有效历史大数据包括预设类型的与所述对象相关的数据及其对应的导航方式;所述有效历史大数据是在过去很长一段时间内采集的。预设类型的与所述对象相关的数据及其对应的导航方式是每一个被采集的对象在每一个被采集的时刻所采集到的,既要采集每一个被采集的对象在每一个被采集的时刻的预设类型的与所述对象相关的数据,还要采集所述每一个被采集的对象在所述每一个被采集的时刻的导航方式,其中,所述每一个被采集的对象属于所述对象所属类型的对象集合。
其中,所述对象所属类型包括与所述对象具有至少一种共同的导航方式的对象(包括交通工具)。
实施例5:
根据实施例1所述的方法,
其中,预设模型获取步骤S300包括历史大数据获取步骤S321、对应数据获取步骤S322、模型数据设置步骤S323,如图3所示。
历史大数据获取步骤S321,用于获取所述对象所属类型的所有对象的有效历史大数据;
对应数据获取步骤S322,用于获取所述有效历史大数据中预设类型的与所述对象相关的数据及其对应的导航方式;其中,所述预设类型的与所述对象相关的数据为预设类型的历史数据;
模型数据设置步骤S323,用于将所述有效历史大数据中所述预设类型的与所述对象相关的数据及其对应的导航方式分别作为所述预设模型的待匹配数据及其对应的待推荐数据。
其中,模型计算步骤S400包括匹配步骤S421、选取步骤S422、推荐步骤S423,如图4所示。
匹配步骤S421,用于所述将所述预设类型的与所述对象相关的数据与所述预设模型中的每一个所述待匹配数据进行模糊匹配;
选取步骤S422,用于选取与所述输入的所述预设类型的与所述对象相关的数据匹配度最大的所述预设模型中的所述待匹配数据;
推荐步骤S423,用于从所述预设模型中获取与所选取的所述待匹配数据所对应的待推荐数据作为所述预设模型计算得到的输出,将所述输出作为推荐的导航方式。
实施例4采用的是大数据、深度学习技术,实施例5采用的是大数据及其推荐技术。
实施例6:
根据实施例4或5所述的方法,
其中,有效历史大数据包括“有人操作(例如有人驾驶)”且“与所述对象具有至少一种共同的导航方式”的对象(例如交通工具)的历史大数据。因为人是有智能的,对象在有人操作(例如有人驾驶)时所选择的导航方式更可信,而无人机、无人车、无人船等无人操作(例如无人驾驶)的对象(例如交通工具)的历史大数据不一定可信。所述有人操作包括有人进行导航方式的选择。
其中,有效历史大数据还包括“无人操作(例如无人驾驶)”且“导航方式的选择效果满足预设条件”且“与所述对象具有至少一种共同的导航方式”的对象(例如交通工具)的历史大数据。其中,导航方式的选择效果满足预设条件包括导航方式的选择效果的用户评分大于预设阈值。所述无人操作包括无人进行导航方式的选择。
实施例7:
根据实施例1所述的方法,
其中,所述对象为车;所述车包括无人车;
其中,所述预设类型的与所述对象相关的数据包括所述车当前所在路段的路况数据、当前所在路段的排气污染控制指标数据、当前所在路段的噪音控制指标数据、当前所在路段的限速范围、当前不同导航类型所剩余的能量数据、车型、当前其他预设数据、等等中的一种或几种。其中,所述道段可以替换为区域。当前其他预设数据包括作战时对噪音、速度等的控制指标数据。
实施例8:
根据实施例1所述的方法,
其中,所述对象为船;所述船包括无人船;
其中,所述预设类型的与所述对象相关的数据包括所述船当前所在航段的海况数据、当前所在航段的排气污染控制指标数据、当前所在航段的噪音控制指标数据、当前所在航段的气象数据、当前所在航段的风力数据、当前其他需求数据、当前不同导航类型所剩余的能量数据、船型、当前其他预设数据、等等中的一种或几种。其中,所述航段可以替换为海域。当前其他预设数据包括作战时对噪音、速度等的控制指标数据。
实施例9:
根据实施例1所述的方法,
其中,所述对象为飞机;所述飞机包括无人机;
其中,所述预设类型的与所述对象相关的数据包括所述飞机当前所在航段的天气数据、当前所在航段的噪音污染控制指标数据、当前所在航段的风力数据、当前不同导航类型所剩余的能量数据、机型、当前其他预设数据、等等中的一种或几种。其中,所述航段可以替换为空域。当前其他预设数据包括作战时对噪音、速度等的控制指标数据。
实施例10:
一种联合导航系统,包括对象类型获取模块100、数据获取模块200、预设模型获取模块300、模型计算模块400。
对象类型获取模块100,用于获取导航装置所属的对象的类型。
数据获取模块200,用于获取预设类型的与所述对象相关的数据。
预设模型获取模块300,用于获取预设模型。
模型计算模块400,用于将所述预设类型的与所述对象相关的数据输入所述预设模型,通过所述预设模型计算得到的输出作为推荐的导航方式。
实施例11:
根据实施例10所述的系统,还包括系统控制模块500,如图5所示。
系统控制模块500,用于根据所述推荐的导航方式控制所述导航装置。具体为,判断所述推荐的导航方式与当前导航方式是否一致:否,则向导航装置发送将当前导航方式切换为所述推荐的导航方式的控制指令。
实施例12:
根据实施例10所述的系统,其中,
所述预设类型由用户预先设置或从知识库中获取;
所述预设类型的数据包括与导航方式的选择有相关性的数据;
所述与所述对象相关的数据包括所述对象的数据、所述对象的环境数据;
所述预设类型的与所述对象相关的数据为所述预设类型的与所述对象相关的当前数据或近期数据或最近预设时段内的数据。
实施例13:
根据实施例10所述的系统,
其中,预设模型获取模块300包括历史大数据获取模块311、对应数据获取模块312、深度学习模型初始化模块313、无监督训练模块314、有监督训练模块315、预设模型生成模块316,如图6所示。
历史大数据获取模块311,用于获取所述对象所属类型的所有对象的有效历史大数据;
对应数据获取模块312,用于获取所述有效历史大数据中预设类型的与所述对象相关的数据及其对应的导航方式;
深度学习模型初始化模块313,用于初始化深度学习模型;
无监督训练模块314,用于将所述有效历史大数据中所述预设类型的与所述对象相关的数据作为所述深度学习模型的输入,对所述深度学习模型进行无监督训练;
有监督训练模块315,用于将所述历史大数据中所述预设类型的与所述对象相关的数据及其对应的导航方式分别作为所述深度学习模型的输入和输出,对通过无监督训练之后的所述深度学习模型进行有监督训练;
预设模型生成模块316,用于获取有监督训练之后的所述深度学习模型作为所述预设模型。
实施例14:
根据实施例10所述的系统,
其中,预设模型获取模块300包括历史大数据获取模块321、对应数据获取模块322、模型数据设置模块323,如图7所示。
历史大数据获取模块321,用于获取所述对象所属类型的所有对象的有效历史大数据;
对应数据获取模块322,用于获取所述有效历史大数据中预设类型的与所述对象相关的数据及其对应的导航方式;
模型数据设置模块323,用于将所述有效历史大数据中所述预设类型的与所述对象相关的数据及其对应的导航方式分别作为所述预设模型的待匹配数据及其对应的待推荐数据。
其中,模型计算模块400包括匹配模块421、选取模块422、推荐模块423,如图8所示。
匹配模块421,用于所述将所述预设类型的与所述对象相关的数据与所述预设模型中的每一个所述待匹配数据进行模糊匹配;
选取模块422,用于选取与所述输入的所述预设类型的与所述对象相关的数据匹配度最大的所述预设模型中的所述待匹配数据;
推荐模块423,用于从所述预设模型中获取与所选取的所述待匹配数据所对应的待推荐数据作为所述预设模型计算得到的输出,将所述输出作为推荐的导航方式。
实施例15:
根据实施例13或14所述的系统,
其中,有效历史大数据包括“有人操作(包括驾驶)”且“与所述对象具有至少一种共同的导航方式”的对象(包括交通工具)的历史大数据或/和“无人操作(包括无人驾驶)”且“导航方式的选择效果满足预设条件”且“与所述对象具有至少一种共同的导航方式”的对象(包括交通工具)的历史大数据。
实施例16:
根据实施例10所述的系统,包括:
其中,所述对象为车;所述车包括无人车;
其中,所述预设类型的与所述对象相关的数据包括所述车当前所在路段的路况数据、当前所在路段的排气污染控制指标数据、当前所在路段的噪音控制指标数据、当前所在路段的限速范围、当前不同导航类型所剩余的能量数据、车型、当前其他预设数据、等等中的一种或几种。其中,所述道段可以替换为区域。当前其他预设数据包括作战时对噪音、速度等的控制指标数据。
实施例17:
根据实施例10所述的系统,
其中,所述对象为船;所述船包括无人船;
其中,所述预设类型的与所述对象相关的数据包括所述船当前所在航段的海况数据、当前所在航段的排气污染控制指标数据、当前所在航段的噪音控制指标数据、当前所在航段的气象数据、当前所在航段的风力数据、当前其他需求数据、当前不同导航类型所剩余的能量数据、船型、当前其他预设数据、等等中的一种或几种。其中,所述航段可以替换为海域。当前其他预设数据包括作战时对噪音、速度等的控制指标数据。
实施例18:
根据实施例10所述的系统,
其中,所述对象为飞机;所述飞机包括无人机;
其中,所述预设类型的与所述对象相关的数据包括所述飞机当前所在航段的天气数据、当前所在航段的噪音污染控制指标数据、当前所在航段的风力数据、当前不同导航类型所剩余的能量数据、机型、当前其他预设数据、等等中的一种或几种。其中,所述航段可以替换为空域。当前其他预设数据包括作战时对噪音、速度等的控制指标数据。
实施例19:
提供一种机器人系统,所述机器人中分别配置有如实施例10至实施例18所述的系统。
上述各实施例中的方法和系统可以在计算机、服务器、云服务器、超级计算机、机器人、嵌入式设备、电子设备等上执行和部署。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种联合导航方法,其特征在于,所述方法包括:
对象类型获取步骤,用于获取导航装置所属的对象的类型;
数据获取步骤,用于获取预设类型的与所述对象相关的数据;
预设模型获取步骤,用于获取预设模型;
模型计算步骤,用于将所述预设类型的与所述对象相关的数据输入所述预设模型,通过所述预设模型计算得到的输出作为推荐的导航方式。
2.根据权利要求1所述的联合导航方法,其特征在于,所述方法还包括:
系统控制步骤,用于根据所述推荐的导航方式控制所述导航装置。
3.根据权利要求1所述的联合导航方法,其特征在于,
所述预设类型由用户预先设置或从知识库中获取;
所述预设类型的数据包括与导航方式的选择有相关性的数据;
所述与所述对象相关的数据包括所述对象的数据、所述对象的环境数据;
所述预设类型的与所述对象相关的数据为所述预设类型的与所述对象相关的当前数据或近期数据或最近预设时段内的数据。
4.根据权利要求1所述的联合导航方法,其特征在于,所述预设模型获取步骤包括:
历史大数据获取步骤,用于获取所述对象所属类型的所有对象的有效历史大数据;
对应数据获取步骤,用于获取所述有效历史大数据中预设类型的数据及其对应的导航方式;
深度学习模型初始化步骤,用于初始化深度学习模型;
无监督训练步骤,用于将所述有效历史大数据中所述预设类型的数据作为所述深度学习模型的输入,对所述深度学习模型进行无监督训练;
有监督训练步骤,用于将所述历史大数据中所述预设类型的数据及其对应的导航方式分别作为所述深度学习模型的输入和输出,对通过无监督训练之后的所述深度学习模型进行有监督训练;
预设模型生成步骤,用于获取有监督训练之后的所述深度学习模型作为所述预设模型。
5.根据权利要求1所述的联合导航方法,其特征在于,
所述预设模型获取步骤包括:
历史大数据获取步骤,用于获取所述对象所属类型的所有对象的有效历史大数据;
对应数据获取步骤,用于获取所述有效历史大数据中预设类型的数据及其对应的导航方式;
模型数据设置步骤,用于将所述有效历史大数据中所述预设类型的数据及其对应的导航方式分别作为所述预设模型的待匹配数据及其对应的待推荐数据;
所述模型计算步骤包括:
匹配步骤,用于所述将所述预设类型的与所述对象相关的数据与所述预设模型中的每一个所述待匹配数据进行模糊匹配;
选取步骤,用于选取与所述输入的所述预设类型的与所述对象相关的数据匹配度最大的所述预设模型中的所述待匹配数据;
推荐步骤,用于从所述预设模型中获取与所选取的所述待匹配数据所对应的待推荐数据作为所述预设模型计算得到的输出,将所述输出作为推荐的导航方式。
6.根据权利要求4或5所述的联合导航方法,其特征在于,所述有效历史大数据包括有人操作且与所述对象具有至少一种共同的导航方式的对象的历史大数据;或/和无人操作且导航方式的选择效果满足预设条件且与所述对象具有至少一种共同的导航方式的对象的历史大数据。
7.根据权利要求1所述的联合导航方法,其特征在于,所述对象为车;所述车包括无人车;所述预设类型的与所述对象相关的数据包括所述车当前所在路段的路况数据、所述车当前所在路段的排气污染控制指标数据、所述车当前所在路段的噪音控制指标数据、所述车当前所在路段的限速范围、所述车的车型、所述车当前预设数据中的一种或几种。
8.根据权利要求1所述的联合导航方法,其特征在于,所述对象为船;所述船包括无人船;所述预设类型的与所述对象相关的数据包括所述船当前所在航段的海况数据、所述船当前所在航段的排气污染控制指标数据、所述船当前所在航段的噪音控制指标数据、所述船当前所在航段的气象数据、所述船当前所在航段的风力数据、所述船当前需求数据、所述船的船型、所述船当前预设数据中的一种或几种。
9.根据权利要求1所述的联合导航方法,其特征在于,所述对象为飞机;所述飞机包括无人机;所述预设类型的与所述对象相关的数据包括所述飞机当前所在航段的天气数据、所述飞机当前所在航段的噪音污染控制指标数据、当前所在航段的风力数据、机型、所述飞机当前预设数据中的一种或几种。
10.一种系统,其特征在于,所述系统执行权利要求1-9任一项所述的联合导航方法中的步骤;所述系统包括机器人系统。
CN201910807252.8A 2019-08-29 2019-08-29 基于大数据和人工智能的联合导航方法和机器人系统 Active CN110488804B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910807252.8A CN110488804B (zh) 2019-08-29 2019-08-29 基于大数据和人工智能的联合导航方法和机器人系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910807252.8A CN110488804B (zh) 2019-08-29 2019-08-29 基于大数据和人工智能的联合导航方法和机器人系统

Publications (2)

Publication Number Publication Date
CN110488804A CN110488804A (zh) 2019-11-22
CN110488804B true CN110488804B (zh) 2023-01-03

Family

ID=68553807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910807252.8A Active CN110488804B (zh) 2019-08-29 2019-08-29 基于大数据和人工智能的联合导航方法和机器人系统

Country Status (1)

Country Link
CN (1) CN110488804B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110737260B (zh) * 2019-08-29 2022-02-11 南京智慧光信息科技研究院有限公司 基于大数据和人工智能的自动作业方法和机器人系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257273A (ja) * 2010-06-09 2011-12-22 Clarion Co Ltd ナビゲーションシステム,ナビゲーション装置,サーバ装置
CN107238847A (zh) * 2017-04-21 2017-10-10 中国科学院光电研究院 一种卫星导航干扰信号检测方法及系统
CN109345133A (zh) * 2018-10-17 2019-02-15 大国创新智能科技(东莞)有限公司 基于大数据和深度学习的评审方法和机器人系统
CN109801491A (zh) * 2019-01-18 2019-05-24 深圳壹账通智能科技有限公司 基于风险评估的智能导航方法、装置、设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257273A (ja) * 2010-06-09 2011-12-22 Clarion Co Ltd ナビゲーションシステム,ナビゲーション装置,サーバ装置
CN107238847A (zh) * 2017-04-21 2017-10-10 中国科学院光电研究院 一种卫星导航干扰信号检测方法及系统
CN109345133A (zh) * 2018-10-17 2019-02-15 大国创新智能科技(东莞)有限公司 基于大数据和深度学习的评审方法和机器人系统
CN109801491A (zh) * 2019-01-18 2019-05-24 深圳壹账通智能科技有限公司 基于风险评估的智能导航方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN110488804A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
CN110737986B (zh) 一种无人船能效智能优化仿真系统及方法
CN110007616A (zh) 基于车载系统的智能家居设备控制方法、装置及车载终端
CN110363816A (zh) 一种基于深度学习的移动机器人环境语义建图方法
CN106494620B (zh) 一种无人机多控系统
CN110728308A (zh) 基于改进Yolov2目标检测和语音识别的交互式导盲系统及方法
CN110509913B (zh) 基于大数据和人工智能的混合动力推进方法和机器人系统
CN110488804B (zh) 基于大数据和人工智能的联合导航方法和机器人系统
CN104049639A (zh) 一种基于支持向量回归机的无人艇抗浪涌控制装置和方法
CN110488828B (zh) 基于大数据和人工智能的航行灯控制方法和机器人系统
CN105159148A (zh) 一种机器人指令处理方法及装置
CN110502015B (zh) 基于大数据和人工智能的速度控制方法和机器人系统
CN105118357A (zh) 一种教学用物联网实验箱
CN112414401B (zh) 基于图神经网络的无人机协同定位系统及方法
CN109196437A (zh) 智能驾驶方法、装置及存储介质
CN110737260B (zh) 基于大数据和人工智能的自动作业方法和机器人系统
CN110175648B (zh) 应用人工智能云计算对设备进行非侵入性的信息连通方法
CN110488803B (zh) 基于大数据和人工智能的制动方法和机器人系统
CN111212146A (zh) 一种波浪滑翔器网络管理系统
CN111259526B (zh) 集群回收路径规划方法、装置、设备及可读存储介质
CN113342016A (zh) 基于动态事件触发的自主式水下机器人协同控制方法和系统
CN112821456B (zh) 基于迁移学习的分布式源-储-荷匹配方法及装置
CN114973021A (zh) 一种基于深度学习的卫星图像数据处理系统和方法
Shan et al. A deep learning-based visual perception approach for mobile robots
CN109075855A (zh) 无人机的断链找回方法和装置以及计算设备
CN111401297A (zh) 一种基于边缘计算和神经网络的三栖机器人目标识别系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant