CN110488386A - 一种基于页岩晶体几何因子取向函数的各向异性岩石物理标定方法 - Google Patents

一种基于页岩晶体几何因子取向函数的各向异性岩石物理标定方法 Download PDF

Info

Publication number
CN110488386A
CN110488386A CN201910897286.0A CN201910897286A CN110488386A CN 110488386 A CN110488386 A CN 110488386A CN 201910897286 A CN201910897286 A CN 201910897286A CN 110488386 A CN110488386 A CN 110488386A
Authority
CN
China
Prior art keywords
shale
model
anisotropic
crystal
geometrical factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910897286.0A
Other languages
English (en)
Other versions
CN110488386B (zh
Inventor
黄旭日
李浩源
徐云贵
胡叶正
曹卫平
唐静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201910897286.0A priority Critical patent/CN110488386B/zh
Publication of CN110488386A publication Critical patent/CN110488386A/zh
Application granted granted Critical
Publication of CN110488386B publication Critical patent/CN110488386B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • G01V20/00

Abstract

一种基于页岩晶体几何因子取向函数的各向异性岩石物理标定方法其核心是利用多种各向异性岩石物理模型结合晶体几何因子函数的各向异性岩石物理标定方法,该方法基于岩石物理学,晶体结构学,数学建模等多学科,将测井与岩心数据转换为纵横波速度模型,解决地下各向异性介质等效速度的模拟的难题。

Description

一种基于页岩晶体几何因子取向函数的各向异性岩石物理标 定方法
技术领域
本发明涉及石油、地球物理学领域的一种深层页岩油气的地球物理勘探技术方法,具体技术为基于页岩晶体几何因子取向函数的各向异性岩石物理模型求取强各向异性页岩速度模型的方法。
背景技术
岩石物理模型(含泥量,孔隙度,饱和度等)是测井和地震数据(振幅,阻抗,反射系数等)之间的桥梁,它是将两者之间参数存在的物理化学关系抽象成数学模型,在地球物理勘探中这一工具十分重要。因为测井的参数详细,但只有单点的数据。而地震数据范围广,但数据存在噪音,地表起伏,多次波等干扰因素且需要解释处理才能使用,解释过程中又存在分辨率和多解性问题。两者数据可以利用岩石物理模型互相验证,互相结合共同解释地下介质情况。
目前使用的大多是岩石物理各向同性模型,在以往的开发油田中往往适用。但在目前对页岩气的开发中这些模型会产生较大误差,导致井震数据不叠合等,使其失去了它本身作为桥梁的作用,其原因是地下介质的岩石物理性质会导致地震波的传播方向偏转,也就是地震波各向异性。以往的岩石物理将其忽略这一现象并认为地下介质是各向同性的,但在地下天然空间(裂缝,孔隙,溶洞等) 及其填充流体和强各向异性基质的情况下会有强地震各向异性现象,这与原本数学模型的假设矛盾。其中页岩就是典型的强各向异性介质。因此就需要采用专门的岩石物理各向异性模型对页岩的岩石物理性质进行等效处理。目前使用的方法多为各向异性自洽微分模型,各向异性Hudson模型等,本发明从页岩基质的微观晶体尺度出发,利用其孔隙度与其分布函数关系构建ODF,对页岩基质各向异性的等效。
发明内容
本发明的目的在于构建一种基于页岩晶体几何因子取向函数的各向异性岩石物理标定方法,该岩石物理建模方法基于各向异性自洽微分模型,各向异性流体替换模型,VRH(Voigt-Reuss-Hill)空间岩石物理模型,Chapman裂缝喷射模型,Backus平均模型,基于孔隙度的几何因子构建的ODF系数。
为达到以上技术目的,本发明提供以下技术方案。
基于晶体几何因子函数的各向异性岩石物理模型的核心是利用测井获得的孔隙度来获得基于孔隙度几何因子来构建ODF,并利用ODF得到页岩基质的各向异性弹性参数矩阵,并结合上述其它先进各向异性模型获得页岩各向异性速度模型。
该方法依次包括以下步骤:
步骤S1,用测井和X射线散射分析(XRD,X-Ray Diffraction)等岩石物理实验获得岩石基质组分及其体积分数和裂缝孔隙发育情况及流体性质等岩性参数;
步骤S2,选择基于晶体几何因子函数的各向异性岩石物理模型得到各向异性岩石的等效纵横波速。
附图说明
图1为Voigt平均模型和Reuss平均模型示意图;
图2为VTI各向异性页岩介质模型(VTI模型);
图3a为Chapman喷射模型示意图;
图3b为Chapman喷射模型建模流程图;
具体实施方式
页岩各向异性高温高压岩石物理建模方法,依次包括一下详细步骤:
步骤一:采用Voigt-Reuss-Hill平均法(合成方法之一),将粘土、石英和方解石按照各矿物的弹性参数和体积的百分比合成页岩。
Voigt平均是界限的上限,同时也可以称为等应变平均,其假设各成分有相同的应变,进一步给出了平均应力和平均应变的比值,公式为:
式中MV——代表岩石N个成分的等效弹性模量;
Mi——代表第i个成分的弹性模量(最好是剪切模量和体积模量);
fi——代表第i个成分的体积含量。
Reuss平均是界限的下限,同时也可以称为等应力平均,其假设各成分有相同的应变,进一步给出了平均应力和平均应变的比值,公式为:
公式中各参数所代表的意义跟Voigt公式一样。Hill对Voigt上限和Reuss 下限进行算术平均来估算岩石的等效弹性模量,VRH表示为:
各矿物的弹性参数和体积百分比可通过对页岩样本的X射线散射分析(XRD, X-Ray Diffraction)得到。
步骤二:使用测井所测孔隙度得到晶体取向函数的几何因子。
晶体取向分布函数用w(ξ,ψ,φ)表示,满足
Roe(1964)用处理一组X射线衍射数据来将上式展开成一系列球谐函数。
反推得到晶体取向函数的几何因子
Ran Bachrach(2010)提出压实取向分布函数或其他统计取向分布函数与孔隙形状与排列之间存在一定的关系。提出Wlmn对应的模型参数mlmn。从而简化了基于孔隙度为φ的Wlmn求取过程
其中φc是临界孔隙度。最大值在完全对齐的情况得到, n200和m400是基于孔隙长宽比和压实方向分布函数的归一化的模型参数,对于压实模型n200=1,m400=2。
步骤三:将得到的晶体取向函数的几何因子带入基质模型中得到页岩各向异性基质模型。
Sayers(1995)提出利用页岩分布函数之间正交关系(Morris,1969)。使 TI介质中对称轴与参考轴重合,并结合页岩的沉积过程和应力作用,利用分布函数展开所得的晶体几何因子Wlmn得到页岩刚系数
其中
这里Ca是由第一步VRH模型得到。合成过程中,页岩中微观结构发生改变,页岩微观构成呈水平方向排列,这也是地质历史时期页岩的沉积形成过程的还原体现,页岩微观呈片状水平结构,此时页岩表现垂直各向异性特征(VTI, Vertical TransverseIsotropy),见图2的抽象表示。
步骤四:将第三步得到的页岩模型代入到Backus平均模型中。
Backus(1962)表明,在长波长极限下,对于一个由多层横向各向同性材料组成的层状介质(各层对称轴均垂直于层面),可等效成一个横向各向同性的介质,其等效刚度C*为:
其中
A=<a-f2c-1>+<c-1>-1<fc-1>2 (20)
B=<b-f2c-1>+<c-1>-1<fc-1>2 (21)
C=<c-1>-1 (22)
F=<c-1>-1<fc-1> (23)
D=<d-1>-1 (24)
M=<m> (25)
括号<.>表示按体积比例加权的封闭属性的平均值。a,b,c,d,f,m是单层横向各向同性介质的弹性参数,这里代入的是第三步中获得的页岩模型的弹性参数。
步骤五:使用Chapman喷射裂缝模型将流体和裂缝孔隙添加到第四步页岩地层基质中,见图3。得到含流体和有机质的各向异性页岩。
Chapman等人(2002)提出了一种考虑频率依赖性、波诱导的孔隙和裂缝之间以及不同方向裂缝之间流体交换的喷射或局部流动模型。频率相关的有效体积模量和剪切模量Keff和μeff表示如下(Chapman et al.,2006):
其中
其中ω是频率,固体矿物基体(无裂纹、无孔隙岩石)的体积、剪切模量和拉梅参数分别用K、μ、λ表示。流体体积弹性模量Kf,φ总孔隙度。
步骤六:利用Thomsen模型的各向异性参数得到各向异性页岩的纵横波速模型。
Thomsen(1986)对TI材料提出了以下方便的表示法只是弱各向异性。他的符号使用了P波速和S波速分别由α和β)沿对称轴传播,加上另外三个常量:
根据这些常数,三相速度可以方便地近似为
VSH(θ)≈β(1+γsin2θ) (41)
VP(θ)≈α(1+δsin2θcos2θ+εsin4θ) (42)
其中θ为波矢相对于x3轴的角度;VSH是波前纯横波的速度,其中没有偏振分量对称轴方向;Vsv是伪横波向纯偏振方向横波;Vp是伪纵波。
以上步骤对应的流程图如图3所示
最后,本申请的方法仅为较佳的实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围内。

Claims (1)

1.一种基于页岩晶体几何因子取向函数的各向异性岩石物理标定方法,依次包括以下详细步骤:
步骤S1,用测井和X射线散射分析(XRD,X-Ray Diffraction)等岩石物理实验获得岩石基质组分及其体积分数和裂缝孔隙发育情况及流体性质等岩性参数;
步骤S2,选择基于晶体几何因子函数的各向异性岩石物理模型得到各向异性岩石的等效纵横波速:
(1)采用Voigt-Reuss-Hill平均法(合成方法之一),将各基质组分按照各矿物的弹性参数和体积的百分比合成基质模型;
(2)使用基于孔隙度的晶体几何因子得到页岩晶体取向函数(ODF,OrientationDistribution Function);
(3)将基质模型带入页岩晶体取向函数得到页岩基质模型;
(4)使用Buckus平均模型得到等效各向异性页岩地层基质岩石物理模型;
(5)使用Chapman模型得到等效各向异性页岩岩石物理模型;
(6)利用Thomsen模型的各向异性参数得到含流体和有机质的各向异性页岩的纵横波速模型。
CN201910897286.0A 2019-09-20 2019-09-20 一种基于页岩晶体几何因子取向函数的各向异性岩石物理标定方法 Active CN110488386B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910897286.0A CN110488386B (zh) 2019-09-20 2019-09-20 一种基于页岩晶体几何因子取向函数的各向异性岩石物理标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910897286.0A CN110488386B (zh) 2019-09-20 2019-09-20 一种基于页岩晶体几何因子取向函数的各向异性岩石物理标定方法

Publications (2)

Publication Number Publication Date
CN110488386A true CN110488386A (zh) 2019-11-22
CN110488386B CN110488386B (zh) 2022-03-25

Family

ID=68559012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910897286.0A Active CN110488386B (zh) 2019-09-20 2019-09-20 一种基于页岩晶体几何因子取向函数的各向异性岩石物理标定方法

Country Status (1)

Country Link
CN (1) CN110488386B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280272A (zh) * 2021-12-13 2022-04-05 华能煤炭技术研究有限公司 煤岩岩石物理参数分析方法、系统及电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325494A (zh) * 1998-12-30 2001-12-05 贝克休斯公司 由钻孔电阻率图像仪、横向感应测井纪录以及含水饱和度张量模型确定水饱和度及砂岩分数的方法
US20080086287A1 (en) * 2004-12-06 2008-04-10 Shiyu Xu Integrated Anisotropic Rock Physics Model
CA2716196A1 (en) * 2008-04-09 2009-10-15 Exxonmobil Upstream Research Company Method for generating anisotropic resistivity volumes from seismic and log data using a rock physics model
CN102455436A (zh) * 2010-11-02 2012-05-16 中国石油大学(北京) 有限方位角条件下压噪叠前纵波各向异性裂缝检测方法
US20150160368A1 (en) * 2012-07-10 2015-06-11 Statoil Petroleum As Anisotropy parameter estimation
CN104977618A (zh) * 2014-04-09 2015-10-14 中国石油集团东方地球物理勘探有限责任公司 一种评价页岩气储层及寻找甜点区的方法
CN105095631A (zh) * 2014-05-21 2015-11-25 中国石油化工股份有限公司 一种页岩各向异性岩石物理建模方法
CN107797144A (zh) * 2017-10-24 2018-03-13 中国地质大学(北京) 基于横波分裂振幅比属性的流体检测方法
CN108693094A (zh) * 2018-04-19 2018-10-23 中国石油天然气股份有限公司 复杂孔隙储层岩石波速预测方法及装置
CN109655940A (zh) * 2017-10-12 2019-04-19 中国石油化工股份有限公司 页岩各向异性岩石物理模型建模方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325494A (zh) * 1998-12-30 2001-12-05 贝克休斯公司 由钻孔电阻率图像仪、横向感应测井纪录以及含水饱和度张量模型确定水饱和度及砂岩分数的方法
US20080086287A1 (en) * 2004-12-06 2008-04-10 Shiyu Xu Integrated Anisotropic Rock Physics Model
CA2716196A1 (en) * 2008-04-09 2009-10-15 Exxonmobil Upstream Research Company Method for generating anisotropic resistivity volumes from seismic and log data using a rock physics model
CN102455436A (zh) * 2010-11-02 2012-05-16 中国石油大学(北京) 有限方位角条件下压噪叠前纵波各向异性裂缝检测方法
US20150160368A1 (en) * 2012-07-10 2015-06-11 Statoil Petroleum As Anisotropy parameter estimation
CN104977618A (zh) * 2014-04-09 2015-10-14 中国石油集团东方地球物理勘探有限责任公司 一种评价页岩气储层及寻找甜点区的方法
CN105095631A (zh) * 2014-05-21 2015-11-25 中国石油化工股份有限公司 一种页岩各向异性岩石物理建模方法
CN109655940A (zh) * 2017-10-12 2019-04-19 中国石油化工股份有限公司 页岩各向异性岩石物理模型建模方法
CN107797144A (zh) * 2017-10-24 2018-03-13 中国地质大学(北京) 基于横波分裂振幅比属性的流体检测方法
CN108693094A (zh) * 2018-04-19 2018-10-23 中国石油天然气股份有限公司 复杂孔隙储层岩石波速预测方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BRIAN E. HORNBY 等: "Anisotropic effective-medium modeling of the elastic properties of shales", 《GEOPHYSICS》 *
LIU XI-WU 等: "Anisotropy rock physics model for the Longmaxi shale gas reservoir, Sichuan Basin,China", 《APPLIED GEOPHYSICS》 *
MATĚJ MACHEK 等: "Petrophysical record of evolution of weakly deformed low-porosity limestone revealed by small-angle neutron scattering, neutron diffraction and AMS study", 《GEOPHYSICAL JOURNAL INTERNATIONAL》 *
张冰: "基于统计学理论的页岩储层地震岩石物理研究", 《中国博士学位论文全文数据库 基础科学辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280272A (zh) * 2021-12-13 2022-04-05 华能煤炭技术研究有限公司 煤岩岩石物理参数分析方法、系统及电子设备

Also Published As

Publication number Publication date
CN110488386B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
Ursin Review of elastic and electromagnetic wave propagation in horizontally layered media
Quan et al. Seismic attenuation tomography using the frequency shift method
Wang Seismic anisotropy in sedimentary rocks, part 2: Laboratory data
Johnston et al. Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms
McDonal et al. Attenuation of shear and compressional waves in Pierre shale
AU2009234101B2 (en) Method for generating anisotropic resistivity volumes from seismic and log data using a rock physics model
Zhu Numerical simulation of seismic wave propagation in viscoelastic-anisotropic media using frequency-independent Q wave equation
Parra Poroelastic model to relate seismic wave attenuation and dispersion to permeability anisotropy
Stewart et al. Physical modeling of anisotropic domains: Ultrasonic imaging of laser-etched fractures in glass
CN102788994A (zh) 一种储层裂缝的确定方法
Tsingas et al. Elastic wave propagation in transversely isotropic media using finite differences 1
Shao et al. Wave guiding in fractured layered media
Hu A review of mechanical mechanism and prediction of natural fracture in shale
Kumar et al. Reflection and refraction of elastic waves at the interface of an elastic solid and partially saturated soils
Malehmir et al. Acoustic reflectivity from variously oriented orthorhombic media: analogies to seismic responses from a fractured anisotropic crust
CN110488386A (zh) 一种基于页岩晶体几何因子取向函数的各向异性岩石物理标定方法
CN110471129A (zh) 一种深层页岩高温高压下的各向异性岩石物理建模方法
Osinowo et al. Modelling orthorhombic anisotropic effects for reservoir fracture characterization of a naturally fractured tight carbonate reservoir, Onshore Texas, USA
Wu et al. Shale anisotropic elastic modelling and seismic reflections
Schwenk Constrained parameterization of the multichannel analysis of surface waves approach with application at Yuma Proving Ground, Arizona
Parra et al. Characterization of fractured low Q zones at the Buena Vista Hills reservoir, California
Nistala et al. 3D modeling of fracture-induced shear-wave splitting in the southern California basin
Sharma et al. Intrinsic attenuation from inhomogeneous waves in a dissipative anisotropic poroelastic medium
Yao et al. Microseismic wavefield propagation in a fracture‐induced anisotropic medium based on a general dislocation source model
Narhari et al. A case study of prestack orthotropic AVAz inversion for fracture characterization of a tight Deep Carbonate reservoir of Kuwait

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant