CN110488043A - 自由电子激发增强近场信号的扫描近场光学显微镜 - Google Patents

自由电子激发增强近场信号的扫描近场光学显微镜 Download PDF

Info

Publication number
CN110488043A
CN110488043A CN201910726384.8A CN201910726384A CN110488043A CN 110488043 A CN110488043 A CN 110488043A CN 201910726384 A CN201910726384 A CN 201910726384A CN 110488043 A CN110488043 A CN 110488043A
Authority
CN
China
Prior art keywords
field
near field
optical microscope
scanning
free electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910726384.8A
Other languages
English (en)
Other versions
CN110488043B (zh
Inventor
胡旻
张天宇
张倬铖
王玥莹
张晓秋艳
许星星
吴振华
龚森
赵陶
钟任斌
刘頔威
刘盛纲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910726384.8A priority Critical patent/CN110488043B/zh
Publication of CN110488043A publication Critical patent/CN110488043A/zh
Application granted granted Critical
Publication of CN110488043B publication Critical patent/CN110488043B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种自由电子激发增强近场信号的扫描近场光学显微镜,属于扫描近场光学显微镜领域。本发明在现有扫描近场光学显微镜的基础之上,通过引入自由电子,在被测样品上产生表面近场,进而增强扫描近场光学显微镜近场信号及其成像质量。其实现将大幅提升红外太赫兹以及可见光等频段的微纳尺度结构的近场特性研究及其应用。

Description

自由电子激发增强近场信号的扫描近场光学显微镜
技术领域
本发明属于扫描近场光学显微镜(SNOM)领域,尤其是工作频率位于太赫兹频段(0.1-10THz)的散射式扫描近场光学显微镜(s-SNOM)。
背景技术
扫描近场光学显微镜因其超分辨成像能力,在中红外频段至可见光频段已取得了巨大的研究成果,在新型材料分析、等离子体激元(Plasmonics)检测和生物医学成像等领域取得了迅速发展,研究学者们利用其超分辨特性观察到了许多独特的物理现象,如新型二维材料中的各种激元,各种生物大分子的中红外频谱特性。随着技术的不断进步,近年来也已经出现了工作频率位于太赫兹频段的扫描近场光学显微镜。
作为众多扫描探针显微镜(SPM)中的一种[Scanning Probe Microscopy:The Labon a Tip.Springer Science&Business Media,(2003)],扫描近场光学显微镜(SNOM)[Applied Physics Letters,1984,44(7):651-653.]是基于扫描隧道显微镜(STM)[Physical Review Letters,1982,49(1):57.]和原子力显微镜(AFM)[Physical ReviewLetters,1986,56(9):930.]发展而来的,用于突破光学分辨率的成像设备。近年来,由于SNOM能够克服光学成像的衍射极限分辨率,既能够实现纳米级分辨率成像,还可用于探索物质和结构的频谱特性,成为国际上研究的热点。根据其测量原理的不同,大致上可以将SNOM分为两大类:一是基于孔径式的SNOM,即a-SNOM[Nature,1972,237(5357):510.],二是基于散射式的SNOM,即s-SNOM[Philosophical Transactions of the Royal Society ofLondon.Series A:Mathematical,Physical and Engineering Sciences 362.1817(2004):787-805.]。其中,由于s-SNOM的探针尖端可以加工至纳米尺度,能够对微纳结构进行探测,其研究和应用逐渐增多。经过长期的发展,s-SNOM的性能逐步完善,其具有极高的空间分辨率(一般为10-20nm,由针尖尖端曲率半径决定,与照射光源的波长完全无关),目前可以实现:从太赫兹频段到可见光频段内的测量;区分不同的偏振态以及完成时间分辨的测量;同时记录场强的幅值和相位等功能。[Nature,2012,487(7405):82.],[Nature,2012,487(7405):77.]这些特性在各种实际场景中得到广泛应用。但当其应用于某些特殊频段时,如红外太赫兹和可见光频段时,由于系统信噪比相对较低,还未取得广泛应用,还存在一定的提升空间。
发明内容
本发明提出利用自由电子激发材料中的近场,与扫描近场光学显微镜中探针所激发的近场相互耦合增强的物理机制,从而提高系统散射信号中近场信号的功率,提升系统的信噪比,在不提升辐射源和检测器的性能的情况下,增强各频段扫描近场光学显微镜的性能和近场成像质量,具有深远的实用意义。
实现这种机理的关键技术问题主要有以下两个方面:
第一个是自由电子激发材料表面近场的物理特性。利用自由电子产生表面近场,需要极高质量的电子束,因此需要对自由电子进行约束和控制。
第二个问题,也是最关键的问题是s-SNOM自身探针激励产生的表面近场与用电子激励产生的表面近场之间的耦合。
本发明采用技术方案如下:一种自由电子激发增强近场信号的扫描近场光学显微镜,包括电子枪、扫描近场光学显微镜,所述电子枪产生的电子束激励样品产生第一种表面近场,所述扫描近场光学显微镜中的纳米针尖激励样品产生第二种表面近场,所述第一种、第二种表面近场为能够相互耦合的同一频率的表面近场,从而增强近场信号强度和近场成像质量,然后扫描近场光学显微镜得到成像结果。
通过调节自由电子和近场探针的物理特性,如通过控制电子枪产生的电子束的能量以及扫描近场光学显微镜的参数,我们可以得到工作于同一频率的近场,可以使得两种不同方式激励出的表面近场相互耦合,最终达到增强近场信号强度和近场成像质量的效果。
综上所述,我们提出利用自由电子激发样品产生表面近场与探针本身所激励的近场相互耦合的方式增强s-SNOM近场信号。实现这一物理现象,能够有效提高s-SNOM近场成像的质量,更好的分辨出各物质在近场下的特性差异。国际上利用这一机理的s-SNOM还未出现,本发明可以突破当前s-SNOM发展的一些瓶颈,这对科研人员研究各种物质和结构的近场特性具有深远意义,对诸如等离激元学,超分辨率成像,新型太赫兹辐射源,生物传感等学科的发展起到积极作用。
附图说明
图1是本发明的原理图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。在图1中,电子枪产生的电子束(1)与扫描近场光学显微镜的纳米针尖(2)共同激励能够产生表面近场的样品(3),两种方式产生的表面近场相互耦合,其频率为0.1-30THz,如10THz,进而增强纳米针尖(2)所提取的样品表面的近场信号。其中电子束(1)的能量大致为几个到数十个keV,1-30keV,如30keV,纳米针尖(2)的尖端尺寸一般为10~50个纳米,如30nm,样品(3)是如石墨烯、六角氮化硼(hBN)等可以支持表面近场的材料或结构。

Claims (1)

1.一种自由电子激发增强近场信号的扫描近场光学显微镜,包括电子枪、扫描近场光学显微镜,其特征在于,所述电子枪产生的电子束激励样品产生第一种表面近场,所述扫描近场光学显微镜中的纳米针尖激励样品产生第二种表面近场,所述第一种、第二种表面近场为能够相互耦合的同一频率的表面近场,从而增强近场信号强度和近场成像质量,然后扫描近场光学显微镜得到成像结果。
CN201910726384.8A 2019-08-07 2019-08-07 自由电子激发增强近场信号的扫描近场光学显微镜 Active CN110488043B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910726384.8A CN110488043B (zh) 2019-08-07 2019-08-07 自由电子激发增强近场信号的扫描近场光学显微镜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910726384.8A CN110488043B (zh) 2019-08-07 2019-08-07 自由电子激发增强近场信号的扫描近场光学显微镜

Publications (2)

Publication Number Publication Date
CN110488043A true CN110488043A (zh) 2019-11-22
CN110488043B CN110488043B (zh) 2021-05-04

Family

ID=68549681

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910726384.8A Active CN110488043B (zh) 2019-08-07 2019-08-07 自由电子激发增强近场信号的扫描近场光学显微镜

Country Status (1)

Country Link
CN (1) CN110488043B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337711A (zh) * 2020-03-09 2020-06-26 电子科技大学 基于调制自由电子的扫描近场光学显微镜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548113A (en) * 1994-03-24 1996-08-20 Trustees Of Boston University Co-axial detection and illumination with shear force dithering in a near-field scanning optical microscope
WO2002063368A1 (en) * 2001-02-06 2002-08-15 University Of Bristol Scanning near-field optical microscope
US6469288B1 (en) * 1999-05-17 2002-10-22 Olympus Optcial Co., Ltd. Near field optical microscope and probe for near field optical microscope
CN1587980A (zh) * 2004-09-15 2005-03-02 中国科学院上海光学精密机械研究所 完全光纤探针扫描式近场光学显微镜
CN2729693Y (zh) * 2004-09-15 2005-09-28 中国科学院上海光学精密机械研究所 完全光纤探针扫描式近场光学显微镜
CN101042326A (zh) * 2007-04-16 2007-09-26 中国科学院物理研究所 结合磁镊观测生物大分子的全反射近场显微镜
CN101881786A (zh) * 2010-05-26 2010-11-10 中国科学院半导体研究所 基于微小孔激光器的扫描近场光学显微镜系统
CN109374928A (zh) * 2018-09-12 2019-02-22 东南大学 一种基于等离聚焦的近场扫描探针

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548113A (en) * 1994-03-24 1996-08-20 Trustees Of Boston University Co-axial detection and illumination with shear force dithering in a near-field scanning optical microscope
US6469288B1 (en) * 1999-05-17 2002-10-22 Olympus Optcial Co., Ltd. Near field optical microscope and probe for near field optical microscope
WO2002063368A1 (en) * 2001-02-06 2002-08-15 University Of Bristol Scanning near-field optical microscope
CN1587980A (zh) * 2004-09-15 2005-03-02 中国科学院上海光学精密机械研究所 完全光纤探针扫描式近场光学显微镜
CN2729693Y (zh) * 2004-09-15 2005-09-28 中国科学院上海光学精密机械研究所 完全光纤探针扫描式近场光学显微镜
CN101042326A (zh) * 2007-04-16 2007-09-26 中国科学院物理研究所 结合磁镊观测生物大分子的全反射近场显微镜
CN101881786A (zh) * 2010-05-26 2010-11-10 中国科学院半导体研究所 基于微小孔激光器的扫描近场光学显微镜系统
CN109374928A (zh) * 2018-09-12 2019-02-22 东南大学 一种基于等离聚焦的近场扫描探针

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
F. KUSCHEWSKI ET AL.: "Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz", 《APPLIED PHYSICS LETTERS》 *
WATARU INAMI ET AL.: "Electron beam excitation assisted optical microscope with ultra-high resolution", 《OPTICS EXPRESS》 *
龚森 等: "电子注激励石墨烯表面等离子体激元的研究", 《电子科技大学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337711A (zh) * 2020-03-09 2020-06-26 电子科技大学 基于调制自由电子的扫描近场光学显微镜
CN111337711B (zh) * 2020-03-09 2021-07-06 电子科技大学 基于调制自由电子的扫描近场光学显微镜

Also Published As

Publication number Publication date
CN110488043B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
Mathurin et al. Photothermal AFM-IR spectroscopy and imaging: Status, challenges, and trends
Chen et al. Modern scattering‐type scanning near‐field optical microscopy for advanced material research
Wang et al. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy
Lucas et al. Invited review article: combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science
Courjon et al. Near field microscopy and near field optics
Zhang et al. Near-field Raman spectroscopy with aperture tips
Ichimura et al. Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging
US5479024A (en) Method and apparatus for performing near-field optical microscopy
Petibois Imaging methods for elemental, chemical, molecular, and morphological analyses of single cells
Lereu et al. Near field optical microscopy: a brief review
Rasmussen et al. New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy
Sun et al. Near‐field scanning Raman microscopy using apertureless probes
KR100829659B1 (ko) 근접장 주사 광학 현미경
Garcia‐Parajo et al. Simultaneous scanning tunneling microscope and collection mode scanning near‐field optical microscope using gold coated optical fiber probes
Bourgeois et al. Polarization-resolved electron energy gain nanospectroscopy with phase-structured electron beams
CN110488043A (zh) 自由电子激发增强近场信号的扫描近场光学显微镜
Belhassen et al. Toward augmenting tip-enhanced nanoscopy with optically resolved scanning probe tips
Keilmann Scattering-type near-field optical microscopy
Keilmann et al. Long‐Wave‐Infrared Near‐Field Microscopy
Liu et al. High-Resolution Imaging of Electric Field Enhancement and Energy-Transfer Quenching by a Single Silver Nanowire Using QD-Modified AFM Tips
Katebi Jahromi et al. Modeling electric field increment in the Tip-Enhanced Raman Spectroscopy by using grating on the probe of atomic force nanoscope
Levi Progress Made in Near‐Field Imaging with Light from a Sharp Tip
Selvan et al. Several assorted characterization methods of nanoparticles
CN111337711B (zh) 基于调制自由电子的扫描近场光学显微镜
Hayazawa et al. One-photon and two-photon excited fluorescence microscopies based on polarization-control: applications to tip-enhanced microscopy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant