CN110486244B - 一种电磁感应式等离子体加速装置 - Google Patents

一种电磁感应式等离子体加速装置 Download PDF

Info

Publication number
CN110486244B
CN110486244B CN201910911391.5A CN201910911391A CN110486244B CN 110486244 B CN110486244 B CN 110486244B CN 201910911391 A CN201910911391 A CN 201910911391A CN 110486244 B CN110486244 B CN 110486244B
Authority
CN
China
Prior art keywords
pulse
assembly
working medium
pulse laser
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910911391.5A
Other languages
English (en)
Other versions
CN110486244A (zh
Inventor
李小康
吴建军
程谋森
车碧轩
王墨戈
郭大伟
杨雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201910911391.5A priority Critical patent/CN110486244B/zh
Publication of CN110486244A publication Critical patent/CN110486244A/zh
Application granted granted Critical
Publication of CN110486244B publication Critical patent/CN110486244B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0081Electromagnetic plasma thrusters

Abstract

本发明公开一种电磁感应式等离子体加速装置,包括脉冲激光组件、脉冲放电组件、激励线圈组件、固态工质与控制组件;激励线圈组件与脉冲放电组件电联以使得脉冲放电组件放电过程中在激励线圈组件内产生脉冲强电流,进一步在激励线圈组件周围激发感应脉冲电磁场;固态工质位于脉冲激光组件所射出的脉冲激光的光路上以使得固态工质在脉冲激光的烧蚀作用下产生脉冲气体,感应脉冲电磁场位于脉冲气体的流通气路上以使得脉冲气体能够进入感应脉冲电磁场;脉冲激光组件、脉冲放电组件均与控制组件电联。通过对工质供给方式的创新,解决其使用中的寿命瓶颈问题,达到高效利用工质、充分发挥该类推进装置优点、推动各类装置实用化的目的。

Description

一种电磁感应式等离子体加速装置
技术领域
本发明涉及电推进技术领域,具体是一种电磁感应式等离子体加速装置。
背景技术
多种工程应用场合需要在实现等离子体的生成并对其进行加速。典型应用包括等离子体喷涂、表面加工领域,或者是航天领域的推进系统。
在航天领域中,推进装置作为提供动力的部分,对航天器极为重要,是航天器能够完成任务的基础。相较于传统的化学推进,电推进通过电能加速推进剂以获得推力,其推进能量来自于推进剂之外,可获得更高的喷射速度,因而可有效减少推进剂消耗,增加航天器的有效载荷。目前,电推进技术在航天器上已经得到了广泛应用,高轨通信卫星上已有半数以上装备了电推进系统,并成为了卫星平台是否具有先进性的标志之一。
电推进中,有一类推进装置采用电磁力加速等离子体,是电推进中的一种重要类别,也是近年来国际研究的热点。其工作原理是依靠电能电离工质获得等离子体、并进一步依靠电磁力对等离子体进行加速,使其达到极快速度向外喷射,与此同时,根据作用力与反作用力原理,喷射的等离子体将对装置自身产生一个反推动力或者冲量。
传统的等离子体加速装置,如脉冲等离子体推力器(PPT,Pulsed PlasmaThruster),产生等离子体的方式本质上属于电极间放电,故一个必须的部件是放电电极。PPT工作时,通过火花塞进行微量放电引发两个平行板电极之间的主放电,主放电产生较大放电电流建立自身感应磁场,同时烧蚀剥离一层固体工质,进一步形成等离子体。等离子体电流与磁场相互作用产生洛伦兹力使其加速喷射从而产生一个脉冲的推力。由于存在电极,该类推进装置不可避免地会因电极烧蚀而引发寿命缩短、等离子体成分污染、工质兼容性差等问题,使得推进装置的实际应用受到一定制约。
基于上述原因,研究者们提出了一种使用气态工质的无电极的脉冲感应等离子体推力器(亦称感应式脉冲等离子体推力器)。该种装置利用脉冲感应放电原理与感应涡流斥力原理实现工质的电离与加速,采用的工质为气体,通过一个脉冲式的气体阀控制。该装置工作时,分为两个阶段:第一阶段,喷注器上游的脉冲气体供给阀快速开启,工质气体通过塔式喷注器向激励线圈组表面喷注,达到指定的气体团质量后脉冲气体阀迅速关闭;工质气体沿激励线圈组表面运动并铺展开来,直至达到预想的气体分布;第二阶段,储能电容触发放电,在激励线圈组中产生脉冲强电流;脉冲电流通过激励线圈组激发感应的脉冲电磁场,其周向电场分量击穿气体并建立环形等离子体电流;其径向磁场分量与等离子体电流相互作用产生轴向洛伦兹力加速等离子体,从而产生推力,完成一个工作脉冲。多个工作脉冲以一定重复频率进行工作时,装置就可以获得持续的推动作用。
由上述表述可知,现有的气态工质脉冲感应等离子体推力器采用高速开启和关闭的脉冲气体阀实现脉冲供气,如果阀门开启和关闭过于缓慢,则部分气体到达激励线圈时脉冲放电尚未开始或者放电已经结束,那么大量的工质将因散逸而浪费,这对工质十分宝贵的航天应用场合是不可接受的。因此推力器对脉冲气体供给子系统提出了极高要求,其阀门的延迟时间、开启时间、关闭时间要求都极为苛刻,启闭时间需要短至百微秒甚至数十微秒量级。除此之外,目前已有的基于高速脉冲气体阀的脉冲感应等离子体推力器,还存在如下问题:
1.寿命问题。推力器以重复频率形式工作,每一个脉冲中阀门都需要以极高速度开启和关闭,运动部件必然需要承受极大的力,因此阀门寿命成为了整个装置的瓶颈问题。以美国各核心部件的典型情况为例,其中放电电容寿命可达107次,放电开关可达105次,但典型的脉冲气体阀的寿命仅103次,极大地制约了该类装置的实际应用。
2.功耗问题。阀门的阀芯高速地在静止-高速运动-静止状态之间切换,很大一部分能量将不得不损耗在阀芯的制动上,因此需要较大的额外功率方可驱动阀门工作,这在造成降低系统效率的同时,还带来了散热、系统复杂等问题。
3.干扰问题。阀门的驱动装置和激励线圈组的驱动电路存在电气上连接,可能导致二者之间相互干扰,甚至阀门误动作。这在时序需要密切配合的实际工作中是不允许的。
发明内容
针对现有技术中气态工质的感应式脉冲等离子体加速装置中,工质供给方面的短板,本发明提供一种电磁感应式等离子体加速装置,通过对工质供给方式的创新,结合推进装置整体进行设计,解决其使用中的寿命瓶颈问题,达到高效利用工质、充分发挥该类推进装置优点、推动各类装置实用化的目的。
为实现上述目的,本发明提供
1、一种电磁感应式等离子体加速装置,包括支架、脉冲激光组件、脉冲放电组件、激励线圈组件、反射组件、固态工质与控制组件;
所述激励线圈组件与所述脉冲放电组件电联以使得所述脉冲放电组件放电过程中在所述激励线圈组件内产生脉冲强电流,进一步在所述激励线圈组件周围激发感应脉冲电磁场;
所述固态工质位于所述脉冲激光组件所射出的脉冲激光的光路上以使得所述固态工质在脉冲激光的烧蚀作用下产生脉冲气体,所述感应脉冲电磁场位于所述脉冲气体的流通气路上以使得所述脉冲气体能够进入所述感应脉冲电磁场;
所述反射组件包括设在支架上的第一反射镜与第二反射镜,所述第一反射镜为轴对称锥状构型,所述第二反射镜为轴对称环形构型,所述第一反射镜位于所述第二反射镜的环形口内,所述第一反射镜的反射片位于所述锥状构型的锥面上,所述第二反射镜的反射面位于所述环形构型的内环面上;
所述固态工质、所述激励线圈组件均设在所述支架上且位于所述第一反射镜的反射面与第二反射镜的反射面之间,所述激励线圈组件位于所述固态工质下方并在所述固态工质上方激发感应脉冲电磁场;
所述脉冲激光组件所射出的脉冲激光经过所述第一反射镜的反射面、所述第二反射镜的反射面后照射在所述固态工质上;所述脉冲激光组件、所述脉冲放电组件均与所述控制组件电联以用于控制脉冲激光组件所射出的脉冲激光的功率与频率。
进一步优选的,所述第一反射镜的母线与所述第二反射镜的母线为直线构型或曲线构型。
进一步优选的,所述激励线圈组件由多支螺旋线形天线按轴对称方式交叠而成。
进一步优选的,所述激励线圈组件中的单支螺旋线形天线为阿基米德螺旋线线型。
进一步优选的,所述脉冲放电组件包括电联的脉冲开关与储能电容,储能电容的一极与单支螺旋线形天线的一端串联,该单支螺旋线形天线的另一端连接至脉冲开关的一端,储能电容的另一极连接至脉冲开关的另一端。
进一步优选的,所述脉冲开关为高峰值电流的脉冲开关或开关阵列。
进一步优选的,所述脉冲开关的高压端采用耐高温环氧树脂进行整体封装。
进一步优选的,所述储能电容的接线柱采用封装式结构。
进一步优选的,所述固态工质由高聚物材料或金属材料制成。
本发明的有益技术效果:
(1)本发明中的电磁感应式等离子体加速装置基于脉冲激光烧蚀固态工质以实现工质供给,并进一步采用脉冲感应放电原理及感应涡流斥力原理实现了等离子体的电离与加速,相较于现有技术中的基于脉冲气体阀的方案,不存在需要高速运动的部件,更不需要对高速阀芯进行制动,通过调整脉冲激光的脉冲周期来控制对固态工质的烧蚀后产生的脉冲气流的脉冲频率,代替现有技术中通过脉冲气流阀对气流控制形成脉冲气流的脉冲频率,而对于脉冲激光组件而言,调整脉冲激光的周期只需从电路上进行控制即可,无需向脉冲气流阀一样高频次机械动作,解决了寿命瓶颈问题,提高了系统效率;
(2)本发明中的电磁感应式等离子体加速装置由于采用固态工质,省去了工质储箱、管道和阀门等部件,有效降低了系统复杂度;
(3)本发明中的感应式等离子体加速装置,由脉冲激光组件、固态工质组成的工质供给部分与由脉冲放电组件、激励线圈组件组成的强放电部分之间实现了光电解耦,极大降低了工质供给部分与主放电部分之间相互串扰、出现误动作的可能性。
(4)本发明中的电磁感应式等离子体加速装置无电极结构,不存在困扰各类电磁式推力器的电极烧蚀问题,具备极佳的长寿命运行潜力及大功率负载能力,并且无需附加磁场,只存在单级放电过程,结构简单,同时以脉冲方式工作,可通过改变脉冲频率灵活调整平均推力与功率,在空间推进领域具备较好的应用前景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明实施例中电磁感应式等离子体加速装置的实施结构示意图;
图2为本发明实施例中激励线圈组件的结构示意图;
图3为本发明实施例中用以激发感应脉冲电磁场的脉冲开关、储能电容组和激励线圈组件的电路图。
附图标号说明:1-脉冲激光组件、11-脉冲激光、21-脉冲开关、22-储能电容、3-激励线圈组件、31-线圈槽、4-固态工质、5-控制组件、61-第一控制信号、62-第二控制信号、7-支架、81-第一反射镜、82-第二反射镜
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是物理连接或无线通信连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
图1所示的是本实施例中一种电磁感应式等离子体加速装置,其包括脉冲激光组件1、脉冲放电组件、激励线圈组件3、固态工质4、支架7、反射组件与禁止组件:
脉冲激光组件1,用于产生脉冲激光11,本实施例中采用脉冲激光器或者采用其他能够发射出脉冲激光的设备作为脉冲激光组件1。
脉冲放电组件,由脉冲开关21与储能电容22电联组成,用于进行脉冲放电。其中,脉冲开关21选用高峰值电流的脉冲开关或开关阵列,并对脉冲开关21的高压端采用耐高温环氧树脂进行整体封装,提升其在近真空环境下使用时的绝缘性能。储能电容22用于储存放电能量,储能电容22的接线柱采用封装式结构,以提高真空环境下使用的绝缘性和密封性;储能电容22的数量为一个或多个,当储能电容22的数量为多个时,所有电容器在空间上按轴对称方式紧密环绕于脉冲开关21四周。
激励线圈组件3,由多支螺旋线形天线按轴对称方式交叠而成,优选的,其中单支的螺旋线形天线具体为阿基米德螺旋线线型,即如图2从左至右所示出的单支螺旋线形天线以及2只与6只螺旋线形天线组成的激励线圈组件;激励线圈组件3也可以是其他的表现形式,本实施例中不再一一赘述。激励线圈组件3安置在线圈槽31中,线圈槽31由绝缘材料构成。激励线圈组件3与脉冲开关21、储能电容22电联进而形成一个完整的电回路,以使得脉冲放电组件放电过程中在激励线圈组件3内产生脉冲强电流,进一步在激励线圈组件3周围激发感应脉冲电磁场。其中,激励线圈组件3与脉冲开关21、储能电容22电联进而形成一个完整的电回路时,每个储能电容22的一极与单支螺旋线形天线的一端串联,该单支螺旋线形天线的另一端又连接至脉冲开关21的一端,储能电容22的另一极直接连接至脉冲开关21的另一端。
固态工质4,由高聚物材料或金属材料制成,安置在激励线圈组件3并且位于脉冲激光组件1所射出的脉冲激光11的光路上以使得固态工质4在脉冲激光11的烧蚀作用下产生脉冲气体,同时使得激光烧蚀固态工质4所产生的脉冲气体能够进入感应脉冲电磁场。
支架7,用于对各部件起到支撑作用,具体的,脉冲放电组件、激励线圈组件3、固态工质4与反射组件均安装在支架7上,脉冲激光组件1与控制组件5安装在支架7上或支架7外的位置。
反射组件,设在脉冲激光组件1所射出的脉冲激光11的光路上,以用于使激光能够按照预定强度分布准确地照射在固态工质4上;
本实施结构下的固态工质4为环形片状结构,反射组件包括可拆卸安装在支架7上的第一反射镜81与第二反射镜82,第一反射镜81为轴对称锥状构型,第二反射镜82为轴对称环形构型;第一反射镜81位于第二反射镜82的环形口内,第一反射镜81的反射片位于锥状构型的锥面上,第二反射镜82的反射面位于环形构型的内环面上。
固态工质4、激励线圈组件3均设在支架7上且位于第一反射镜81的反射面与第二反射镜82的反射面之间,即第一反射镜81位于固态工质4的环形口内,优选的,第一反射镜81的锥形轴线、固态工质4的环形轴线以及第二反射镜82的环形轴线三者重合;激励线圈组件3位于固态工质4下方并在固态工质4上方激发感应脉冲电磁场,具体的,支架7上安装有环形结构的线圈槽31,激励线圈组件3安置在线圈槽31内,固态工质4铺设在线圈槽31上,第一反射镜81安装在线圈槽31的内环位置,第二反射镜82安装在线圈槽31的外环位置。
在该种实施结构下,脉冲激光组件1所射出的脉冲激光11经过第一反射镜81的反射面、第二反射镜82的反射面后照射在固态工质4上,优选的,脉冲激光组件1所射出的脉冲激光11的中心与第一反射镜81的锥形轴线重合,使得从脉冲激光组件1所射出的线形构型的脉冲激光11经过第一反射镜81的反射面后变成环形面构型的激光面,并经过第二反射镜82的反射面后对固态工质4上环形区域进行辐射,使得脉冲激光11能够准确、均匀的辐射在固态工质4上。
优选的,第一反射镜81的母线与第二反射镜82的母线为直线构型或曲线构型,可以通过更换不同母线构型的第一反射镜81的母线与第二反射镜82来达到改变脉冲激光11在固态工质4上的辐射面积与位置的效果。
该结构下的电磁感应式等离子体加速装置的工作过程为:控制组件5发出第一控制信号61,启动脉冲激光组件1,发射脉冲激光11,线形构型的脉冲激光11经过第一反射镜81的反射面、第二反射镜82的反射面后对固态工质4上的环形区域进行烧蚀,产生的脉冲气体形式的气态烧蚀产物,随后脉冲气体运动到激励线圈组件3周围能够受感应脉冲电磁场作用的位置,即激励线圈组件3的正上方,其中,第二反射镜82起到约束件32的效果,以防止激光烧蚀固态工质4所产生的脉冲气体从激励线圈组件3的边缘溢出;此时,控制组件5发出第二控制信号62,接通脉冲开关21,使脉冲开关21、已充电至预设高电压的储能电容22、激励线圈组件3三者组成的回路导通,其中,脉冲开关21的脉冲频率与脉冲激光组件1的脉冲频率一致,以进行脉冲放电;由放电产生脉冲强电流,脉冲强电流通过激励线圈组件3激发产生感应脉冲电磁场,其周向电场分量击穿脉冲气体并建立环形等离子体电流,其径向磁场分量与等离子体电流相互作用产生轴向洛伦兹力加速等离子体,从而产生推进作用,完成一个工作脉冲。其中,可以通过调节脉冲激光组件1与脉冲开关21的工作频率实现平均推力和平均功率的调节。其中,用以激发感应脉冲电磁场的脉冲开关、储能电容组和激励线圈组件3的电路图如图3所示。
控制组件5,与激励线圈组件3、脉冲放电组件电联,用于控制脉冲激光组件1与脉冲开关21的开启与关闭,可以采用PLC控制箱或电气控制箱或信号发生器作为控制组件5,本实施例中采用市面上常见的信号发生器作为控制组件5,通过将信号发生器设定好产生两个触发脉冲来控制脉冲激光组件与脉冲开关的运行,达到脉冲激光组件与脉冲放电组件二者之间匹配工作的效果,进一步的,这两个触发脉冲以一定频率进行重复工作,可以达到控制推力大小的效果。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (9)

1.一种电磁感应式等离子体加速装置,其特征在于,包括支架、脉冲激光组件、脉冲放电组件、激励线圈组件、反射组件、固态工质与控制组件;
所述激励线圈组件与所述脉冲放电组件电联以使得所述脉冲放电组件放电过程中在所述激励线圈组件内产生脉冲强电流,进一步在所述激励线圈组件周围激发感应脉冲电磁场;
所述固态工质位于所述脉冲激光组件所射出的脉冲激光的光路上以使得所述固态工质在脉冲激光的烧蚀作用下产生脉冲气体,所述感应脉冲电磁场位于所述脉冲气体的流通气路上以使得所述脉冲气体能够进入所述感应脉冲电磁场;
所述反射组件包括设在支架上的第一反射镜与第二反射镜,所述第一反射镜为轴对称锥状构型,所述第二反射镜为轴对称环形构型,所述第一反射镜位于所述第二反射镜的环形口内,所述第一反射镜的反射片位于所述锥状构型的锥面上,所述第二反射镜的反射面位于所述环形构型的内环面上;
所述固态工质、所述激励线圈组件均设在所述支架上且位于所述第一反射镜的反射面与第二反射镜的反射面之间,所述激励线圈组件位于所述固态工质下方并在所述固态工质上方激发感应脉冲电磁场;
所述脉冲激光组件所射出的脉冲激光经过所述第一反射镜的反射面、所述第二反射镜的反射面后照射在所述固态工质上;所述脉冲激光组件、所述脉冲放电组件均与所述控制组件电联以用于控制脉冲激光组件所射出的脉冲激光的功率与频率。
2.根据权利要求1所述电磁感应式等离子体加速装置,其特征在于,所述第一反射镜的母线与所述第二反射镜的母线为直线构型或曲线构型。
3.根据权利要求1或2所述电磁感应式等离子体加速装置,其特征在于,所述激励线圈组件由多支螺旋线形天线按轴对称方式交叠而成。
4.根据权利要求3所述电磁感应式等离子体加速装置,其特征在于,所述激励线圈组件中的单支螺旋线形天线为阿基米德螺旋线线型。
5.根据权利要求3所述电磁感应式等离子体加速装置,其特征在于,所述脉冲放电组件包括电联的脉冲开关与储能电容,储能电容的一极与单支螺旋线形天线的一端串联,该单支螺旋线形天线的另一端连接至脉冲开关的一端,储能电容的另一极连接至脉冲开关的另一端。
6.根据权利要求5所述电磁感应式等离子体加速装置,其特征在于,所述脉冲开关为高峰值电流的脉冲开关或开关阵列。
7.根据权利要求5所述电磁感应式等离子体加速装置,其特征在于,所述脉冲开关的高压端采用耐高温环氧树脂进行整体封装。
8.根据权利要求5所述电磁感应式等离子体加速装置,其特征在于,所述储能电容的接线柱采用封装式结构。
9.根据权利要求1或2所述电磁感应式等离子体加速装置,其特征在于,所述固态工质由高聚物材料或金属材料制成。
CN201910911391.5A 2019-09-25 2019-09-25 一种电磁感应式等离子体加速装置 Active CN110486244B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910911391.5A CN110486244B (zh) 2019-09-25 2019-09-25 一种电磁感应式等离子体加速装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910911391.5A CN110486244B (zh) 2019-09-25 2019-09-25 一种电磁感应式等离子体加速装置

Publications (2)

Publication Number Publication Date
CN110486244A CN110486244A (zh) 2019-11-22
CN110486244B true CN110486244B (zh) 2020-06-30

Family

ID=68544317

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910911391.5A Active CN110486244B (zh) 2019-09-25 2019-09-25 一种电磁感应式等离子体加速装置

Country Status (1)

Country Link
CN (1) CN110486244B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113464390B (zh) * 2021-07-21 2022-06-07 中国电子科技集团公司第十八研究所 一种组合解耦式电流体推力器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100493164B1 (ko) * 2002-12-14 2005-06-02 삼성전자주식회사 전자기 유도 가속기
RU2246035C9 (ru) * 2003-05-30 2005-05-10 Кошкин Валерий Викторович Ионный двигатель кошкина
CN102022299B (zh) * 2010-12-07 2012-01-25 中国人民解放军国防科学技术大学 激光微推力器
US8944370B2 (en) * 2012-01-09 2015-02-03 The Boeing Company Plasma actuating propulsion system for aerial vehicles
CN107143475B (zh) * 2017-07-11 2023-07-11 中国人民解放军国防科学技术大学 用于激光支持的磁等离子体推力器的多级放电电路
CN107939625B (zh) * 2017-11-13 2019-04-05 中国人民解放军国防科技大学 反射式激光-电磁场耦合推力器
CN107842478B (zh) * 2017-11-13 2019-04-05 中国人民解放军国防科技大学 透射式激光-电磁场耦合推力器

Also Published As

Publication number Publication date
CN110486244A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2021057892A1 (zh) 一种感应式等离子体加速装置及方法
CN107091210B (zh) 一种基于毛细管放电的脉冲等离子体推力器
WO1997012372A9 (en) A compound plasma configuration, and method and apparatus for generating a compound plasma configuration
CN210106081U (zh) 固体烧蚀型磁等离子体推力器
US3191092A (en) Plasma propulsion device having special magnetic field
CN206487598U (zh) 等离子发动机
CN107061210B (zh) 一种基于电热电磁混合加速的脉冲等离子体推力器
CN110486244B (zh) 一种电磁感应式等离子体加速装置
CN105952603A (zh) 激光烧蚀脉冲等离子体推力器
US3321664A (en) Plasma accelerator having rapidly pulsed coil for expelling plasma
WO2020023654A1 (en) Thruster device
CN110671288B (zh) 一种塔筒感应式等离子体加速装置
CN206592256U (zh) 一种采用储气电极的无触发式微真空弧推进器
Kirtley et al. Steady operation of an FRC thruster on Martian atmosphere and liquid water propellants
CN110131120B (zh) 固体烧蚀型磁等离子体推力器
CN114033597B (zh) 一种基于纳秒脉冲放电的大体积点火系统
EP2926361B1 (en) System for plasma generation
CN111946574B (zh) 一种激光诱导射频放电等离子体推进器
CN111577564A (zh) 单级复合双脉冲增强电离型感应式脉冲等离子体推力器
CN113035379A (zh) 一种基于紧凑环等离子体的单级高速加料系统
Driga et al. Electrothermal accelerators: The power conditioning point of view
RU2776324C1 (ru) Прямоточный релятивистский двигатель
JPH06196298A (ja) プラズマ電磁加速器
FI91100C (fi) Kollektiivisella ionikiihdyttimellä toimiva työntövoimalaite
JPH07174876A (ja) 連続多段加速式同軸ガン

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant