CN110484855A - 一种耐磨蚀、优弯曲疲劳性能的超音速等离子Ni基喷涂层制备方法 - Google Patents

一种耐磨蚀、优弯曲疲劳性能的超音速等离子Ni基喷涂层制备方法 Download PDF

Info

Publication number
CN110484855A
CN110484855A CN201910916402.9A CN201910916402A CN110484855A CN 110484855 A CN110484855 A CN 110484855A CN 201910916402 A CN201910916402 A CN 201910916402A CN 110484855 A CN110484855 A CN 110484855A
Authority
CN
China
Prior art keywords
nitriding
coating
spray coating
base spray
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910916402.9A
Other languages
English (en)
Inventor
王海斗
董丽虹
靖建农
郭伟
徐雅薇
王朋
李少凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academy of Armored Forces of PLA
Original Assignee
Academy of Armored Forces of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academy of Armored Forces of PLA filed Critical Academy of Armored Forces of PLA
Priority to CN201910916402.9A priority Critical patent/CN110484855A/zh
Publication of CN110484855A publication Critical patent/CN110484855A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

一种耐磨蚀、优弯曲疲劳性能的超音速等离子Ni基喷涂层制备方法,采用超音速等离子喷涂设备制备Ni基喷涂层,在真空离子渗氮炉中对Ni基喷涂层进行离子渗氮,涂层渗氮后的显微硬度值要明显高于非渗氮涂层,N元素的分布和渗氮涂层的硬度变化有明显的对应关系,涂层中由于坚硬氮化物的生成而使组织变得更加致密、光滑。

Description

一种耐磨蚀、优弯曲疲劳性能的超音速等离子Ni基喷涂层制 备方法
技术领域
本发明属于涂层制备技术领域,具体为一种耐磨蚀、优弯曲疲劳性能的超音速等离子Ni基喷涂层制备方法。
背景技术
传统的喷涂用自熔合金粉末(Fe基、Ni基、Co基及WC增强型)是一类应用广泛且具有优异耐磨耐蚀性能的涂层材料体系,通过添加少量的B、S等元素,一方面使合金熔点大幅度降低,另一方面形成的硼化物提高了涂层的耐磨性。对于添加一定比例的WC增强型合金粉末,涂层的耐磨性显著提高。但受异质相作用的影响,涂层内部裂纹数量显著增加,耐蚀性明显下降。向兴华等人[1]研究了Ni基喷涂层渗氮后的摩擦学性能并认为涂层进行氮化处理后的耐磨损性能堪比与添加含量为20%WC的Ni基喷涂层。FerdaMindivan等人[2]研究了Fe基喷涂层渗氮后的摩擦学与腐蚀学性能,发现氮化处理的涂层耐磨损及耐腐蚀性能均显著提高。研究人员对涂层氮化处理后的摩擦学性能进行了充分研究,传统理论认为氮化处理后涂层硬度提高,就意味着其疲劳性能下降,如果制备一种具有耐磨、耐蚀且兼具良好弯曲疲劳性能的超音速等离子Ni基喷涂层成为一个难题。
发明内容
针对以上需求,本发明提出的一种耐磨蚀、优弯曲疲劳性能的超音速等离子Ni基喷涂层制备方法,在尽量保持Ni基喷涂层弯曲疲劳性能的基础上,制备一种具有耐磨、耐蚀的喷涂层。
本发明通过以下技术方案实现的:一种具有耐磨、耐蚀且良好弯曲疲劳性能的Ni基喷涂层制备方法,其采用超音速等离子喷涂设备制备Ni基喷涂层,在真空离子渗氮炉中对Ni基喷涂层进行离子渗氮。
采用HEPJet型超音速等离子喷涂设备制备了厚度约为200μm的Ni基喷涂层。所述真空离子渗氮炉中对Ni基喷涂层进行离子渗氮,渗氮炉由控制系统、电源系统、真空系统、冷却系统、温度控制系统、供气系统及偏压电源组成,阴极板作用是辅助辉光放电渗氮,其尺寸为100×100mm2的钢板,为阴极板提供电源的是一个单极型脉冲电源,电源所加电压范围为-0.8~-0.4kV,供气系统提供的气体为N2和H2的混合气,渗氮过程中,待渗氮件作为阴极,渗氮炉炉体作为阳极,N、H原子在高压电作用下在工件和炉体之间发生电离,形成等离子区。
3.根据权利要求2所述的方法,其特征在于,渗氮炉内温度530℃,时间20h,N2:H2为1:4,气压200Pa,阴极板电压-0.5kV。
涂层在渗氮后可以较大幅度提高涂层的表面硬度,还可以在近表面处引入残余压应力,具有较强的抑制裂纹萌生的作用,然而涂层在喷涂制备过程中,不可避免存在缺陷及微观裂纹等缺陷,这些缺陷将会在疲劳加载过程中成为裂纹源。
附图说明
图1为图1Ni基喷涂层截面形貌
图2为真空渗氮炉结构简图
图3为Ni基涂层渗氮后截面形貌及N元素分布图
图4为涂层在渗氮前后的显微硬度分布图
图5涂层渗氮前后物相的变化
图6摩擦系数曲线
图7涂层磨痕三维形貌图(a)未渗氮涂层;(b)渗氮涂层
图8摩擦磨损试验后涂层磨痕微观形貌
图9涂层磨痕区截面形貌
图10渗氮及非渗氮涂层的电化学阻抗谱曲线及其等效电路图
图11渗氮及非渗氮涂层的电化学极化曲线
图12渗氮及非渗氮涂层弯曲疲劳寿命Weibull累积概率分布图
具体实施方式
实施例1
采用HEPJet型超音速等离子喷涂设备制备了厚度约为200μm的Ni基喷涂层,喷涂工艺参数如表1所示。喷涂层的截面形貌如图1所示。
表1 Ni基喷涂层的喷涂参数
在真空离子渗氮炉中对Ni基喷涂层进行离子渗氮,该设备由控制系统、电源系统、真空系统、冷却系统、温度控制系统、供气系统及偏压电源组成,如图2所示。阴极板作用是辅助辉光放电渗氮,其尺寸为100×100mm2的钢板,为阴极板提供电源的是一个单极型脉冲电源,电源所加电压范围为-0.8~-0.4kV。供气系统提供的气体为N2和H2的混合气。渗氮过程中,待渗氮件作为阴极,渗氮炉炉体作为阳极,N、H原子在高压电作用下在工件和炉体之间发生电离,形成等离子区。真空离子渗氮工艺如表2所示。由于渗氮温度比较低,在保证N原子有效地渗入涂层中的前提下,不足以使涂层的中下部及界面结构发生实质性改变。
表2渗氮工艺参数
实施例2
按照实施例1的方法步骤进行Ni基喷涂层,在真空离子渗氮炉中对Ni基喷涂层进行离子渗氮处理,发明效果测试如下:
(一)渗氮涂层表征
渗氮后的Ni基涂层及其N元素的分布如图3所示,可以看出N元素均匀地分布在涂层中并逐渐扩散到基体中。硬度测试结果如图4所示,可以看出涂层渗氮后的显微硬度值要明显高于非渗氮涂层,N元素的分布和渗氮涂层的硬度变化有明显的对应关系。采用XRD对渗氮涂层的相结构进行了分析,结果如图5所示,N元素主要在涂层中以弥散的氮化物(FexNiyN)的形式存在。其中,由FexNiyN相的存在而造成表层结构微畸变是导致渗氮涂层具有较高硬度的原因。
(二)摩擦性能测试
采用点接触式摩擦磨损试验机对有无渗氮的两种Ni基涂层体系进行摩擦磨损试验,通过考察其磨损失重及磨痕形貌来判断渗氮层对涂层摩擦磨损性能的影响。表3为5次平行试验的磨损失重结果,结果显示:未渗氮的涂层磨损失重可达3.22mg,而渗氮涂层的磨损失重仅为1.56mg,说明涂层经过渗氮处理后其涂层的耐磨性能显著提高。试验过程中的摩擦系数如图6所示,未渗氮涂层的摩擦系数略高于渗氮涂层的摩擦系数,说明渗氮涂层的表层组织更加坚硬更加光滑,从侧面印证了涂层中由于坚硬氮化物的生成而使组织变得更加致密、光滑。
表3非渗氮、渗氮Ni基涂层磨损失重统计结果
在完成摩擦磨损试验后,利用激光三维显微镜对磨痕形貌进行观察,如图7所示。二者均表现出涂层分层失效的特征,可以看出非渗氮涂层的磨损深度为85μm,磨痕宽度为700μm;而渗氮涂层的磨损深度仅为35μm,而磨痕宽度可达1000μm。说明由于渗氮涂层具有较高的硬度,磨球在摩擦过程中没有向涂层内部侵入,相反却因自身磨损较严重而造成磨痕宽度较大。图5为两种涂层的磨痕微观形貌,二者的磨损机制均为黏着磨损和磨粒磨损,即在磨球的反复作用下逐渐形成凹坑,脱落的白色氧化物颗粒(图8)加剧了涂层磨损,但在非渗氮涂层表面的沿摩擦方向的塑性变形区域明显大于渗氮涂层表面的塑性变形区,说明涂层中由渗氮工艺引入的渗氮层能够一定程度上抵抗由磨球压入过程中切削带来的涂层变形。
对两种涂层在摩擦试验后的截面形貌进行了观察,如图9所示,对于未渗氮涂层,涂层的主要剥落形式为层内失效;而对于渗氮涂层,由于表层硬度较高,在对磨球的压迫下,涂层内部出现了裂纹,且涂层剥落时的深度略大于非渗氮涂层。
(二)腐蚀性能测试
采用武汉科斯特CS350电化学工作站的Corr-Test电化学测试系统对渗氮前、后的涂层进行电化学腐蚀试验。实验采用的是三电极体系,其中涂层/基体体系为工作电极,铂金电极为辅助电极,饱和甘汞电极为参比电极。工作电极的有效工作面积约1cm2左右,实验温度控制在25±1℃范围内,浸泡溶液为0.5mol/L的Na2SO4溶液,频率扫描范围为10-2到105Hz,施加的振幅为10mV。所获得的实验数据采用ZView软件和等效电路进行分析。实验材料选用经过渗氮及未经过渗氮的两组Ni基涂层体系,每种体系设计五组平行实验,最终结果选取中间阻抗数据。
图10为三电极体系测试的渗氮及非渗氮两种涂层的电化学阻抗谱曲线及其等效电路图,阻抗谱能够清晰地反映出耐蚀性的对比度,可通过ZView软件拟合出等效电路图,其相应的参数含义如下:
RS——电解质电阻;
Rt——电荷传递电阻;
CPE——双电层近似电容元件,由于涂层介电常数受涂层厚度及制备工艺的影响,选用常相位CPE代替电容元件;
CPEcoating——近似电容元件,实验过程中由于表面沉积的腐蚀产物或涂层自身氧化还原生成的表面钝化膜而呈现出类似蓄电池类型的元件CPEcoating,其与电容表达式类似,腐蚀产物及钝化膜的出现会增加增大介电常数ε,此时CPEcoating的值会增大;
Rcoating——近似电阻元件,其与溶液中涂层的溶解及涂层表面其它膜的生成有关。
涂层的总容抗谱Rp曲线包括金属基材抵抗阳极溶解阻抗和涂层及其表面生成膜的阻抗之和,即Rp=Rt+Rcoating,在不改变电解质的情况下比较涂层耐蚀性的关键是Rp。从通俗的意义上解释,涂层的阻抗谱曲线由一个高频容抗弧和一个低频感抗弧构成,高频容抗弧主要是由双电层电容Ni基涂层腐蚀反应电荷传递电阻引起的,低频感抗弧则是由于腐蚀过程中体系不稳定造成的,低频感抗弧的出现往往说明涂层中发生了点蚀。
等效电路的参数值如表4所示,通过比较Rcoating可知,渗氮能够使阳极抵抗溶解的能力增加;同时由CPEcoating可知,渗氮涂层较未渗氮涂层的提高65%,说明表面形成的氮化物具有较强的抵抗阳极溶解的能力,使得渗氮涂层具有较强的抗腐蚀能力。
表4渗氮及非渗氮涂层的等效电路参数
图11为三电极体系下不同涂层的极化曲线图,涂层经过渗氮后,腐蚀电位从-0.7V上升到-0.5V,最小腐蚀电流密度提高了近一个数量级,延缓了腐蚀。说明Ni基喷涂层在经过表面渗氮处理后有增强其耐腐蚀性的作用。
(三)弯曲疲劳性能测试
为了研究表面渗氮对涂层弯曲疲劳寿命的影响,对有无渗氮层的两种Ni基涂层体系进行弯曲疲劳试验。设计试验载荷为-640±160MPa,加载频率为5Hz,环境温度为室温,针对两种涂层分别开展多次平行试验,以期在加载的同时进行声发射信号采集,两个声发射探头分布于试样两端且间距15cm,设置阈值为53dB。由于基体强度要远高于涂层强度,当疲劳加载过程中一旦出现大量的声发射信号时,即可认为涂层发生失效,试验机加载即刻停止,记录疲劳寿命并观察涂层失效时的模式。
弯曲疲劳实验结果如表5所示,可以看出,渗氮涂层的疲劳寿命相对未渗氮涂层寿命略低,且试样在卸载后涂层大多以整体或部分剥落的形式出现。受自身材质及加工工艺等因素的影响,试样的疲劳寿命具有较大的分散性,为进一步研究表面渗氮对涂层弯曲疲劳性能的影响,采用Weibull分布模型对寿命分布规律进行分析,结果如图12所示。在对涂层进行渗氮处理后,涂层的特征寿命(即失效概率P=62.5时的失效寿命)从1.62下降到1.43,说明涂层在渗氮后的弯曲疲劳寿命有下降的趋势。此外,形状参数值α从1.13上升到1.34,说明涂层寿命的分散性降低。
表5非渗氮/渗氮涂层弯曲疲劳寿命及其失效模式。
涂层在渗氮后可以较大幅度提高涂层的表面硬度,还可以在近表面处引入残余压应力,具有较强的抑制裂纹萌生的作用,然而涂层在喷涂制备过程中,不可避免存在缺陷及微观裂纹等缺陷,这些缺陷将会在疲劳加载过程中成为裂纹源。此外,相比于未渗氮的涂层,渗氮涂层脆性大、韧性较差,一旦在加载过程中孔隙、微观裂纹等裂纹源被“激活”,界面裂纹在渗氮层内的扩展十分迅速,使得涂层的疲劳服役寿命下降,并更多的以大面积剥落的形式出现。

Claims (3)

1.一种具有耐磨、耐蚀且良好弯曲疲劳性能的Ni基喷涂层制备方法,其特征在于,采用超音速等离子喷涂设备制备Ni基喷涂层,在真空离子渗氮炉中对Ni基喷涂层进行离子渗氮。
2.根据权利要求1所述的方法,其特征在于,所述真空离子渗氮炉中对Ni基喷涂层进行离子渗氮,渗氮炉由控制系统、电源系统、真空系统、冷却系统、温度控制系统、供气系统及偏压电源组成,阴极板作用是辅助辉光放电渗氮,其尺寸为100×100mm2的钢板,为阴极板提供电源的是一个单极型脉冲电源,电源所加电压范围为-0.8~-0.4kV,供气系统提供的气体为N2和H2的混合气,渗氮过程中,待渗氮件作为阴极,渗氮炉炉体作为阳极,N、H原子在高压电作用下在工件和炉体之间发生电离,形成等离子区。
3.根据权利要求2所述的方法,其特征在于,渗氮炉内温度530℃,时间20h,N2:H2为1:4,气压200Pa,阴极板电压-0.5kV。
CN201910916402.9A 2019-09-26 2019-09-26 一种耐磨蚀、优弯曲疲劳性能的超音速等离子Ni基喷涂层制备方法 Pending CN110484855A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910916402.9A CN110484855A (zh) 2019-09-26 2019-09-26 一种耐磨蚀、优弯曲疲劳性能的超音速等离子Ni基喷涂层制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910916402.9A CN110484855A (zh) 2019-09-26 2019-09-26 一种耐磨蚀、优弯曲疲劳性能的超音速等离子Ni基喷涂层制备方法

Publications (1)

Publication Number Publication Date
CN110484855A true CN110484855A (zh) 2019-11-22

Family

ID=68544346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910916402.9A Pending CN110484855A (zh) 2019-09-26 2019-09-26 一种耐磨蚀、优弯曲疲劳性能的超音速等离子Ni基喷涂层制备方法

Country Status (1)

Country Link
CN (1) CN110484855A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308112A (zh) * 2009-02-09 2012-01-04 戴姆勒股份公司 用于制造制动盘的方法
CN103805996A (zh) * 2014-01-16 2014-05-21 中国科学院金属研究所 一种金属材料表面先镀膜再渗氮的复合处理方法
CN109175259A (zh) * 2018-10-15 2019-01-11 科勒(中国)投资有限公司 厨卫产品的模具的制造方法及厨卫产品的模具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308112A (zh) * 2009-02-09 2012-01-04 戴姆勒股份公司 用于制造制动盘的方法
CN103805996A (zh) * 2014-01-16 2014-05-21 中国科学院金属研究所 一种金属材料表面先镀膜再渗氮的复合处理方法
CN109175259A (zh) * 2018-10-15 2019-01-11 科勒(中国)投资有限公司 厨卫产品的模具的制造方法及厨卫产品的模具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘爱国: "《低温等离子体表面强化技术》", 30 September 2015, 哈尔滨:哈尔滨工业大学出版社 *

Similar Documents

Publication Publication Date Title
Jin et al. Investigation of high potential corrosion protection with titanium carbonitride coating on 316L stainless steel bipolar plates
Asri et al. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review
Frangini et al. Cr7C3-based cermet coating deposited on stainless steel by electrospark process: structural characteristics and corrosion behavior
EP2343763B1 (en) Sheet stainless steel for separators in solid polymer fuel cells, and solid polymer fuel cells using the same
Hu et al. The effect of duty cycle and bias voltage for graphite-like carbon film coated 304 stainless steel as metallic bipolar plate
CN110306181A (zh) 镁合金表面复合涂层及其制备方法
CN101565834A (zh) 一种钛电极基体表面预处理的方法
jin Ma et al. Effects of pH value and temperature on the corrosion behavior of a Ta2N nanoceramic coating in simulated polymer electrolyte membrane fuel cell environment
CN106884149A (zh) 水环境耐磨涂层、其制备方法及应用
CN110423989A (zh) 一种低残余应力的硬质类金刚石薄膜的制备方法
Shen et al. Corrosion resistance and electrical conductivity of plasma nitrided titanium
Yan et al. Thermal stabilization of nanocrystalline promoting conductive corrosion resistance of TiN–Ag films for metal bipolar plates
Wei et al. Corrosion and wear resistance of AZ31 Mg alloy treated by duplex process of magnetron sputtering and plasma electrolytic oxidation
Jin et al. Investigation of corrosion protection with conductive chromium-aluminum carbonitride coating on metallic bipolar plates
Yang et al. Microstructure, mechanical properties, and corrosion resistance of TiSiN coating prepared by FCVA technique with different N2 flow rates
CN108179393B (zh) 一种CrAlSiCON纳米复合涂层及其制备方法
Lee et al. Electrochemical characteristics and interfacial contact resistance of multi-layered Ti/TiN coating for metallic bipolar-plate of polymer electrolyte membrane fuel cells
CN110484855A (zh) 一种耐磨蚀、优弯曲疲劳性能的超音速等离子Ni基喷涂层制备方法
Noori et al. Characterization of nitrocarburized coating by plasma electrolytic saturation
Fu et al. Studies on the wear and corrosion resistance of Ni-Fe-Co-P-GO composite coating prepared by scanning electrodeposition
Cheng et al. Formation of ceramic coatings on non-valve metal low carbon steel using micro-arc oxidation technology
Sun et al. The effect of AlCrN, TiN and Ni-Cr-Nb coatings on the wear and corrosion performance of 45# steel in 3.5% sodium chloride solution
Patel et al. Corrosion behavior of Ti2N thin films in various corrosive environments
Caiazzo et al. Multilayer coatings based on CrN/Cr for molds of plastics
Zhao et al. Improving tribological and anti-corrosion properties of 316L stainless steel in multi-environment by carbon-rich CrC nanocomposite coating

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191122