CN108179393B - 一种CrAlSiCON纳米复合涂层及其制备方法 - Google Patents

一种CrAlSiCON纳米复合涂层及其制备方法 Download PDF

Info

Publication number
CN108179393B
CN108179393B CN201810047051.8A CN201810047051A CN108179393B CN 108179393 B CN108179393 B CN 108179393B CN 201810047051 A CN201810047051 A CN 201810047051A CN 108179393 B CN108179393 B CN 108179393B
Authority
CN
China
Prior art keywords
coating
cralsicon
workpiece
preparing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810047051.8A
Other languages
English (en)
Other versions
CN108179393A (zh
Inventor
李灿民
陶满
李亚军
张胜利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEFEI YONGXIN PLASMA TECHNOLOGY CO LTD
Original Assignee
HEFEI YONGXIN PLASMA TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEFEI YONGXIN PLASMA TECHNOLOGY CO LTD filed Critical HEFEI YONGXIN PLASMA TECHNOLOGY CO LTD
Priority to CN201810047051.8A priority Critical patent/CN108179393B/zh
Publication of CN108179393A publication Critical patent/CN108179393A/zh
Application granted granted Critical
Publication of CN108179393B publication Critical patent/CN108179393B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开一种CrAlSiCON纳米复合涂层及其制备方法,属于真空镀膜领域。所述涂层由内至外依次包括纯Cr打底层、CrAlN过渡层和CrAlSiCON主功能层。该制备方法的步骤包括离子清洗;制备打底层;制备过渡层;制备主功能层等步骤。该方法采用等离子增强磁控溅射技术,可在高速钢、硬质合金等材质的刀具、模具及核心零部件表面涂覆CrAlSiCON纳米复合涂层,该涂层引入Cr、Al元素形成的氮/氧化物可以提供优异的高温氧、耐腐蚀化性能;涂层引入的Si元素可以使涂层内部的纳米晶颗粒更加细小,兼具高硬度和高韧性的特点,可有效延长工具的使用寿命;涂层引入的C元素可降低涂层的摩擦系数,使工具类工件具有更高的使用效率。该涂层尤其适用于高速干式切削的刃具和冲压类模具上。

Description

一种CrAlSiCON纳米复合涂层及其制备方法
技术领域
本发明涉及真空镀膜领域,具体地说是一种CrAlSiCON纳米复合涂层及其制备方法。
背景技术
真空镀膜技术被认定为环境友好型技术,它的镀膜过程是在真空罐体中进行,无任何废液排放,随着国内外对环境的要求越来越苛刻,真空镀膜技术取代电镀化学镀已大势所趋。
除了应用于装饰之外,真空镀膜技术另一主要的应用方向为工具镀,它对刀具、模具及核心零部件性能的改善及加工工艺的改进起到了至关重要的作用。TiN涂层因其具有较高的硬度,良好的外观,较低的摩擦系数而得到广泛应用,但在无切削液、高温、腐蚀介质、加工高硬度材料等环境下工作,它已不能满足要求。
目前,工业习惯上在TiN涂层中添加Cr、Al等元素来提高耐高温、耐腐蚀性能,显微硬度也有大幅度提高,可以达到HV3000以上,常见的有TiCrN,TiAlN,AlTiN等。近年来,对涂层中加入Si元素成为研究的重点,如工业化应用得较为成熟的古铜色TiSiN涂层,Si元素的加入可以使涂层中晶粒更加细小,兼具高硬度高韧性的特点。学者们通过在涂层中添加Cr、Al、Si、O等元素,使涂层在高温环境下表面形成钝化膜,硬度和韧性不会显著下降,这已经成为涂层领域研究的发展方向之一。
发明内容
本发明的目的是提供一种CrAlSiCON纳米复合涂层及其制备方法,该涂层采用等离子增强磁控溅射方法在刀具、模具及核心零部件表面制备CrAlSiCON纳米复合涂层,可进一步提高涂层的耐高温、耐腐蚀、低摩擦系数等技术性能指标,以满足现代化更为苛刻的使用工况环境和使用寿命要求。
为实现上述发明目的,本发明采用的技术方案如下:
一种CrAlSiCON纳米复合涂层,其特点在于:所述涂层由内至外依次包括纯Cr打底层、CrAlN过渡层和CrAlSiCON主功能层。
进一步,所述纯Cr打底层厚度为0.1-0.2μm;所述CrAlN过渡层厚度为0.2-1μm;所述CrAlSiCON主功能层厚度为1-2μm。
进一步,所述CrAlN过渡层中,原子数百分比如下:
Cr:45%-50%;
Al:15%-20%;
N:35%-40%;
O:0%-2%。
进一步,所述CrAlSiCON主功能层中,原子数百分比如下:
Cr:22%-30%;
Al:10%-15%;
Si:5%-10%;
C:15%-25%;
N:25%-40%;
O:5%-15%。
本发明同时提供一种CrAlSiCON纳米复合涂层的制备方法,其特点在于:包括如下步骤:
(1)离子清洗
将表面预处理的工件置于上夹后进真空罐,经抽气、烘烤后向真空罐充入Ar,气压0.3-1.0Pa,通过电子枪装置进行弧光放电,保持放电电流80-120A,同时在工件表面加载负偏压600-850V,开始离子清洗,时间10-30分钟;
(2)制备打底层:
保持弧光放电状态下,工件偏压降至80V,开启磁控溅射Cr靶,单靶功率2KW,时间5-10分钟;
(3)制备过渡层:
保持上述状态不变的情况下,向真空罐内充入N2,控制总压力1.2-2.2Pa,开启磁控溅射CrAl靶,所述靶材原子百分比Cr:Al=7:3,单靶功率均为2KW,时间10-20分钟;
(4)制备主功能层
关闭Cr靶,将工件偏压降至40V,向真空罐内充入六甲基二硅氧烷HMDSO,调节气压控制在2.0-2.5Pa,时间40-100分钟。
进一步,所述方法还包括工件预处理步骤,所述预处理是指将工件进行去污、退镀、喷砂、抛光处及超声波清洗。
与已有技术相比,本发明有益效果体现在:
本发明采用等离子增强磁控溅射技术制备CrAlSiCON纳米复合涂层,该方法镀膜过程离化率高,涂层结合力更好,更加致密,且表面无大颗粒堆积。
本发明离子清洗过程利用高离化率的等离子体对工件进行清洗,涂层结合力等级比传统辉光放电清洗等级高1个以上;在镀膜过程开启电子枪装置,可以对添加的各种气源和靶材金属原子及化合物进行离化,使涂层各元素间反应更充分,涂层更加致密,结合力更好。
本发明涂层Cr、Al元素是通过固态靶材溅射引入涂层,其形成的氮/氧化物可以提供优异的高温氧化、耐腐蚀性能;涂层Si元素的引入可以使涂层内部的纳米晶颗粒更加细小,兼具高硬度和高韧性的特点,可有效延长工具的使用寿命,Si元素以蒸汽的形式充入,可以便于控制涂层内的Si含量,且成分均匀;涂层C元素是依靠HMDSO蒸汽引入,可降低涂层的摩擦系数,使工具类工件具有更高的使用效率。
附图说明
图1是本发明CrAlSiCON纳米复合涂层断面SEM图。
其中:1、基体,2、打底层,3、过渡层,4、主功能层。
图2a、2b是本发明CrAlSiCON纳米复合涂层高温处理前后XRD物相对比图。其中,图2a是CrAlSiCON纳米复合涂层高温处理前XRD物相对比图;图2b是CrAlSiCON纳米复合涂层高温处理后XRD物相对比图。
图3是本发明各纳米复合涂层和基体材料高温氧化处理后的SEM形貌图。
图4是本发明各纳米复合涂层和基体材料腐蚀处理后的OM形貌图。
具体实施方式
下面通过实例对本发明做进一步详细说明,这些实例仅用来说明本发明,并不限制本发明的范围,实施例中如无特别说明之处,均为本领域现有技术。
实施例1针对装炉量少,大模具类工件:
(1)产品入库检查
使用10倍LED放大镜下逐一检查,避免不合格产品进入镀膜流程;
(2)表面预处理
使用去污、退镀、喷砂、抛光等工序对工件表面进行预处理;
(3)超声波清洗
将工件放置多槽超声波清洗设备中,采用浓度0.3%的KOH溶液多次除油、除蜡,并经过漂洗、防锈、高压风切烘干;
(4)烘干
将工件置于烘箱中,设置120℃烘烤10分钟;
(5)离子清洗
将工件上夹后进真空罐,经抽气、烘烤后向真空罐充入Ar,气压0.3Pa,开启电子枪装置产生弧光放电,保持放电电流120A,同时在工件表面加载负偏压850V,开始离子清洗,时间30分钟;
(6)制备打底层
保持电子枪开启的状况下,工件偏压逐渐由850V降至80V,开启磁控溅射Cr靶,单靶功率2KW,时间5分钟;
(7)制备过渡层
保持上述状态不变的情况下,向真空罐内充入N2,控制总压力2.2Pa,开启磁控溅射CrAl靶,靶材原子百分比Cr:Al=7:3;单靶功率均为2KW,时间10分钟;
(8)制备主功能层
关闭Cr靶,将工件偏压降至40V,向真空罐内充入六甲基二硅氧烷HMDSO,调节气压控制在2.5Pa,时间40分钟。
实施例2针对装炉量中等,中、小模具类工件
(1)产品入库检查
使用20倍LED放大镜下逐一检查,避免不合格产品进入镀膜流程;
(2)表面预处理
使用去污、退镀、喷砂、抛光等工序对工件表面进行预处理;
(3)超声波清洗
将工件放置多槽超声波清洗设备中,采用浓度0.3%的KOH溶液多次除油、除蜡,并经过漂洗、防锈、高压风切烘干;
(4)烘干
将工件置于烘箱中,设置110℃烘烤12分钟;
(5)离子清洗
将工件上夹后进真空罐,经抽气、烘烤后向真空罐充入Ar,气压0.5Pa,开启电子枪装置产生弧光放电,保持放电电流110A,同时在工件表面加载负偏压750V,开始离子清洗,时间20分钟;
(6)制备打底层
保持电子枪开启的状况下,工件偏压750V逐渐降至80V,开启磁控溅射Cr靶,单靶功率2KW,时间8分钟;
(7)制备过渡层
保持上述状态不变的情况下,向真空罐内充入N2,控制总压力1.8Pa,开启磁控溅射CrAl靶,靶材原子百分比Cr:Al=7:3;单靶功率均为2KW,时间12分钟;
(8)制备主功能层
关闭Cr靶,将工件偏压降至40V,向真空罐内充入六甲基二硅氧烷HMDSO,调节气压控制在2.2Pa,时间80分钟。
实施例3针对装炉量中等,铣刀、滚齿刀、插齿刀类工件
(1)产品入库检查
使用20倍LED放大镜下逐一检查,避免不合格产品进入镀膜流程;
(2)表面预处理
使用去污、退镀、喷砂、抛光等工序对工件表面进行预处理;
(3)超声波清洗
将工件放置多槽超声波清洗设备中,采用浓度0.3%的KOH溶液多次除油、除蜡,并经过漂洗、防锈、高压风切烘干;
(4)烘干
将工件置于烘箱中,设置110℃烘烤12分钟;
(5)离子清洗;
将工件上夹后进真空罐,经抽气、烘烤后向真空罐充入Ar,气压0.8Pa,开启电子枪装置产生弧光放电,保持放电电流100A,同时在工件表面加载负偏压800V,开始离子清洗,时间20分钟;
(6)制备打底层
保持电子枪开启的状况下,工件偏压800V逐渐降至80V,开启磁控溅射Cr靶,单靶功率2KW,时间8分钟;
(7)制备过渡层
保持上述状态不变的情况下,向真空罐内充入N2,控制总压力1.5Pa,开启磁控溅射CrAl靶,靶材原子百分比Cr:Al=7:3;单靶功率均为2KW,时间15分钟;
(8)制备主功能层
关闭Cr靶,将工件偏压降至40V,依次向真空罐内充入六甲基二硅氧烷HMDSO,调节气压控制在2.2Pa,时间60分钟。
实施例4针对装炉量大,小直径铣刀类工件
(1)产品入库检查
使用20倍LED放大镜下逐一检查,避免不合格产品进入镀膜流程;
(2)表面预处理
使用去污、退镀、喷砂、抛光等工序对工件表面进行预处理;
(3)超声波清洗
将工件放置多槽超声波清洗设备中,采用浓度0.3%的KOH溶液多次除油、除蜡,并经过漂洗、防锈、高压风切烘干;
(4)烘干
将工件置于烘箱中,设置100℃烘烤15分钟;
(5)离子清洗
将工件上夹后进真空罐,经抽气、烘烤后向真空罐充入Ar,气压1Pa,开启电子枪装置产生弧光放电,保持放电电流80A,同时在工件表面加载负偏压600V,开始离子清洗,时间10分钟;
(6)制备打底层
保持电子枪开启的状况下,工件偏压600V逐渐降至80V,开启磁控溅射Cr靶,单靶功率2KW,时间10分钟;
(7)制备过渡层
保持上述状态不变的情况下,向真空罐内充入N2,控制总压力1.2Pa,开启磁控溅射CrAl靶,单靶功率均为2KW,时间20分钟;
(8)制备主功能层
关闭Cr靶,将工件偏压降至40V,向真空罐内充入六甲基二硅氧烷HMDSO,调节气压控制在2.5Pa,时间100分钟。
实施例1-4涂层结果分析
涂层硬度采用HV-1000型显微维氏硬度计测量,加载载荷50g;利用ISC-200型针盘式摩擦磨损试验机和光学显微镜测试涂层的干摩擦系数和磨痕尺寸,对磨材料为氧化铝球;成分组成采用EDS能谱测试获得;选用Siemens公司生产的KRISTALLOFLEX 805型XRD衍射仪对试样表面进行扫描,采用D500型测角器,对数据进行分析比对获得涂层的物相组成和晶粒尺寸;
使用Oliver-Pharr法获得涂层的纳米硬度H,弹性模量E等数据,其中测试载荷50mN。使用H3/E*2的值来表示涂层的韧性,即抵抗裂纹形成和拓展的阻力(E*=E(1-ν2),ν为涂层的泊松比,这里取0.3)
以上4个实施例的纳米涂层由内至外具体有三层,如图1所示,第一层为纯Cr打底层,第二层为CrAlN过渡层,最外层为CrAlSiCON主功能层。打底层厚度控制在0.1-0.2μm,过渡层控制在0.2-1μm,主功能层控制在1-3μm。
为了提高生产效率和应对不同客户的使用需求,在镀膜过程中会通过增减镀膜时间来控制总膜厚,为了不影响使用效果,总膜厚要求不少于1μm。
图2是本发明CrAlSiCON纳米复合涂层高温处理前后XRD物相对比图,图2a为高温处理前,图2b为高温处理后。可以看出,涂层在镀膜过程中形成晶态的Cr的氮化物和氧化物可有效阻止涂层高温氧化,提高使用寿命,图中,并没有检测到铝的氧化物和碳化物晶态物相,分析为靶材中Al含量较少(30at.%),在镀膜过程中,Al的氮化物,氧化物和碳化物很可能以非晶态的形式存在于涂层当中,这些非晶态的铝化物混合晶态的超硬物相会对涂层的高温性能产生很大的影响,整体上看,高温处理前后涂层没有明显发生变化,从实际使用上看,相比传统涂层,在高温、腐蚀、高速切削环境下CrAlSiCON纳米复合涂层寿命可以提升1-3倍以上。
图3是各纳米复合涂层和基体材料高温氧化处理后的SEM形貌图,图3(a)为无涂层的H13钢,作为基体材料进行对比;图3(b)、3(c)、3(d)、3(e)依次为TiSiCON、TiCrSiCON、,CrAlSiCON、TiAlSiCON四种纳米复合涂层经高温氧化后的SEM图。对比图3(a)可以看出,没有涂层的H13钢表面已经严重氧化,并伴随着一定程度的开裂,说明涂层可以有效提高材料表面的耐高温氧化性能。对比图3(b)可以看出,TiSiCON涂层表面有较大的絮状物氧化物,而在涂层中同时加入Cr、Al元素后表面氧化层相对较小,说明Cr、Al元素可以提高涂层的抗高温氧化性能。图3(d)对比其他三种涂层而言,三种涂层表面均产生不同程度絮状或圆片状氧化皮,局部甚至发生涂层开裂。相比而言,CrAlSiCON涂层表面并没有产生明显的氧化皮,且组织依然较为致密,说明该涂层具有良好的抗高温氧化性能。
图4各纳米复合涂层和基体材料腐蚀处理后的OM形貌图,图4(a)为无涂层的H13钢,作为基体材料进行对比;图4(b)、4(c)、4(d)、4(e)依次为TiSiCN、TiCrSiCN、CrAlSiCON、TiAlSiCON四种纳米复合涂层腐蚀处理后的OM形貌图。测试是将涂层放置在3.5%的盐水中,通过电腐蚀的方法测试其耐腐蚀性能,这里通过观察腐蚀后的形貌来定性判定各涂层的耐腐蚀性能。对比图4(a)可以看出,没有涂层的H13钢表面已经严重腐蚀,被黑色覆盖。TiSiCN、TiCrSiCON、TiAlSiCON三种涂层表面均产生较大的腐蚀坑。相比而言,CrAlSiCON涂层表面产生的腐蚀坑较小,说明该涂层具有良好的耐腐蚀性能。
表1为各涂层性能参数对照表,可以看出,涂层Si元素的引入可以使涂层内部的纳米晶颗粒更加细小,兼具高硬度和高韧性的特点,使涂层更佳耐磨。涂层中添加C元素可降低涂层的摩擦系数,使其在工作过程中摩擦阻力更小,具备高的加工效率。
表1各涂层性能参数对照表
Figure GDA0002459900090000081
表2 CrAlSiCON纳米复合涂层分层成分组成(at.%)
Figure GDA0002459900090000091
以上内容仅仅是对本发明所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (5)

1.一种CrAlSiCON纳米复合涂层的制备方法,其特征在于:包括如下步骤:
(1)离子清洗:
将表面预处理的工件上夹后置于真空罐,经抽气、烘烤后向真空罐充入Ar,气压0.3-1.0Pa,通过电子枪装置进行弧光放电,保持放电电流80-120A,同时在工件表面加载负偏压600-850V,开始离子清洗,时间10-30分钟;
(2)制备打底层:
保持弧光放电状态下,工件偏压降至80V,开启磁控溅射Cr靶,单靶功率2KW,时间5-10分钟;
(3)制备过渡层:
保持上述状态不变的情况下,向真空罐内充入N2,控制总压力1.2-2.2Pa,开启磁控溅射CrAl靶,所述靶材原子百分比Cr∶Al=7∶3,单靶功率均为2KW,时间10-20分钟;
(4)制备主功能层:
关闭Cr靶,将工件偏压降至40V,向真空罐内充入六甲基二硅氧烷HMDSO,调节气压控制在2.0-2.5Pa,时间40-100分钟。
2.根据权利要求1所述的一种CrAlSiCON纳米复合涂层的制备方法,其特征在于,所述预处理是指将工件进行去污、退镀、喷砂、抛光处理及超声波清洗。
3.根据权利要求1所述的一种CrAlSiCON纳米复合涂层的制备方法,其特征在于,所述步骤(2)中打底层厚度为0.1-0.2μm;所述步骤(3)中过渡层厚度为0.2-1.0μm;所述步骤(4)中主功能层厚度为1-2.0μm。
4.根据权利要求1所述的一种CrAlSiCON纳米复合涂层的制备方法,其特征在于:所述过渡层中,原子数百分比如下:
Cr:45%-50%;
Al:15%-20%;
N:35%-40%;
O:0%-2%。
5.根据权利要求1所述的一种CrAlSiCON纳米复合涂层的制备方法,其特征在于:所述主功能层中,原子数百分比如下:
Cr:22%-30%;
Al:10%-15%;
Si:5%-10%;
C:15%-25%;
N:25%-40%;
O:5%-15%。
CN201810047051.8A 2018-01-18 2018-01-18 一种CrAlSiCON纳米复合涂层及其制备方法 Expired - Fee Related CN108179393B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810047051.8A CN108179393B (zh) 2018-01-18 2018-01-18 一种CrAlSiCON纳米复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810047051.8A CN108179393B (zh) 2018-01-18 2018-01-18 一种CrAlSiCON纳米复合涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN108179393A CN108179393A (zh) 2018-06-19
CN108179393B true CN108179393B (zh) 2020-07-28

Family

ID=62550846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810047051.8A Expired - Fee Related CN108179393B (zh) 2018-01-18 2018-01-18 一种CrAlSiCON纳米复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN108179393B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108823548A (zh) * 2018-07-05 2018-11-16 江苏伟创真空镀膜科技有限公司 一种pvd古铜色镀膜工艺
CN110257772B (zh) * 2019-07-16 2021-11-12 合肥永信等离子技术有限公司 一种AlTiSiCON超硬涂层及其制备方法
CN110629194B (zh) * 2019-10-31 2021-11-02 浙江工业大学 一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1845808A (zh) * 2003-12-05 2006-10-11 住友电工硬质合金株式会社 表面被覆切削工具
CN101012545A (zh) * 2006-02-03 2007-08-08 株式会社神户制钢所 硬质保护膜及其形成方法
CN102899622A (zh) * 2011-07-29 2013-01-30 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法
CN103436841A (zh) * 2013-08-01 2013-12-11 江西科技师范大学 钇改性碳氮化铬铝/氮化硅纳米复合涂层及其沉积方法
WO2017037955A1 (ja) * 2015-09-04 2017-03-09 オーエスジー株式会社 硬質被膜および硬質被膜被覆部材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235160B2 (en) * 2003-08-06 2007-06-26 Energy Photovoltaics, Inc. Hollow cathode sputtering apparatus and related method
CN100560788C (zh) * 2006-11-21 2009-11-18 比亚迪股份有限公司 一种磁控溅射离子镀方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1845808A (zh) * 2003-12-05 2006-10-11 住友电工硬质合金株式会社 表面被覆切削工具
CN101012545A (zh) * 2006-02-03 2007-08-08 株式会社神户制钢所 硬质保护膜及其形成方法
CN102899622A (zh) * 2011-07-29 2013-01-30 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法
CN103436841A (zh) * 2013-08-01 2013-12-11 江西科技师范大学 钇改性碳氮化铬铝/氮化硅纳米复合涂层及其沉积方法
WO2017037955A1 (ja) * 2015-09-04 2017-03-09 オーエスジー株式会社 硬質被膜および硬質被膜被覆部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
等离子增强磁控溅射沉积新型纳米复合涂层;李灿民;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20130115(第01期);正文第11-19页、表3.2 *

Also Published As

Publication number Publication date
CN108179393A (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
Yuan et al. Recent developments in research of double glow plasma surface alloying technology: a brief review
Grigoriev et al. DLC-coating application to improve the durability of ceramic tools
CN108179393B (zh) 一种CrAlSiCON纳米复合涂层及其制备方法
CN101831608B (zh) 一种纳米复合钛铝硅氮化物刀具涂层及其制备方法
WO2006073435A2 (en) Multi-layered superhard nanocomposite coatings
Cai et al. Influence of negative bias voltage on microstructure and property of Al-Ti-N films deposited by multi-arc ion plating
CN107747092A (zh) 一种耐高温硬质复合涂层及其制备方法和涂层刀具
CN106884149A (zh) 水环境耐磨涂层、其制备方法及应用
CN104032268B (zh) 一种高硬度、低摩擦系数的VAlSiN耐磨涂层
CN114196940A (zh) 一种复合涂层刀具及其制备方法和应用
JP5765627B2 (ja) 耐久性に優れる被覆工具およびその製造方法
CN106893987A (zh) 一种物理气相沉积Ta‑C涂层的制备方法及Ta‑C涂层
CN109881148A (zh) 一种单相固溶体结构的AlCrTiSiN高熵合金氮化物涂层及其制备方法和应用
Liu et al. Influences of modulation period on structure and properties of AlTiSiN/AlCrSiN nanocomposite multilayer coatings
Cao et al. Effect of bias voltage on microstructure, mechanical and tribological properties of TiAlN coatings
CN103938157B (zh) 一种ZrNbAlN超晶格涂层及制备方法
Fang et al. Reduced crater wear and improved high-speed dry cutting performance of B-containing AlTiBN coatings against Ti-6Al-4 V alloy
CN109182983B (zh) 一种用于硬质合金旋转锉表面制备TiAlSiN涂层的方法
CN107604312A (zh) 一种表面为(Ti,Al)N多层隔热耐磨超厚涂层的活塞及其制备方法和应用
CN102758201A (zh) 镁合金表面兼具耐蚀润滑特性的复合涂层及其制备方法
CN103045998A (zh) 一种含有CrNiTiAlN五元涂层的制品及制备方法
Toboła et al. Surface treatment for improving selected physical and functional properties of tools and machine parts—a review
CN207176061U (zh) 一种物理气相沉积Ta‑C涂层及设有该涂层的工件
CN110344005A (zh) 一种TA15钛合金表面高温耐磨微叠层TiN-TiAlSiN及其制备方法与应用
CN113667943B (zh) 钛合金表面制备Ti/TiN复合涂层的方法及复合涂层

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200728