CN110477947A - 基于深度学习的平面波波束合成方法、系统、存储介质、设备 - Google Patents

基于深度学习的平面波波束合成方法、系统、存储介质、设备 Download PDF

Info

Publication number
CN110477947A
CN110477947A CN201910749727.2A CN201910749727A CN110477947A CN 110477947 A CN110477947 A CN 110477947A CN 201910749727 A CN201910749727 A CN 201910749727A CN 110477947 A CN110477947 A CN 110477947A
Authority
CN
China
Prior art keywords
matrix
samples
matrix samples
beam synthesis
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910749727.2A
Other languages
English (en)
Other versions
CN110477947B (zh
Inventor
杨晨
李昕泽
焦阳
崔崤峣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Biomedical Engineering and Technology of CAS
Original Assignee
Suzhou Institute of Biomedical Engineering and Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Biomedical Engineering and Technology of CAS filed Critical Suzhou Institute of Biomedical Engineering and Technology of CAS
Priority to CN201910749727.2A priority Critical patent/CN110477947B/zh
Publication of CN110477947A publication Critical patent/CN110477947A/zh
Application granted granted Critical
Publication of CN110477947B publication Critical patent/CN110477947B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Abstract

本发明提供一种基于深度学习的平面波波束合成方法,包括如下步骤:获取矩阵样本、模型训练、精度判定、波束合成。本发明还涉及基于深度学习的平面波波束合成系统、存储介质和电子设备。本发明公开了基于深度学习的平面波波束合成方法,该方法通过矩阵超声成像探头对相同位置的待检测组织发射超声成像波束获得第一矩阵样本与第二矩阵样本,将不同位置获取若干组一一对应的第一矩阵样本与第二矩阵样本分别作为输入端与标记端来训练网络,得到波束合成模型;通过波束合成模型可以通过低角度数的发射序列得到高角度数发射序列的成像质量,即获得高帧频且高分辨率的图像。

Description

基于深度学习的平面波波束合成方法、系统、存储介质、设备
技术领域
本发明涉及平面波波束合成领域,尤其涉及基于深度学习的平面波波束合成方法、系统、存储介质、设备。
背景技术
平面波超声技术放弃传统B模式超声中硬件聚焦的过程,采用同发同收的技术,以提高图像帧频。为提升图像分辨率,M.Fink等人在平面波技术的基础上又进一步提出了多角度平面波复合成像(以下简称为CPWC),牺牲了一部分帧频以提高图像分辨率。
CPWC的成像质量、帧频与发射序列密切相关。低角度数发射序列,成像帧频更高,但图像质量不高。高角度数的发射序列,图像质量明显上升,但帧频大为下降。依据理论推导与实验结果,可以得到结论——发射序列角度数愈多,图像质量愈高,但是图像帧频愈低,如图1所示。
这种传统方式的缺点在于:
1、单角度,乃至低角度数发射序列的复合平面波图像(以下简称为LA-CPWC)图像质量远低于传统超声以及多角度数发射序列平面波图像,分辨率,对比度,信噪比等图像质量指标很差。
2、多角度数发射序列的平面复合成像波(以下简称为MA-CPWC)采用多个角度的平面波发射序列,利用不同角度的平面波结果复合成像,具有较好的图像质量但是帧频很低,无法适应高清3D容积成像、快速剪切波弹性成像等应用。
3、不同角度数发射序列CPWC的成像质量与身体不同器官组织有较明显的耦合性,针对不同人体的不同组织,要在保证帧频的基础上提升图像质量需要大量调试,以选取适宜角度数,浪费调试时间。
发明内容
为了克服现有技术的不足,本发明提供基于深度学习的平面波波束合成方法。本发明通过训练形成的卷积神经网络模型使得LA-CPWC的波束合成矩阵映射为MA-CPWC的波束合成矩阵,从而得到高分辨率且帧频高的图像。
本发明提供基于深度学习的平面波波束合成方法,包括如下步骤:
获取矩阵样本,利用矩阵超声成像探头对待检测组织分别发射低角度数发射序列的平面成像波与多角度数发射序列的平面成像波得到第一矩阵样本与第二矩阵样本;其中,所述第一矩阵样本与第二矩阵样本通过矩阵超声成像探头对待检测组织发射超声成像波束的位置相同;
模型训练,利用网络模型对若干组一一对应的所述第一矩阵样本与第二矩阵样本进行训练,得到波束合成模型;其中,所述第一矩阵样本与第二矩阵样本分别作为网络模型的输入与输出;
精度判定,将待测试的数据输入所述波束合成模型进行数据合成,并利用梯度下降原理计算当损失函数最小时得到最优的波束合成模型;否则,返回步骤模型训练进行迭代训练;
波束合成,利用矩阵超声成像探头对目标区域待检测组织发射低角度数发射序列的平面成像波得到目标矩阵数据,利用步骤精度判定中得到的波束合成模型对所述目标矩阵数据进行合成,得到最终合成的图像。
优选地,在步骤获取矩阵样本中还包括:通过发射端控制矩阵超声成像探头对待检测组织发射低角度数发射序列的平面成像波或多角度数发射序列的平面成像波并对待检测组织的全部区域进行扫描;接收并采集扫描过后的待检测组织的回波信号,根据所述回波信号进行波束合成得到所述第一矩阵样本或第二矩阵样本。
优选地,在模型训练步骤中还包括:通过调整不同角度的矩阵超声成像探头获得所述若干组一一对应的所述第一矩阵样本与第二矩阵样本。
优选地,利用矩阵超声成像探头的倾斜角度数与不同器官组织之间的耦合度,在模型训练时添加器官组织的先验信息,以得到该器官组件的波束合成模型。
优选地,在步骤波束合成中还包括:对所述目标矩阵数据进行合成后得到映射后的高分辨率伪多角度数发射序列的平面成像波波束矩阵,通过对伪多角度数发射序列的平面成像波波束矩阵进行超声后处理,得到最终合成的图像。
一种电子设备,包括:处理器;
存储器;以及程序,其中所述程序被存储在所述存储器中,并且被配置成由处理器执行,所述程序包括用于执行基于深度学习的平面波波束合成方法。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行基于深度学习的平面波波束合成方法。
基于深度学习的平面波波束合成系统,包括获取矩阵样本模块、模型训练模块、精度判定模块和波束合成模块;其中,
所述获取矩阵样本模块用于利用矩阵超声成像探头对待检测组织分别发射低角度数发射序列的平面成像波与多角度数发射序列的平面成像波得到第一矩阵样本与第二矩阵样本;其中,所述第一矩阵样本与第二矩阵样本通过矩阵超声成像探头对待检测组织发射超声成像波束的位置相同;
所述模型训练模块用于利用网络模型对若干组一一对应的所述第一矩阵样本与第二矩阵样本进行训练,得到波束合成模型;其中,所述第一矩阵样本与第二矩阵样本分别作为网络模型的输入与输出;
所述精度判定模块用于将待测试的数据输入所述波束合成模型进行数据合成,并利用梯度下降原理计算当损失函数最小时得到最优的波束合成模型;否则,返回步骤模型训练进行迭代训练;
所述波束合成模块用于利用矩阵超声成像探头对目标区域待检测组织发射低角度数发射序列的平面成像波得到目标矩阵数据,利用步骤精度判定中得到的波束合成模型对所述目标矩阵数据进行合成,得到高帧频且高分辨率的图像。
优选地,所述获取矩阵样本模块包括发射单元、接收单元、数据采集单元、数据处理单元和数据存储单元,通过发射单元控制矩阵超声成像探头对待检测组织发射低角度数发射序列的平面成像波或多角度数发射序列的平面成像波并对待检测组织的全部区域进行扫描;通过接收单元与数据采集单元记录扫描过后的待检测组织的回波信号,根据所述回波信号通过所述数据处理单元处理后进行波束合成得到所述第一矩阵样本或第二矩阵样本,并将所述第一矩阵样本或第二矩阵样本保存至数据存储单元。
优选地,所述波束合成模块包括超声后处理单元,所述超声后处理单元用于通过对伪多角度数发射序列的平面成像波波束矩阵进行超声后处理,得到最终合成的图像。
相比现有技术,本发明的有益效果在于:
本发明公开了基于深度学习的平面波波束合成方法,该方法通过矩阵超声成像探头对相同位置的待检测组织发射超声成像波束获得第一矩阵样本与第二矩阵样本,将不同位置获取若干组一一对应的第一矩阵样本与第二矩阵样本分别作为输入端与标记端来训练网络,得到波束合成模型;通过波束合成模型可以通过低角度数的发射序列得到高角度数发射序列的成像质量,即获得高帧频且高分辨率的图像。另外,在模型训练过程中增加器官组织的先验信息,使得网络训练得到的波束合成模型具有针对性,使得波束合成的图像信息更加的准确。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。本发明的具体实施方式由以下实施例及其附图详细给出。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明的多角度平面波复合成像、帧频与发射序列之间的关系示意图;
图2为本发明的基于深度学习的平面波波束合成方法的整体流程图;
图3为本发明获取LA_CPWC矩阵与MA_CPWC矩阵的逻辑示意图;
图4为本发明通过卷积神经网络进行训练的示意图;
图5为本发明获取高帧频且高分辨率的图像的逻辑示意图;
图6为本发明基于深度学习的平面波波束合成系统的整体示意图。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
基于深度学习的平面波波束合成方法,如图2所示,包括如下步骤:
S1、获取矩阵样本,利用矩阵超声成像探头对待检测组织分别发射低角度数发射序列的平面成像波与多角度数发射序列的平面成像波得到第一矩阵样本与第二矩阵样本;其中,所述第一矩阵样本与第二矩阵样本通过矩阵超声成像探头对待检测组织发射超声成像波束的位置相同。在一个实施例中,第一矩阵样本与第二矩阵样本分别为低角度数发射序列的复合平面波图像即LA_CPWC矩阵与多角度数发射序列的复合平面波图像即LA_CPWC矩阵。具体地,通过发射单元控制矩阵超声成像探头对待检测组织发射低角度数发射序列的平面成像波或多角度数发射序列的平面成像波并对待检测组织的全部区域进行扫描;接收并采集扫描过后的待检测组织的回波信号,根据所述回波信号进行波束合成得到所述第一矩阵样本或第二矩阵样本。在本实施例中,如图3所示,将矩阵超声成像探头放置在目标组件或器官后,首先通过发射单元控制矩阵超声成像探头对待检测组织发射低角度数发射序列的超声成像波束,矩阵超声成像探头对待检测组织的全部区域进行扫描,通过接收单元与数据采集单元记录组织回波信息作为参考的原始组织回波信号,波束合成后得到数据矩阵即LA_CPWC矩阵,将数据保存在数据存储单元内。其次,通过上述同样的方法获取MA_CPWC矩阵,其中不同的是矩阵超声成像探头发射多角度数发射序列的超声成像波束,当然获取LA_CPWC矩阵与MA_CPWC矩阵数据时矩阵超声成像探头的位置是相同的,获取LA_CPWC矩阵与MA_CPWC矩阵数据时唯一的不同点是矩阵超声成像探头发射的发射序列不同,一个为低角度数发射序列,另一个为多角度数发射序列。
S2、模型训练,利用网络模型对若干组一一对应的所述第一矩阵样本与第二矩阵样本进行训练,得到波束合成模型;其中,所述第一矩阵样本与第二矩阵样本分别作为网络模型的输入与输出。在一个实施例中,在步骤S1中在矩阵超声成像探头处于相同位置时获取的LA_CPWC矩阵与MA_CPWC矩阵数据,二者形成一一对应的关系。在模型训练的过程中需要多组数据,通过移动矩阵超声成像探头得到若干组一一对应的所述第一矩阵样本与第二矩阵样本即多组LA_CPWC矩阵与MA_CPWC矩阵数据。将若干组一一对应的LA_CPWC矩阵与MA_CPWC矩阵数据分别作为卷积神经网络的输入数据与输出数据,训练网络,如图4所示。
S3、精度判定,将待测试的数据输入所述波束合成模型进行数据合成,并利用梯度下降原理计算当损失函数最小时得到最优的波束合成模型;否则,返回步骤模型训练进行迭代训练。在一个实施例中,利用梯度下降原理,使损失函数最小,得到最终的波束合成模型。进一步地,利用矩阵超声成像探头的倾斜角度数与不同器官组织之间的耦合度,在模型训练时添加器官组织的先验信息,以得到该器官组件的波束合成模型。本实施例中,在训练过程中添加针对不同的人体器官与组织的先验信息,使波束合成模型可以针对不同组织器官分别进行有偏向性的矩阵映射,利用倾斜角度数与不同器官组织的耦合性,得到针对各组织器官专业性更高的、更清晰的波束合成矩阵。例如,我们要针对心脏和肾脏进行成像,在训练网络的时候,就提前用肾脏和心脏的图片分别对网络进行训练,训练完成后,在使用网络时,操作者可以先在操作台上进行选择,比如检测肾脏或者心脏,然后系统用对应的网络进行使用。在模型训练过程中增加器官组织的先验信息,使得网络训练得到的波束合成模型具有针对性,使得波束合成的图像信息更加的准确。
S4、波束合成,利用矩阵超声成像探头对目标区域待检测组织发射低角度数发射序列的平面成像波得到目标矩阵数据,利用步骤精度判定中得到的波束合成模型对所述目标矩阵数据进行合成,得到最终合成的图像。在一个实施例中,如图5所示,将矩阵超声探头移动至目标区域待检测组织区域,通过发射单元控制矩阵超声成像探头对待检测组织发射低角度数发射序列的平面成像波并对待检测组织的全部区域进行扫描;接收并采集扫描过后的待检测组织的回波信号,根据所述回波信号进行波束合成得到LA_CPWC矩阵数据并将矩阵数据存储于数据存储单元内。利用步骤S3中训练得到的波束合成模型对得到的LA_CPWC矩阵数据进行合成得到映射后的高分辨率伪MA_CPWC波束矩阵;对伪MA_CPWC波束矩阵进行取包络等矩阵映射成像算法即超声后处理后,得到最终的高帧频且高分辨率的图像。通过卷积神经网络可以直接对数据建立端到端的映射关系,并且是网络完成训练后,数据映射计算量很小,便于实时处理。
一种电子设备,包括:处理器;
存储器;以及程序,其中所述程序被存储在所述存储器中,并且被配置成由处理器执行,所述程序包括用于执行基于深度学习的平面波波束合成方法。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行基于深度学习的平面波波束合成方法。
基于深度学习的平面波波束合成系统,如图6所示,包括获取矩阵样本模块、模型训练模块、精度判定模块和波束合成模块;其中,
所述获取矩阵样本模块用于利用矩阵超声成像探头对待检测组织分别发射低角度数发射序列的平面成像波与多角度数发射序列的平面成像波得到第一矩阵样本与第二矩阵样本;其中,所述第一矩阵样本与第二矩阵样本通过矩阵超声成像探头对待检测组织发射超声成像波束的位置相同;
所述模型训练模块用于利用网络模型对若干组一一对应的所述第一矩阵样本与第二矩阵样本进行训练,得到波束合成模型;其中,所述第一矩阵样本与第二矩阵样本分别作为网络模型的输入与输出;
所述精度判定模块用于将待测试的数据输入所述波束合成模型进行数据合成,并利用梯度下降原理计算当损失函数最小时得到最优的波束合成模型;否则,返回步骤模型训练进行迭代训练;
所述波束合成模块用于利用矩阵超声成像探头对目标区域待检测组织发射低角度数发射序列的平面成像波得到目标矩阵数据,利用步骤精度判定中得到的波束合成模型对所述目标矩阵数据进行合成,得到最终合成的图像。
进一步地,所述获取矩阵样本模块包括发射单元、接收单元、数据采集单元、数据处理单元和数据存储单元,通过发射单元控制矩阵超声成像探头对待检测组织发射低角度数发射序列的平面成像波或多角度数发射序列的平面成像波并对待检测组织的全部区域进行扫描;通过接收单元与数据采集单元记录扫描过后的待检测组织的回波信号,根据所述回波信号通过所述数据处理单元处理后进行波束合成得到所述第一矩阵样本或第二矩阵样本,并将所述第一矩阵样本或第二矩阵样本保存至数据存储单元。
进一步地,所述波束合成模块包括超声后处理单元,所述超声后处理单元用于通过对伪多角度数发射序列的平面成像波波束矩阵进行超声后处理,得到最终合成的图像。
以上,仅为本发明的较佳实施例而已,并非对本发明作任何形式上的限制;凡本行业的普通技术人员均可按说明书附图所示和以上而顺畅地实施本发明;但是,凡熟悉本专业的技术人员在不脱离本发明技术方案范围内,利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对以上实施例所作的任何等同变化的更动、修饰与演变等,均仍属于本发明的技术方案的保护范围之内。

Claims (10)

1.基于深度学习的平面波波束合成方法,其特征在于,包括如下步骤:
获取矩阵样本,利用矩阵超声成像探头对待检测组织分别发射低角度数发射序列的平面成像波与多角度数发射序列的平面成像波得到第一矩阵样本与第二矩阵样本;其中,所述第一矩阵样本与第二矩阵样本通过矩阵超声成像探头对待检测组织发射超声成像波束的位置相同;
模型训练,利用网络模型对若干组一一对应的所述第一矩阵样本与第二矩阵样本进行训练,得到波束合成模型;其中,所述第一矩阵样本与第二矩阵样本分别作为网络模型的输入与输出;
精度判定,将待测试的数据输入所述波束合成模型进行数据合成,并利用梯度下降原理计算当损失函数最小时得到最优的波束合成模型;否则,返回步骤模型训练进行迭代训练;
波束合成,利用矩阵超声成像探头对目标区域待检测组织发射低角度数发射序列的平面成像波得到目标矩阵数据,利用步骤精度判定中得到的波束合成模型对所述目标矩阵数据进行合成,得到最终合成的图像。
2.如权利要求1所述的基于深度学习的平面波波束合成方法,其特征在于,在步骤获取矩阵样本中还包括:通过发射端控制矩阵超声成像探头对待检测组织发射低角度数发射序列的平面成像波或多角度数发射序列的平面成像波并对待检测组织的全部区域进行扫描;接收并采集扫描过后的待检测组织的回波信号,根据所述回波信号进行波束合成得到所述第一矩阵样本或第二矩阵样本。
3.如权利要求1或2所述的基于深度学习的平面波波束合成方法,其特征在于,在模型训练步骤中还包括:通过调整不同角度的矩阵超声成像探头获得所述若干组一一对应的所述第一矩阵样本与第二矩阵样本。
4.如权利要求3所述的基于深度学习的平面波波束合成方法,其特征在于,利用矩阵超声成像探头的倾斜角度数与不同器官组织之间的耦合度,在模型训练时添加器官组织的先验信息,以得到该器官组件的波束合成模型。
5.如权利要求1所述的基于深度学习的平面波波束合成方法,其特征在于,在步骤波束合成中还包括:对所述目标矩阵数据进行合成后得到映射后的高分辨率伪多角度数发射序列的平面成像波波束矩阵,通过对伪多角度数发射序列的平面成像波波束矩阵进行超声后处理,得到高帧频且高分辨率的图像。
6.一种电子设备,其特征在于,包括:处理器;
存储器;以及程序,其中所述程序被存储在所述存储器中,并且被配置成由处理器执行,所述程序包括用于执行如权利要求1所述的方法。
7.一种计算机可读存储介质,其上存储有计算机程序,其特征在于:所述计算机程序被处理器执行如权利要求1所述的方法。
8.基于深度学习的平面波波束合成系统,其特征在于,包括获取矩阵样本模块、模型训练模块、精度判定模块和波束合成模块;其中,
所述获取矩阵样本模块用于利用矩阵超声成像探头对待检测组织分别发射低角度数发射序列的平面成像波与多角度数发射序列的平面成像波得到第一矩阵样本与第二矩阵样本;其中,所述第一矩阵样本与第二矩阵样本通过矩阵超声成像探头对待检测组织发射超声成像波束的位置相同;
所述模型训练模块用于利用网络模型对若干组一一对应的所述第一矩阵样本与第二矩阵样本进行训练,得到波束合成模型;其中,所述第一矩阵样本与第二矩阵样本分别作为网络模型的输入与输出;
所述精度判定模块用于将待测试的数据输入所述波束合成模型进行数据合成,并利用梯度下降原理计算当损失函数最小时得到最优的波束合成模型;否则,返回步骤模型训练进行迭代训练;
所述波束合成模块用于利用矩阵超声成像探头对目标区域待检测组织发射低角度数发射序列的平面成像波得到目标矩阵数据,利用步骤精度判定中得到的波束合成模型对所述目标矩阵数据进行合成,得到最终合成的图像。
9.如权利要求8所述的基于深度学习的平面波波束合成系统,其特征在于,所述获取矩阵样本模块包括发射单元、接收单元、数据采集单元、数据处理单元和数据存储单元,通过发射单元控制矩阵超声成像探头对待检测组织发射低角度数发射序列的平面成像波或多角度数发射序列的平面成像波并对待检测组织的全部区域进行扫描;通过接收单元与数据采集单元记录扫描过后的待检测组织的回波信号,根据所述回波信号通过所述数据处理单元处理后进行波束合成得到所述第一矩阵样本或第二矩阵样本,并将所述第一矩阵样本或第二矩阵样本保存至数据存储单元。
10.如权利要求8或9所述的基于深度学习的平面波波束合成系统,其特征在于,所述波束合成模块包括超声后处理单元,所述超声后处理单元用于通过对伪多角度数发射序列的平面成像波波束矩阵进行超声后处理,得到最终合成的图像。
CN201910749727.2A 2019-08-14 2019-08-14 基于深度学习的平面波波束合成方法、系统、存储介质、设备 Active CN110477947B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910749727.2A CN110477947B (zh) 2019-08-14 2019-08-14 基于深度学习的平面波波束合成方法、系统、存储介质、设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910749727.2A CN110477947B (zh) 2019-08-14 2019-08-14 基于深度学习的平面波波束合成方法、系统、存储介质、设备

Publications (2)

Publication Number Publication Date
CN110477947A true CN110477947A (zh) 2019-11-22
CN110477947B CN110477947B (zh) 2022-04-15

Family

ID=68551018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910749727.2A Active CN110477947B (zh) 2019-08-14 2019-08-14 基于深度学习的平面波波束合成方法、系统、存储介质、设备

Country Status (1)

Country Link
CN (1) CN110477947B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111860664A (zh) * 2020-07-24 2020-10-30 大连东软教育科技集团有限公司 超声平面波复合成像方法、装置及存储介质
CN112528731A (zh) * 2020-10-27 2021-03-19 西安交通大学 基于双回归卷积神经网络的平面波波束合成方法及系统
CN113509208A (zh) * 2021-09-14 2021-10-19 西南石油大学 一种基于相位约束的超高速超声成像的重建方法
CN113923678A (zh) * 2020-07-10 2022-01-11 广州海格通信集团股份有限公司 信号处理方法、装置、计算机设备及存储介质

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150293222A1 (en) * 2014-04-11 2015-10-15 Industrial Technology Research Institute Ultrasound apparatus and ultrasound method for beamforming with a plane wave transmission
US20160157828A1 (en) * 2014-06-05 2016-06-09 Chikayoshi Sumi Beamforming method, measurement and imaging instruments, and communication instruments
CN106154251A (zh) * 2016-06-27 2016-11-23 中国科学院苏州生物医学工程技术研究所 超声波束合成方法、超声成像方法和超声弹性成像方法
CN106580369A (zh) * 2016-11-30 2017-04-26 珠海威泓医疗科技有限公司 一种多角度平面波相干彩色多普勒成像方法
CN107510474A (zh) * 2017-09-21 2017-12-26 深圳开立生物医疗科技股份有限公司 剪切波弹性成像方法及系统
US20180103912A1 (en) * 2016-10-19 2018-04-19 Koninklijke Philips N.V. Ultrasound system with deep learning network providing real time image identification
CN108095756A (zh) * 2017-11-30 2018-06-01 上海大学 一种基于sofi的超高分辨平面波超声成像方法
CN108209970A (zh) * 2016-12-09 2018-06-29 通用电气公司 基于超声成像中组织类型的自动检测的可变声速波束成形
CN108471979A (zh) * 2016-01-18 2018-08-31 医疗无线传感有限公司 微波断层扫描系统
CN108836389A (zh) * 2018-06-01 2018-11-20 西安交通大学 平面波相关点相干自适应波束合成成像方法
CN109077754A (zh) * 2018-07-06 2018-12-25 深圳大学 一种测量组织力学特性参数的方法及设备
US20190129026A1 (en) * 2015-06-04 2019-05-02 Chikayoshi Sumi Measurement and imaging instruments and beamforming method
US20190167227A1 (en) * 2016-09-19 2019-06-06 Wisconsin Alumni Research Foundation System and Method for Monitoring Airflow in a Subject's Airway with Ultrasound

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150293222A1 (en) * 2014-04-11 2015-10-15 Industrial Technology Research Institute Ultrasound apparatus and ultrasound method for beamforming with a plane wave transmission
US20160157828A1 (en) * 2014-06-05 2016-06-09 Chikayoshi Sumi Beamforming method, measurement and imaging instruments, and communication instruments
US20190129026A1 (en) * 2015-06-04 2019-05-02 Chikayoshi Sumi Measurement and imaging instruments and beamforming method
CN108471979A (zh) * 2016-01-18 2018-08-31 医疗无线传感有限公司 微波断层扫描系统
CN106154251A (zh) * 2016-06-27 2016-11-23 中国科学院苏州生物医学工程技术研究所 超声波束合成方法、超声成像方法和超声弹性成像方法
US20190167227A1 (en) * 2016-09-19 2019-06-06 Wisconsin Alumni Research Foundation System and Method for Monitoring Airflow in a Subject's Airway with Ultrasound
US20180103912A1 (en) * 2016-10-19 2018-04-19 Koninklijke Philips N.V. Ultrasound system with deep learning network providing real time image identification
CN106580369A (zh) * 2016-11-30 2017-04-26 珠海威泓医疗科技有限公司 一种多角度平面波相干彩色多普勒成像方法
CN108209970A (zh) * 2016-12-09 2018-06-29 通用电气公司 基于超声成像中组织类型的自动检测的可变声速波束成形
CN107510474A (zh) * 2017-09-21 2017-12-26 深圳开立生物医疗科技股份有限公司 剪切波弹性成像方法及系统
CN108095756A (zh) * 2017-11-30 2018-06-01 上海大学 一种基于sofi的超高分辨平面波超声成像方法
CN108836389A (zh) * 2018-06-01 2018-11-20 西安交通大学 平面波相关点相干自适应波束合成成像方法
CN109077754A (zh) * 2018-07-06 2018-12-25 深圳大学 一种测量组织力学特性参数的方法及设备

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ALFONSO RODRIGUEZ-MOLARES,HANS TORP,BASTIEN DENARIE,等: "The angular apodization in coherent plane-wave compounding [Correspondence]", 《IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL》 *
ARUN ASOKAN NAIR,MARDAVA RAJUGOPAL GUBBI,TRAC DUY TRAN,等: "A Fully Convolutional Neural Network for Beamforming Ultrasound Images", 《2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS)》 *
MAXIME GASSE,FABIEN MILLIOZ,EMMANUEL ROUX,等: "High-Quality Plane Wave Compounding Using Convolutional Neural Networks", 《IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL》 *
NGUYEN NQ,PRAGER RW: "Minimum Variance Beamformers for Coherent Plane-Wave Compounding", 《PROCEEDINGS OF SPIE》 *
PAUL L. CARSON,FOUZAAN ZAFAR,SACHA A.M. VERWEIJ,等: "Dual sided automated ultrasound system in the mammographic geometry", 《2011 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM》 *
YADAN WANG,CHICHAO ZHENG,HU PENG,等: "Coherent Plane-Wave Compounding Based on Normalized Autocorrelation Factor", 《IEEE ACCESS》 *
伍吉兵,焦阳,张德龙,等: "基于CUDA的多角度平面波复合算法研究", 《中国医疗器械杂志》 *
吴翔: "基于平面波发射的波束合成算法研究", 《中国优秀博硕士学位论文全文数据库(硕士)医药卫生科技辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113923678A (zh) * 2020-07-10 2022-01-11 广州海格通信集团股份有限公司 信号处理方法、装置、计算机设备及存储介质
CN113923678B (zh) * 2020-07-10 2023-09-01 广州海格通信集团股份有限公司 信号处理方法、装置、计算机设备及存储介质
CN111860664A (zh) * 2020-07-24 2020-10-30 大连东软教育科技集团有限公司 超声平面波复合成像方法、装置及存储介质
CN111860664B (zh) * 2020-07-24 2024-04-26 东软教育科技集团有限公司 超声平面波复合成像方法、装置及存储介质
CN112528731A (zh) * 2020-10-27 2021-03-19 西安交通大学 基于双回归卷积神经网络的平面波波束合成方法及系统
CN112528731B (zh) * 2020-10-27 2024-04-05 西安交通大学 基于双回归卷积神经网络的平面波波束合成方法及系统
CN113509208A (zh) * 2021-09-14 2021-10-19 西南石油大学 一种基于相位约束的超高速超声成像的重建方法

Also Published As

Publication number Publication date
CN110477947B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
CN110477947A (zh) 基于深度学习的平面波波束合成方法、系统、存储介质、设备
Kisslo et al. Real‐time volumetric echocardiography: the technology and the possibilities
CN105392428B (zh) 用于映射超声剪切波弹性成像测量的系统和方法
US6837854B2 (en) Methods and systems for using reference images in acoustic image processing
US11341634B2 (en) Fetal ultrasound image processing
EP1609421A1 (en) Methods and apparatus for defining a protocol for ultrasound machine
US11642096B2 (en) Method for postural independent location of targets in diagnostic images acquired by multimodal acquisitions and system for carrying out the method
CN109069119A (zh) 用于超声胎儿成像的3d图像合成
JP2016514564A (ja) 3d超音波撮像システム
CN110192893A (zh) 量化超声成像的感兴趣区域放置
CN104584074A (zh) 在3d常规以及对比增强的超声图像中的耦合的分割
CN106097427A (zh) 子容积的连续定向的增强超声成像
CN108209970A (zh) 基于超声成像中组织类型的自动检测的可变声速波束成形
CN101036162A (zh) 在显示的图像数据中保持一致的解剖视图的方法和系统
US11308609B2 (en) System and methods for sequential scan parameter selection
WO2018195946A1 (zh) 一种超声图像显示方法、设备及存储介质
US20210169455A1 (en) System and methods for joint scan parameter selection
CN102462508A (zh) 用于超声成像的系统和方法
CN109788942A (zh) 超声波诊断装置及超声波诊断装置的控制方法
CN110087551A (zh) 一种胎心超声检测方法及超声成像系统
CN113543721A (zh) 用于采集复合3d超声图像的方法和系统
DE102004024470B4 (de) Reduzierung von Bewegungsartefakten bei Kernspinresonanzmessungen
US20130018264A1 (en) Method and system for ultrasound imaging
CN108024789B (zh) 容积间病变检测和图像准备
US11672503B2 (en) Systems and methods for detecting tissue and shear waves within the tissue

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant