CN108836389A - 平面波相关点相干自适应波束合成成像方法 - Google Patents

平面波相关点相干自适应波束合成成像方法 Download PDF

Info

Publication number
CN108836389A
CN108836389A CN201810557301.2A CN201810557301A CN108836389A CN 108836389 A CN108836389 A CN 108836389A CN 201810557301 A CN201810557301 A CN 201810557301A CN 108836389 A CN108836389 A CN 108836389A
Authority
CN
China
Prior art keywords
point
reference point
sampled
delay
covariance matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810557301.2A
Other languages
English (en)
Other versions
CN108836389B (zh
Inventor
万明习
张馨予
柏晨
乔晓阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201810557301.2A priority Critical patent/CN108836389B/zh
Publication of CN108836389A publication Critical patent/CN108836389A/zh
Application granted granted Critical
Publication of CN108836389B publication Critical patent/CN108836389B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本发明提供一种平面波相关点相干自适应波束合成成像方法:1)确定相关点的数量和位置;2)对采样数据进行延迟处理;3)根据延迟处理,估计每一个相关点对应于相位相反的两个平面波的协方差矩阵;4)结合相干系数,利用步骤3)得到的协方差矩阵估计结果,计算各相关点的协方差矩阵;5)利用步骤4)所得的协方差矩阵进行自适应波束合成,将采样数据中同一个采样点对应的各相关点的波束合成值进行叠加;6)将各采样点的相关点波束合成值叠加结果以矩阵形式输出。本发明利用相干时间延迟反映了超声波在相关点处对目标采样点的影响,在与单角度或多角度平面波自适应波束合成相结合时,不会增加数据中的诊断信息,提高成像对比度、分辨率。

Description

平面波相关点相干自适应波束合成成像方法
技术领域
本发明属于超声检测及超声成像技术领域,涉及超声成像算法,具体涉及相关点影响下的单角度或复合多角度相干波束合成成像方法。
背景技术
超声成像是利用超声声束扫描人体,通过对反射信号的接收和处理,来获取各个器官的图像。超声成像可以对许多组织和器官进行成像,目前超声对于颅骨内的监测主要采用经颅多普勒技术,然而颅内血管造影成像技术的发展为颅内监测提供了更准确的方法,对颅内血管进行血管成像克服了经颅多普勒检测的许多缺点,但是由于颅骨的阻挡,超声对于颅内组织和血管的成像还处于发展阶段。颅骨对超声波的衰减作用是限制超声技术对颅内血管及组织成像的主要因素,而波束合成是医疗超声成像系统的重要组成部分,波束合成算法的性能影响着超声成像的质量。因此对波束合成进行改良、提高成像质量是经颅成像发展的重要环节。
目前常用的波束合成方法为延时叠加算法(Delay and Sum,简称DAS)和自适应波束合成算法。与DAS相比,自适应波束合成算法利用换能器阵列接收到的回波信号,根据环境变化在适应的计算出施加在每个阵元上的动态加权值,因此具有更好的分辨力和抗干扰能力。1969年Capon提出基于最小方差(Minimum Variance,简称MV)的波束合成方法,为最早应用于医学超声成像的自适应波束合成算法,后来人们将此方法命名为Capon自适应波束合成算法。由于医学超声成像设备具有宽带、近场的特点,以及协方差矩阵估计有限,而最初的Capon自适应波束合成算法只适用于远场、窄带的场合,因此必须对此算法进行改进才能更好的适用于医学成像领域。1994年David D.Feldman等人提出了基于子空间的自适应波束合成方法,此方法需要噪声协方差矩阵的先验知识。这种方法提高了自适应波束合成算法对采样协方差矩阵估计误差的稳健性,然而并不能解决对噪声协方差矩阵的不精确估计敏感的问题。Sasso和Cohen-Bacrie,以及Synnevag等人将Capon自适应波束合成与空间平滑相结合,对接收到的回波信号去相关,从而获得较好的协方差矩阵估计。随后,Holfort等人将前后向空间平滑应用到协方差矩阵的估计中,从而进一步提高了自适应波束合成的性能,然而他们的研究是基于单点目标成像,而自适应波束合成是严格的数据相关,因此还需要考虑更多的情况。
最小方差无失真响应(简称MVDR)是一种基于最大信噪比的自适应波束合成算法,也是目前应用最广的自适应波束合成算法。通过此算法得到的加权系数在期望方向上的阵列输出功率最小,同时信噪比最大。MVDR算法在很大程度上提高了波数谱估计的分辨率,有效的抑制了干扰和噪声。MVDR算法采用了自适应波束合成中常用的采样矩阵求逆算法,该算法具有较快的信噪比意义下的收敛速度。矩阵求逆算法只需要用较少的采样数(快拍数)就能保证权系数收敛。然而MVDR算法本身也存在一定的局限性。当所用快拍数不足时,小特征值不能快速收敛,从而使波束响应图发生畸变,在高信噪比下,这种影响尤为明显。低快拍数下协方差矩阵求逆时小特征值扰动明显致使波束响应旁瓣升高,主瓣发生畸变。同时,由于在实际应用中使用包含期望信号的协方差矩阵估计进行运算,在高信噪比、低快拍数的情况下,期望信号与噪声干扰存在明显的相干性。这在很大程度上影响了MVDR算法的性能。再加上众所周知的协方差矩阵估计样本的稀缺性,这会降低波束形成器的性能并降低图像质量。尤其,MVDR算法在对低回声信号距离中心扫描线较远的点进行波束合成时,信噪比和对比度都不够理想。因此,在现有算法的基础上如何降低成像噪声、提高图像信噪比和对比度,改善成像质量是超声成像领域关注的重点。
发明内容
本发明的目的在于提供一种平面波相关点相干自适应波束合成成像方法,该方法通过相关像素点对目标像素点的影响来抑制无效信息,从而提高成像对比度、分辨率。
为了实现上述目的,本发明采用了以下技术方案:
一种相关点影响下的单角度相干自适应波束合成成像方法,包括以下步骤:
1)为解决最小方差无失真响应中协方差矩阵估计样本的稀缺性所导致的图像质量降低,利用相关点相干影响的波束合成,即对于由超声线阵换能器发射的两个相位相反的超声平面波所对应得到的采样数据,在处理采样数据(对于以上两个超声平面波各自的回波信号,采样点仅是相位相反)中每一条扫描线下每一个采样点(该采样点称为目标采样点)时需要考虑该目标采样点周围采样点对该目标采样点的影响,并把目标采样点周围对该目标采样点具有相干效果的采样点称为该目标采样点的相关点;因此,首先要定义目标采样点的相关点的个数和相对位置;
2)相关点数目和相对位置确定后,在所述超声线阵换能器发射两个相位相反的平面波照射整个成像区域后接收回波信号,得到采样数据并存储,计算采样数据中目标采样点和其每一个相关点的相干延时:
其中,τi,j,k表示第i个阵元发射的扫描线中第j个采样点的第k个相关点的延时,R表示第i个阵元的发射点到所述第j个采样点的距离,d表示第i个阵元的发射点到所述第k个相关点的距离,c表示声速,N表示阵元数目,M表示每条扫描线上的采样点数;
3)利用得到的相干延时对采样数据进行延迟处理:
先计算相干延迟:
delayi,j,k=τi,j,k×fs
其中,fs为采样频率,delayi,j,k表示第i个阵元发射的扫描线中第j个采样点的第k个相关点的相干延迟。
delayi,j,k实际为间隔的采样点个数,因此对采样数据进行延迟处理即为选取考虑延迟后的采样点ai,j(delayi,j,k),ai,j(delayi,j,k)表示第i个阵元发射的扫描线中第j个采样点处延迟处理后的数据;所有数据ai,j(delayi,j,k)组合成a(delayi,j,k),a(delayi,j,k)表示延迟处理后的采样点信号向量;
4)为了保证相关点的协方差矩阵的非奇异性,对相关点的协方差矩阵采用前后相空间平滑技术:
首先将阵元数目为N的超声线阵换能器分为N-L+1个重叠平滑子阵元,子阵元大小为L;假设前向空间平滑协方差矩阵估计为后向空间平滑协方差矩阵估计为
前向空间平滑协方差矩阵估计计算公式为:
Ri,j,k,l=al(delayi,j,k)×al H(delayi,j,k)
其中,G表示平滑子阵元个数,al(delayi,j,k)表示将a(delayi,j,k)分成G个平滑子阵元后,其中第l个平滑子阵元的采样点信号向量,H表示转置,表示第i个阵元发射的扫描线中第j个采样点的第k个相关点的前向空间平滑协方差矩阵估计;
第i个阵元发射的扫描线中第j个采样点的第k个相关点的后向空间平滑协方差矩阵估计可以由前向空间平滑协方差矩阵估计计算得到:
其中,J为单位矩阵,*表示共轭;
最后,协方差矩阵估计:
m=1或2,分别对应两个相位相反的平面波在第i个阵元发射的扫描线中第j个采样点的第k个相关点产生的协方差矩阵的估计。
5)利用相关点和目标采样点的相对位置确定相干系数,因为相关点的位置和与目标采样点的距离不同,平面波在相关点对目标采样点产生的影响也不同;相干系数作用于相位相反的两个平面波,根据相关点与目标采样点的相对位置取为:(b1,b2)=(1,0)或者(b1,b2)=(0,-1),b1和b2分别表示两个相位相反的平面波的相干系数;
6)结合相干系数计算每一个相关点的总协方差矩阵:
其中,表示第i个阵元发射的扫描线中第j个采样点的第k个相关点的协方差矩阵的估计,分别表示两个相位相反的平面波在第k个相关点产生的协方差矩阵;
7)利用所得的协方差矩阵进行自适应波束合成,将目标采样点的各个相关点的波束合成值进行叠加:
其中,yi,j,k表示第i个阵元发射的扫描线中第j个采样点的第k个相关点的波束合成值,K表示针对第i个阵元发射的扫描线中第j个采样点确定的相关点个数;yi,j是自适应波束合成的输出值,若为单角度平面波成像,可直接对输出值矩阵做成像处理。
一种相关点影响下的多角度相干自适应波束合成成像方法,包括以下步骤:
对于复合多角度平面波成像,将第p个角度(p=1,…,P)的采样数据按照上述1)至7)的步骤进行波束合成,得到对应的输出值矩阵Yp,然后将各个角度所得的输出值矩阵进行叠加,然后除以角度个数P(即P表示发射的平面波角度个数),得到最终复合多角度相关点相干自适应波束合成的结果:
Ys表示复合多角度下的波束合成输出矩阵,用于做成像处理;Yp表示第p个角度下波束合成输出值矩阵,对应每一个角度下按步骤7)得到的输出值矩阵。
优选的,所述步骤1)中,相关点个数选取为4至8个,相关点选取过少无法达到相干效果,而相关点选取过多会极大降低成像速度。
优选的,所述步骤1)中,相关点位置选取为距离目标采样点1至10个采样点,相关点距离目标采样点过近或者过远都会影响相干效果,可导致相关点对目标采样点的影响减弱。
优选的,所述步骤1)中,相关点位置分布应关于目标采样点成中心对称。若相关点分布不对称,相关点对目标采样点的影响会出现偏差。
优选的,所述平面波角度个数选取为2至9个,平面波角度个数过多会导致波束合成计算量倍数增加,极大降低成像速度,且角度个数为奇数,以保证发射波的对称性。
本发明的有益效果体现在:
本发明利用相干时间延迟反映了超声波在相关点处对目标采样点的影响,在与单角度或多角度平面波自适应波束合成相结合时,不会增加数据中的诊断信息,而是通过去除不需要的信息来提高成像对比度、分辨率,以提高成像图像质量。
附图说明
图1为复合多角度相关点相干自适应波束合成流程图;R和d分别表示阵元发射点到目标采样点和其相关点的距离,x表示每一阵元接收到的回波信号,y表示波束合成后的输出信号,ω表示波束合成中计算得到最优权值,目标点即为目标采样点,N表示阵元数目。
图2为相关点选取示意图。
图3为相干时间延迟计算示意图;R和d分别表示阵元发射点到目标采样点和其相关点的距离,x表示阵元排列方向,z表示采样深度方向。
图4为复合多角度相关点相干自适应波束合成与延时叠加、MVDR自适应波束合成仿真成像结果对比图;其中,A位置用于计算分辨率,B、C及D位置用于计算对比度
图5为复合多角度相关点相干自适应波束合成与延时叠加、MVDR自适应波束合成经颅血管模型造影微泡成像实验结果对比图。
具体实施方式
下面结合附图和实施例对本发明做进一步的详细说明。
参见图1,本发明提供一种相关点影响下的多角度相干波束合成成像方法,该方法联合平面波多角度复合成像、自适应波束合成、相关点影响下的最小方差无失真响应(MVDR)等技术,在MVDR基础上,实现针对低回声信号的高对比度、低噪声的成像,即基于复合多角度相关点相干自适应波束合成(CCPB)的成像方法。具体流程如下:
1)超声线阵换能器发射两个相位相反的平面波束照射整个成像区域后并行接收回波信号并存储,处理每一目标采样点时考虑其周围采样点对目标采样点的影响(相干效果,具体体现在成像的对比度和/或分辨率上),目标采样点周围对该目标采样点产生影响的采样点称为相关点。据此,上述CCPB的流程中首先定义相关点的个数和相对位置。
参见图2,对于相关点的选择,一般选取目标采样点周围一定距离的采样点作为相关点,以128阵元为例,相关点个数为8个,相关点位置选取为距离目标采样点1个采样点。
2)相关点数目和相对位置确定后,超声线阵换能器发射两个相位相反的平面波束照射整个成像区域后并行接收回波信号并存储,对目标采样点和其相关点计算相干延迟,参见图3,计算目标采样点相对于每个相关点的相干延时,用发射阵元到相关点的距离减去此阵元到目标采样点的距离,距离之差除以声速c,此时得到的是发射阵元到相关点和目标采样点的时间延时:
其中,τi,j,k表示第i个阵元发射的扫描线中第j个采样点的第k个相关点的延时,R和d分别表示阵元发射点到目标采样点和其相关点的距离,N表示阵元数目,M表示每条扫描线上的采样点数。
3)将得到的相干延时乘以采样频率fs,便得到计算协方差矩阵所需的相干延迟:
delayi,j,k=τi,j,k×fs
其中,delayi,j,k表示第i个阵元发射的扫描线中第j个采样点的第k个相关点的延迟。
则协方差矩阵表示为:
Ri,j,k=a(delayi,j,k)×aH(delayi,j,k)
Ri,j,k表示第i个阵元发射的扫描线中第j个采样点的第k个相关点的协方差矩阵,a(delayi,j,k)表示延迟处理后的信号向量。
4)为了保证协方差矩阵的非奇异性,对协方差矩阵采用前后相空间平滑技术。具体如下:
首先将阵元数目为N的换能器分为N-L+1个重叠平滑子阵元,子阵元大小为L。假设前向空间平滑协方差矩阵估计为后向空间平滑协方差矩阵估计为前向空间平滑协方差矩阵估计计算公式为:
Ri,j,k,l=al(delayi,j,k)×al H(delayi,j,k)
其中,表示第i个阵元发射的扫描线中第j个采样点的第k个相关点的前向空间平滑协方差矩阵估计,G表示平滑子阵元个数,al(delayi,j,k)表示将a(delayi,j,k)分成G个平滑子阵元后,第l个平滑子阵元的信号向量。
第i个阵元发射的扫描线中第j个采样点的第k个相关点的后向空间平滑协方差矩阵估计可以由前向空间平滑协方差矩阵估计计算得到:
其中J为单位矩阵。
最后,协方差矩阵估计其中,m=1或2,分别表示相位相反的两个平面波的协方差矩阵估计。
5)除了计算相干延迟,还要利用相关点和目标采样点的相对位置确定相干系数,因为相关点的位置和与目标采样点的距离不同,平面波在此相关点对目标采样点产生的影响也不同。此系数作用于相位相反的两个平面波。根据相关点与目标点的相对位置,参见图3,对于相干系数的选择,若相关点在区域(I)内,即相关点采样深度比目标采样点浅,则相位相反的两个平面波的相干系数为(b1,b2)=(1,0);若相关点在区域(II)内,即相关点采样深度比目标采样点要深,则相位相反的两个平面波的相干系数为(b1,b2)=(0,-1);若相关点与目标采样点在同一采样深度上,则在同一采样深度上关于目标采样点对称的两个相关点,一个的相干系数为(b1,b2)=(1,0),另一个的相干系数则为(b1,b2)=(0,-1),以此来保证相关点对目标采样点影响的对称性。
6)结合相干系数计算每一个相关点的总协方差矩阵:
其中,表示第i个阵元发射的扫描线中第j个采样点的第k个相关点的协方差矩阵的估计,分别表示两个相位相反的平面波在此相关点产生的协方差矩阵,b1和b2分别表示两个相位相反的平面波的相干系数。
7)利用所得的协方差矩阵进行自适应波束合成,将各个相关点的合成值进行叠加:
其中,yi,j,k表示第i个阵元发射的扫描线中第j个采样点的第k个相关点的波束合成值,K表示选择的相关点个数。yi,j则是本发明提出的相关点相干自适应波束合成方法的输出值,若为单角度平面波成像,可直接对输出值矩阵做成像处理。
8)对于复合多角度相关点相干自适应波束合成,将各个角度的数据按照1)至7)的步骤进行波束合成,然后将各个角度所得的输出矩阵进行叠加,然后除以角度个数,即为最终复合多角度相关点相干自适应波束合成方法所得结果:
其中,Ys表示波束合成输出矩阵,Yp表示第p个角度下波束合成输出值矩阵,P表示发射的平面波角度个数。
参见图4,在仿真实验中,和延时叠加波束合成(Delay-and-Sum,DAS)及传统MVDR自适应波束合成相比,复合多角度(3个角度)相关点相干自适应波束合成(CCPB)的成像分辨率和对比度得到明显改善。从横向分辨率来看,CCPB的成像分辨率分别是DAS和传统MVDR的46%和72%,三种方法的成像对比度分别为16.08dB(DAS)、18.32dB(MVDR)和24.97dB(CCPB)。由此可以看出复合多角度相关点相干自适应波束合成无论从分辨率还是对比度上都对成像结果进行了改善。
参见图5,在血管模型成像实验中,从血管(vessel)纵向分辨率来看,复合多角度(3个角度)相关点相干自适应波束合成(CCPB)的成像分辨率分别是DAS和传统MVDR的42%和66%,三种方法的成像对比度分别为6.67dB(DAS)、8.24dB(MVDR)和12.29dB(CCPB)。即在实际的成像实验中,本发明提出的复合多角度相关点相干自适应波束合成方法依然在分辨率和对比度上都对成像结果进行了改善。
总之,本发明相对于传统自适应波束合成的改进来自相干时延计算。相干时间延迟反映了超声波在相关点处对目标采样点的影响。本发明中的相关点相干自适应波束合成通过将诸如MVDR等自适应波束合成与相关点相结合,不会增加数据中的诊断信息,而是通过去除不需要的信息来提高图像质量,例如由旁瓣产生的杂波和杂波。

Claims (10)

1.一种相关点影响下的单角度相干自适应波束合成成像方法,其特征在于:包括以下步骤:
1)在超声线阵换能器发射两个相位相反的平面波照射成像区域后接收回波信号,得到采样数据,针对采样数据中的每一个采样点,确定该采样点的相关点的数量和位置,然后计算采样数据中每一个采样点和其相关点的延时;所述相关点是指目标采样点周围对该目标采样点具有相干效果的采样点;
2)利用步骤1)获得的延时计算相干延迟,根据相干延迟对采样数据进行延迟处理,得到延迟处理后的采样数据;
3)根据延迟处理后的采样数据,估计步骤1)确定的每一个相关点对应于所述两个相位相反的平面波的协方差矩阵;
4)结合所述每一个相关点对应于所述两个相位相反的平面波的相干系数,利用步骤3)得到的协方差矩阵估计结果,计算各相关点的协方差矩阵;
5)利用步骤4)所得的协方差矩阵进行自适应波束合成,将步骤1)中所得采样数据中同一个采样点对应的各相关点的波束合成值进行叠加;
6)将步骤1)中所得采样数据中各采样点的相关点波束合成值叠加结果以矩阵形式输出,根据该输出进行成像。
2.一种相关点影响下的多角度相干自适应波束合成成像方法,其特征在于:包括以下步骤:
1)在超声线阵换能器沿第p个角度(p=1,…,P)发射两个相位相反的平面波照射成像区域后接收回波信号,得到采样数据,针对采样数据中的每一个采样点,确定该采样点的相关点的数量和位置,然后计算采样数据中每一个采样点和其相关点的延时;所述相关点是指目标采样点周围对该目标采样点具有相干效果的采样点;
2)利用步骤1)获得的延时计算相干延迟,根据相干延迟对采样数据进行延迟处理,得到延迟处理后的采样数据;
3)根据延迟处理后的采样数据,估计步骤1)确定的每一个相关点对应于所述两个相位相反的平面波的协方差矩阵;
4)结合所述每一个相关点对应于所述两个相位相反的平面波的相干系数,利用步骤3)得到的协方差矩阵估计结果,计算各相关点的协方差矩阵;
5)利用步骤4)所得的协方差矩阵进行自适应波束合成,将步骤1)中所得第p个角度(p=1,…,P)采样数据中同一个采样点对应的各相关点的波束合成值进行叠加;
6)将步骤1)中所得第p个角度(p=1,…,P)采样数据中各采样点的相关点波束合成值叠加结果以矩阵形式输出;
7)重复步骤1)-步骤6),直至得到P个角度各自采样数据中各采样点的相关点波束合成值叠加结果的矩阵形式输出,将P个角度所得的矩阵形式输出进行叠加后除以P,P表示发射的平面波角度个数,得到复合多角度下的波束合成输出,根据该输出进行成像。
3.根据权利要求1或2所述的自适应波束合成成像方法,其特征在于:所述相关点的位置选取为距离目标采样点1至10个采样点。
4.根据权利要求1或2所述的自适应波束合成成像方法,其特征在于:所述相关点的个数选取为目标采样点周围的4至8个采样点。
5.根据权利要求1或2所述的自适应波束合成成像方法,其特征在于:所述相关点的位置分布关于目标采样点成中心对称。
6.根据权利要求2所述的自适应波束合成成像方法,其特征在于:所述平面波角度个数选取为2至9个,且数目为奇数。
7.根据权利要求1或2所述的自适应波束合成成像方法,其特征在于:所述相干延迟的计算公式为:
delayi,j,k=τi,j,k×fs
其中,fs为采样频率,delayi,j,k表示第i个阵元发射的扫描线中第j个采样点的第k个相关点的延迟;τi,j,k表示第i个阵元发射的扫描线中第j个采样点的第k个相关点的延时。
8.根据权利要求7所述的自适应波束合成成像方法,其特征在于:所述延时的计算公式为:
其中,R表示第i个阵元的发射点到所述第j个采样点的距离,d表示第i个阵元的发射点到所述第k个相关点的距离,c表示声速,N表示阵元数目,M表示每条扫描线上的采样点数。
9.根据权利要求1或2所述的自适应波束合成成像方法,其特征在于:所述步骤4)中,相关点的协方差矩阵的计算公式为:
其中,表示第i个阵元发射的扫描线中第j个采样点的第k个相关点的协方差矩阵的估计,分别表示两个相位相反的平面波在所述第k个相关点产生的协方差矩阵;
所述的估计方法为:
其中,m=1或2,表示第i个阵元发射的扫描线中第j个采样点的第k个相关点的前向空间平滑协方差矩阵估计,表示第i个阵元发射的扫描线中第j个采样点的第k个相关点的后向空间平滑协方差矩阵估计。
10.根据权利要求1或2所述的自适应波束合成成像方法,其特征在于:所述相干系数根据相关点和目标采样点的相对位置确定:(b1,b2)=(1,0)或者(b1,b2)=(0,-1),b1和b2分别表示两个相位相反的平面波的相干系数。
CN201810557301.2A 2018-06-01 2018-06-01 平面波相关点相干自适应波束合成成像方法 Active CN108836389B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810557301.2A CN108836389B (zh) 2018-06-01 2018-06-01 平面波相关点相干自适应波束合成成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810557301.2A CN108836389B (zh) 2018-06-01 2018-06-01 平面波相关点相干自适应波束合成成像方法

Publications (2)

Publication Number Publication Date
CN108836389A true CN108836389A (zh) 2018-11-20
CN108836389B CN108836389B (zh) 2020-08-18

Family

ID=64211366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810557301.2A Active CN108836389B (zh) 2018-06-01 2018-06-01 平面波相关点相干自适应波束合成成像方法

Country Status (1)

Country Link
CN (1) CN108836389B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110279430A (zh) * 2019-06-26 2019-09-27 北京交通大学 基于虚拟多角度复合的平面超声波成像处理方法及装置
CN110378896A (zh) * 2019-07-25 2019-10-25 内蒙古工业大学 基于极化相干性的TomoSAR植被病虫害监测方法及装置
CN110477947A (zh) * 2019-08-14 2019-11-22 中国科学院苏州生物医学工程技术研究所 基于深度学习的平面波波束合成方法、系统、存储介质、设备
CN110477951A (zh) * 2019-08-30 2019-11-22 浙江大学 基于宽频带声学超材料的超快复合平面波成像方法
CN111466949A (zh) * 2020-04-13 2020-07-31 剑桥大学南京科技创新中心有限公司 一种mmse波束形成器、mmse波束形成方法、计算机可读存储介质
CN111860664A (zh) * 2020-07-24 2020-10-30 大连东软教育科技集团有限公司 超声平面波复合成像方法、装置及存储介质
CN113413167A (zh) * 2021-06-28 2021-09-21 云南大学 一种超声平面波复合成像方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102508228A (zh) * 2011-09-26 2012-06-20 清华大学 基于到达角误差约束的宽带波束合成方法及合成器
JP2018082923A (ja) * 2016-11-24 2018-05-31 キヤノン株式会社 情報処理装置、情報処理方法、情報処理システム及びプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102508228A (zh) * 2011-09-26 2012-06-20 清华大学 基于到达角误差约束的宽带波束合成方法及合成器
JP2018082923A (ja) * 2016-11-24 2018-05-31 キヤノン株式会社 情報処理装置、情報処理方法、情報処理システム及びプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN BAI .ET.AL: "Design and Characterization of an Acoustically and Structurally Matched 3-D-Printed Model for", 《IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL》 *
宗瑜瑾等: ""看清"颅内血管——高分辨率经颅超声诊疗系统", 《中国医学物理学杂志》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110279430A (zh) * 2019-06-26 2019-09-27 北京交通大学 基于虚拟多角度复合的平面超声波成像处理方法及装置
CN110378896B (zh) * 2019-07-25 2021-08-13 内蒙古工业大学 基于极化相干性的TomoSAR植被病虫害监测方法及装置
CN110378896A (zh) * 2019-07-25 2019-10-25 内蒙古工业大学 基于极化相干性的TomoSAR植被病虫害监测方法及装置
CN110477947A (zh) * 2019-08-14 2019-11-22 中国科学院苏州生物医学工程技术研究所 基于深度学习的平面波波束合成方法、系统、存储介质、设备
CN110477947B (zh) * 2019-08-14 2022-04-15 中国科学院苏州生物医学工程技术研究所 基于深度学习的平面波波束合成方法、系统、存储介质、设备
CN110477951A (zh) * 2019-08-30 2019-11-22 浙江大学 基于宽频带声学超材料的超快复合平面波成像方法
US20210064993A1 (en) * 2019-08-30 2021-03-04 Zhejiang University Method For Ultrafast Compound Plane Wave Imaging Based On Broadband Acoustic Metamaterial
US11829872B2 (en) * 2019-08-30 2023-11-28 Zhejiang University Method for ultrafast compound plane wave imaging based on broadband acoustic metamaterial
CN111466949A (zh) * 2020-04-13 2020-07-31 剑桥大学南京科技创新中心有限公司 一种mmse波束形成器、mmse波束形成方法、计算机可读存储介质
CN111860664A (zh) * 2020-07-24 2020-10-30 大连东软教育科技集团有限公司 超声平面波复合成像方法、装置及存储介质
CN111860664B (zh) * 2020-07-24 2024-04-26 东软教育科技集团有限公司 超声平面波复合成像方法、装置及存储介质
CN113413167A (zh) * 2021-06-28 2021-09-21 云南大学 一种超声平面波复合成像方法及系统
CN113413167B (zh) * 2021-06-28 2022-05-13 云南大学 一种超声平面波复合成像方法及系统

Also Published As

Publication number Publication date
CN108836389B (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
CN108836389A (zh) 平面波相关点相干自适应波束合成成像方法
US11096662B2 (en) Method and apparatus to produce ultrasonic images using multiple apertures
US8491483B2 (en) Contrast agent imaging with agent specific ultrasound detection
JP4717995B2 (ja) 超音波ビーム経路の数値的最適化方式
CN104272134B (zh) 超声成像系统中的杂波抑制
US6066099A (en) Method and apparatus for high-frame-rate high-resolution ultrasonic image data acquisition
US8469887B2 (en) Method and apparatus for flow parameter imaging
Zhao et al. Plane wave compounding based on a joint transmitting-receiving adaptive beamformer
WO2007133882A2 (en) Retrospective dynamic transmit focusing for spatial compounding
US20100234729A1 (en) Apparatus and method for creating tissue doppler image using synthetic image
US4821574A (en) Method and apparatus for measuring ultrasonic velocity by crossed beam
JP2009536853A (ja) マルチラインビーム生成器による超音波合成送信フォーカシング
Zhang et al. Ultrafast ultrasound imaging using combined transmissions with cross-coherence-based reconstruction
US10908269B2 (en) Clutter suppression in ultrasonic imaging systems
CN105741236B (zh) 超声系统图像广义消旁瓣方法
US20050154306A1 (en) Dort process-based method and system for adaptive beamforming in estimating the aberration in a medium
US11751849B2 (en) High-resolution and/or high-contrast 3-D and/or 4-D ultrasound imaging with a 1-D transducer array
US20220280138A1 (en) Ultrasonic imaging of acoustic attenuation coefficients with elevation compounding
Kim et al. An efficient motion estimation and compensation method for ultrasound synthetic aperture imaging
US11647991B2 (en) Synthetic transmit focusing ultrasound system with speed of sound mapping
US20190021700A1 (en) Clutter suppression in ultrasonic imaging systems
CN112842382B (zh) 用于对信道数据进行流处理以应用非线性波束形成的方法和系统
Byram Ultrasonic reverberation and off-axis clutter suppression using aperture domain signal decomposition
US20220087653A1 (en) Ultrasonic imaging of acoustic attenuation coefficients with confidence estimation
Hoctor et al. Array signal processing approaches to ultrasound-based arterial pulse wave velocity estimation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant