CN110473955A - 钙钛矿型复合氧化物在超宽带光热电探测器中的应用 - Google Patents

钙钛矿型复合氧化物在超宽带光热电探测器中的应用 Download PDF

Info

Publication number
CN110473955A
CN110473955A CN201810444716.9A CN201810444716A CN110473955A CN 110473955 A CN110473955 A CN 110473955A CN 201810444716 A CN201810444716 A CN 201810444716A CN 110473955 A CN110473955 A CN 110473955A
Authority
CN
China
Prior art keywords
composite oxide
photo
perovskite composite
thermal electric
electric explorer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810444716.9A
Other languages
English (en)
Other versions
CN110473955B (zh
Inventor
姜鹏
陆晓伟
包信和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201810444716.9A priority Critical patent/CN110473955B/zh
Publication of CN110473955A publication Critical patent/CN110473955A/zh
Application granted granted Critical
Publication of CN110473955B publication Critical patent/CN110473955B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/854Thermoelectric active materials comprising inorganic compositions comprising only metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供了钙钛矿型复合氧化物的一种新用途,即采用钙钛矿型复合氧化物作为光敏感材料来制作超宽带光热电探测器。本发明利用钙钛矿型复合氧化物的塞贝克效应和高温稳定性,可实现从紫外到远红外的电磁辐射探测。相比基于石墨烯、黑磷、二硫化钼等二维材料的光热电探测器,利用钙钛矿型复合氧化物制作的光热电探测器具有灵敏度高、光学损伤阈值高、结构简单、光敏面积大等优点,在超宽带、高功率光探测领域具有广阔的应用前景。

Description

钙钛矿型复合氧化物在超宽带光热电探测器中的应用
技术领域
本发明涉及的是光热电探测领域,是基于钙钛矿氧化物的超宽带光热电探测器。具体指利用钙钛矿氧化物的光热电效应,实现从紫外到远红外的超宽带光热电探测。
背景技术
光电探测器是将光信号转化成电信号的装置,根据其原理可分为光子型探测器和热探测器。光子型探测器涉及到光生载流子的产生和分离,故其可探测的波长范围受半导体材料带隙的限制,入射光子能量必须大于材料带隙才能激发光生载流子。热探测器可克服这一缺点,然而传统的基于热敏电阻的测辐射热计由于其需要内置电压源,故其体积通常较大,不适于制成紧凑型器件。热探测器主要还包括热释电探测器和光热电探测器。热释电探测器只对脉冲光有响应,在检测连续光时需要利用斩波器进行调制,故应用场景受限。光热电探测器基于热电效应,其原理是首先将吸收的光转化成热,再利用塞贝克效应将热转化成电压。在目前已经商业化的光热电探测器中,p型、n型热电薄膜组成热电对,多个热电对围绕吸收层组成热电堆。其中吸收层的作用是吸收光、产生热量,在热电堆的两侧制造温差,从而产生电压响应。此类光热电探测器制备工艺复杂,通常需要精密微加工工艺,价格昂贵,且响应灵敏度较低,可探测的激光功率密度阈值较低。例如,Thorlab公司生产的S175C型显微镜载玻片热探头,其响应度(定义为光生电压与入射光功率的比值)约为0.17V/W,在长波长红外(8-14μm)的响应时间(定义为信号从10%上升到90%所对应的时间)约为40s,最高可探测激光功率密度阈值约为200W/cm-2。由于二维材料的快速发展,基于光热电效应的石墨烯和黑磷光电探测器已有报道(X.Cai,A.B.Sushkov,etal.Nat.Nanotechnol.2014,9,814;L.Wang,C.L.Liu,et al.Adv.Funct.Mater.2017,27,1604414),然而由于饱和效应,这类光电探测器的应用局限在低功率光探测。
钙钛矿型复合氧化物,如钛酸锶(SrTiO3),钛酸钡(BaTiO3)等,由于其特殊的组成和结构,具有一系列独特的性质,如介电性质、铁电性质、二维电子气等。此外,钙钛矿型复合氧化物也是一种环境友好的热电材料,尽管其热电优值较低,但是通过调节载流子浓度,其室温塞贝克系数(定义为单位温差所产生的电压)可以达到-1000μV/K(负号表示其为n型半导体)。目前商业化的光热电探测器中所使用的通常是BiTe基热电材料,其室温塞贝克系数仅为100~200μV/K。由于光热电探测器的侧重点是电压输出,对其内阻的要求较弱,从而将钙钛矿型复合氧化物用于光热电探测器具有很好的前景。目前基于钙钛矿型复合氧化物的热探测器的相关报道还比较少。2006年吕惠宾等人利用钛酸锶的非对角热电效应(即横向热电效应)检测其对紫外光的响应(Kun Zhao,Kui-juan Jin,etal.Appl.Phys.Lett.2006,89,173507)。非对角热电效应依赖于晶体轴倾斜的单晶样品。基于非对角热电效应的探测器需要在平行于样品厚度的方向上建立温差,它们对连续光的响应很弱,只对具有高峰值功率密度的纳秒、皮秒等脉冲激光有很强的响应(KouheiTakahashi,Tsutomu Kanno,et al.Appl.Phys.Lett.2012,100,181907)。
发明内容
本发明的目的在于提供一种制备工艺简单、成本低廉、灵敏度高的超宽带光热电探测器。该探测器可检测从紫外到远红外的电磁辐射。
本发明所提供的光热电探测器的技术方案如下:
钙钛矿型复合氧化物在超宽带光热电探测器中的应用,采用赛贝克效应作为探测机理,将温差建立的方向垂直于钙钛矿型复合氧化物的厚度方向。
本发明提供一种光热电探测器,包括钙钛矿型复合氧化物和位于钙钛矿型复合氧化物同侧的一对金属电极。
光热电探测器,包括长方体状的钙钛矿型复合氧化物,所述钙钛矿型复合氧化物长轴两端的上表面分别设置金属电极,所述金属电极分别经导线与电压表的输入端相连构成回路。
将钙钛矿型复合氧化物担载在支撑底座上,二者之间用绝缘材料(优选双面胶带)隔开,支撑结构可以为半支撑或者全支撑。半支撑结构是指绝缘材料仅支撑钙钛矿型复合氧化物的半侧,钙钛矿型复合氧化物的另半侧悬空。全支撑结构是指整个钙钛矿型复合氧化物均负载在绝缘材料上。
进一步的,所述钙钛矿型复合氧化物的其通式为ABO3,其中A碱金属元素或稀土元素,包括Sr、Ba、Ca、La等,B为过渡金属元素,包括Ti、Mn、Co等。
进一步的,所述钙钛矿型复合氧化物的晶体形态可以为单晶或多晶,优选单晶。
进一步的,单晶钙钛矿型复合氧化物经高温退火预处理,所述退火温度为850℃~1300℃。通过高温退火处理使所述钙钛矿型复合氧化物的室温赛贝克系数在-300μV/K到-1500μV/K之间。
本发明的原理是当激光照射在一侧的钙钛矿型复合氧化物/金属电极界面时,界面处的温度升高,与另一侧的界面间形成温度差,再利用塞贝克效应将温差转化为电压输出。
本发明的光热电探测器具有成本较低、结构简单、易于集成、环境友好、无需偏置电压等优点,而且表现出优良的光热电探测效果。例如,实施例一所制备的光电探测器其展现出超宽的光探测能力。其对10.67μm激光响应度可达1.2V/W,对325nm激光的响应度可达1.1V/W,对785nm激光响应度可达0.63V/W,其响应时间在1.5s左右。该探测器可以承受非常高的激光功率,例如在1550nm波长激光照射下,当激光功率密度大于786W/cm2时,其电压响应才偏离线性区域。
附图说明
图1、采用半支撑结构的钙钛矿型复合氧化物光热电探测器结构示意图,其中图1-1为俯视图;图1-2为主视图。
图2、采用全支撑结构的钙钛矿型复合氧化物光热电探测器结构示意图,其中图2-1为俯视图,图2-2为主视图。
图3、实施例1所制备的钛酸锶单晶样品在室温附近的电压-温差曲线。温差通过电加热的方式来建立。
图4、实施例1所制备的钛酸锶单晶样品的紫外-可见-近红外光谱。
图5、实施例1所制备的钛酸锶单晶样品的红外光谱曲线。
图6、实施例1所制备的光热电探测器在暗场和有光照条件下的电流-电压曲线。照射激光波长为10.57μm,光斑尺寸约为30μm,功率为11.6mW,激光照射位置为悬空侧的钙钛矿型复合氧化物/金属电极界面处。
图7、实施例1所制备的光热电探测器在不同波长的激光照射下的响应度曲线。
图8、实施例2所制备的光电探测器对10.57um激光照射的响应曲线。激光功率为11.6mW。
图9、实施例3所制备的光电探测器对10.57um激光照射的响应曲线。激光功率为11.6mW。
具体实施方式
为了清晰阐明本发明的效果,提供以下实例,但本发明的保护范围应包括权利要求的全部内容,不仅仅限于本实施例。
实施例1
将商业化的钛酸锶单晶切割、研磨成尺寸为10mm×0.5mm×0.15mm(长×宽×厚)的薄板。将该薄板放在低压水平管式炉中氢气气氛下进行退火处理。低压水平管式炉的本底真空小于1Pa,氢气流量为70sccm。退火温度为900℃,时间为4h,升温速度为7℃/min,得到钛酸锶单晶样品。利用Lakeshore四探针台测得的钛酸锶单晶样品的电压-温差曲线如图3所示,其室温塞贝克系数约为-1037μV/K。利用PerkinElemer Lambda 950光谱仪测得的钛酸锶单晶样品紫外-可见-近红外谱如图4所示,利用Bruker Hyperion 3000傅里叶变换红外光谱仪测得的钛酸锶单晶样品的红外吸收谱如图5所示。该样品在紫外和长波长红外波段显示出了较强的吸收。
光热电探测器的制备方法如下:用导电银胶将两根铜导线固定在钛酸锶单晶样品的两端。采用半支撑的方式,利用聚酰亚胺双面胶带将钛酸锶单晶固定在载玻片上,获得光热电探测器。在响应度的测量中,将两根铜线与电压表(型号:2450,Keithley)相连,聚焦后的激光照射在悬空侧的钛酸锶/银胶界面处。所制备的光热电探测器在暗场和光照条件的电流-电压曲线如图6所示,线性的电流-电压曲线表明钛酸锶与银电极间形成欧姆接触。该探测器随波长变化的响应度曲线如图7所示。其在紫外和长波长红外区间的响应度均高于1V/W,响应时间在1.5s左右。对于可见光(532nm)和近红外光照明(785nm),由于在此区间内钛酸锶对光的吸收减弱,其响应度稍有降低,但仍高于商业化的光热电探测器(型号:S175C,Thorlab,响应度:~0.17V/W)。
实施例2
按照实施例1所述方法制备光热电探测器,将实施例1中所使用的高温退火处理的钛酸锶单晶换成钛酸锶多晶。钛酸锶多晶采用放电等离子体烧结法制备,所用仪器为日本SINTER LAND生产的LABOX-650F放电等离子体烧结炉,原料为商业化的钛酸锶粉末(AlfaAesar,纯度99%+),制备条件为烧结压力40MPa,烧结温度为1320℃,保温时间为5min。由于放电等离子体烧结是在高温、真空环境下进行的,烧结完成的块材产生一定的氧空位,已具有导电性。将烧结后的块体切割研磨成尺寸为10.5mm×0.6mm×0.15mm(长×宽×厚)的薄板,得钛酸锶多晶样品,其室温塞贝克系数为-740μV/K,电阻率约为0.25Ω·m。用导电银胶将两根铜导线固定在钛酸锶多晶样品的两端。采用半支撑的方式,利用聚酰亚胺双面胶带将钛酸锶多晶固定在载玻片上,获得光热电探测器。该光电探测器在10.57μm激光照射下的响应曲线如图8所示。所对应的响应度为0.74V/W,响应时间为1.8s。
实施例3
按照实施例1所述方法制备光热电探测器,将实施例1中所使用的高温退火处理的钛酸锶单晶换成钛酸钡多晶。钛酸钡多晶采用放电等离子体烧结法制备,原料为商业化的钛酸钡粉末(Alfa Aesar,纯度99%),制备条件为烧结压力40MPa,烧结温度为1250℃,保温时间为6min。由于放电等离子体烧结是在高温、真空环境下进行的,烧结完成的块材产生一定的氧空位,已具有导电性。将烧结后的块体切割研磨成尺寸为8.8mm×0.5mm×0.15mm(长×宽×厚)的薄板,得钛酸钡多晶样品其室温塞贝克系数为-342uV/K,电阻率为6.7×10-4Ω·m。用导电银胶将两根铜导线固定在钛酸钡多晶样品的两端。采用半支撑的方式,利用聚酰亚胺双面胶带将钛酸钡多晶固定在载玻片上,得光热电探测器。该光电探测器在10.57μm激光照射下的响应曲线如图9所示。所对应的响应度为0.44V/W,响应时间为1.5s。

Claims (7)

1.钙钛矿型复合氧化物在超宽带光热电探测器中的应用,其特征在于,温差建立的方向垂直于钙钛矿型复合氧化物的厚度方向。
2.光热电探测器,其特征在于,包括长方体状的钙钛矿型复合氧化物,所述钙钛矿型复合氧化物长轴两端的上表面分别设置金属电极,所述金属电极分别经导线与电压表的输入端相连构成回路。
3.如权利要求3所述的光热电探测器,其特征在于,所述光热电探测器包括支撑底座,所述钙钛矿型复合氧化物与支撑底座之间用绝缘材料隔开,支撑结构包括半支撑或者全支撑。
4.如权利要求1所述的应用或如权利要求2或3所述的光热电探测器,其特征在于,所述钙钛矿型复合氧化物的通式为ABO3
式中,A为碱金属元素或稀土元素,包括Sr、Ba、Ca、La;B为过渡金属元素,包括Ti、Mn、Co。
5.如权利要求1所述的应用或如权利要求2或3所述的光热电探测器,其特征在于,所述钙钛矿型复合氧化物的晶体形态为单晶或多晶。
6.如权利要求1所述的应用或如权利要求2或3所述的光热电探测器,其特征在于,单晶钙钛矿型复合氧化物经高温退火预处理,所述退火温度为700℃~1300℃。
7.权利要求2或3所述光热电探测器的使用方法,使用激光照射在光热电探测器一侧的钙钛矿型复合氧化物/金属电极界面,界面处的温度升高,与另一侧的界面间形成温度差,温差转化为电压输出。
CN201810444716.9A 2018-05-10 2018-05-10 钙钛矿型复合氧化物在超宽带光热电探测器中的应用 Active CN110473955B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810444716.9A CN110473955B (zh) 2018-05-10 2018-05-10 钙钛矿型复合氧化物在超宽带光热电探测器中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810444716.9A CN110473955B (zh) 2018-05-10 2018-05-10 钙钛矿型复合氧化物在超宽带光热电探测器中的应用

Publications (2)

Publication Number Publication Date
CN110473955A true CN110473955A (zh) 2019-11-19
CN110473955B CN110473955B (zh) 2021-01-12

Family

ID=68504099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810444716.9A Active CN110473955B (zh) 2018-05-10 2018-05-10 钙钛矿型复合氧化物在超宽带光热电探测器中的应用

Country Status (1)

Country Link
CN (1) CN110473955B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670396A (zh) * 2020-12-23 2021-04-16 安徽大学 一种层状化合物在光热电探测器中的应用及其应用方法
CN112864301A (zh) * 2019-11-28 2021-05-28 中国科学院大连化学物理研究所 过渡金属氧化物在光热电探测器中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352299A (en) * 1987-06-26 1994-10-04 Sharp Kabushiki Kaisha Thermoelectric material
US6432474B1 (en) * 1998-06-29 2002-08-13 Sharp Kabushiki Kaisha Thin film of perovskite type manganese oxide process for producing the same thin film and an infrared sensing element using the same thin film
JP2012186230A (ja) * 2011-03-03 2012-09-27 Fujitsu Ltd 熱電変換素子および熱電変換材料
CN103344328A (zh) * 2013-07-15 2013-10-09 河北大学 一种多层结构横向热电光探测器
CN104701336A (zh) * 2015-02-27 2015-06-10 河北大学 一种高灵敏横向热电光探测器
US20160308077A1 (en) * 2015-04-20 2016-10-20 Electronics And Telecommunications Research Instit Ute Photo detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352299A (en) * 1987-06-26 1994-10-04 Sharp Kabushiki Kaisha Thermoelectric material
US6432474B1 (en) * 1998-06-29 2002-08-13 Sharp Kabushiki Kaisha Thin film of perovskite type manganese oxide process for producing the same thin film and an infrared sensing element using the same thin film
JP2012186230A (ja) * 2011-03-03 2012-09-27 Fujitsu Ltd 熱電変換素子および熱電変換材料
CN103344328A (zh) * 2013-07-15 2013-10-09 河北大学 一种多层结构横向热电光探测器
CN104701336A (zh) * 2015-02-27 2015-06-10 河北大学 一种高灵敏横向热电光探测器
US20160308077A1 (en) * 2015-04-20 2016-10-20 Electronics And Telecommunications Research Instit Ute Photo detector

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARCUS FREITAG ET AL.: ""Increased Responsivity of Suspended Graphene Photodetectors"", 《NANO LETTERS》 *
赵建红 等: ""石墨烯在光电探测领域的研究进展"", 《红外技术》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112864301A (zh) * 2019-11-28 2021-05-28 中国科学院大连化学物理研究所 过渡金属氧化物在光热电探测器中的应用
CN112670396A (zh) * 2020-12-23 2021-04-16 安徽大学 一种层状化合物在光热电探测器中的应用及其应用方法
CN112670396B (zh) * 2020-12-23 2022-07-19 安徽大学 一种层状化合物在光热电探测器中的应用及其应用方法

Also Published As

Publication number Publication date
CN110473955B (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
Gupta et al. Preparation and characterization of nanostructured ZnO thin films for photoelectrochemical splitting of water
Hou et al. Facile synthesize VO2 (M1) nanorods for a low-cost infrared photodetector application
Elkamel et al. Enhancement of dielectric properties of Ni and Co doped ZnO due to the oxygen vacancies for UV photosensors application
Long et al. Optical, electrical, and photoelectric properties of nitrogen‐doped perovskite ferroelectric BaTiO3 ceramics
CN104900670B (zh) 一种基于铋铜硒氧热电薄膜横向热电效应的光探测器
Mahapatra et al. Effect of bromine doping on the charge transfer, ion migration and stability of the single crystalline MAPb (Br x I 1− x) 3 photodetector
Li et al. A self-powered flexible UV-visible photodetector with high photosensitivity based on BiFeO 3/XTiO 3 (Sr, Zn, Pb) multilayer films
Huang et al. Ultrasensitive visible light photoresponse and electrical transportation properties of nonstoichiometric indium oxide nanowire arrays by electrospinning
Salih et al. Rapid fabrication of NiO/porous Si film for ultra-violate photodetector: The effect of laser energy
Zhang et al. A self-powered photodetector based on polarization-driven in CH3NH3PbI3 single crystal (100) plane
Yıldırım et al. Self-powered ZrO2 nanofibers/n-Si photodetector with high on/off ratio for detecting very low optical signal
CN110473955A (zh) 钙钛矿型复合氧化物在超宽带光热电探测器中的应用
CN103367625B (zh) 一种斜切砷化镓单晶光、热探测器
Yang et al. Effects of annealing temperature on the characteristics of Ga-doped ZnO film metal-semiconductor-metal ultraviolet photodetectors
Hou et al. Facile fabrication of infrared photodetector using metastable vanadium dioxide VO2 (B) nanorod networks
Luo et al. Enhanced performance of self-powered ultraviolet photodetectors coupled with the photovoltaic-pyroelectric effect based on ZnO/CuBO2 core-shell nanorod arrays
Li et al. Enhanced room-temperature terahertz detection and imaging derived from anti-reflection 2D perovskite layer on MAPbI 3 single crystals
Du et al. Large Irreversible Lateral Photovoltaic Effect in $\hbox {Cu} _ {2}\hbox {O/Si} $ Heteroepitaxial Junction
Chaoudhary et al. Laser ablation fabrication of a p-nio/n-si heterojunction for broadband and self-powered UV–visible–nir photodetection
Sinha et al. Anomalous electrical transport properties of CdSe quantum dots at and below room temperature
Parveen et al. Experimental and theoretical study of europium-doped organometal halide perovskite nanoplatelets for UV photodetection with high responsivity and fast response
Li et al. Pyroelectricity induced by Schottky interface above the Curie temperature of bulk materials
Yang et al. A 3D topological Dirac semimetal/MoO 3 thin film heterojunction infrared photodetector with a current reversal phenomenon
JP2012146706A (ja) 紫外線センサー素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant