CN110470965B - 一种半导体表面态载流子寿命测试方法 - Google Patents

一种半导体表面态载流子寿命测试方法 Download PDF

Info

Publication number
CN110470965B
CN110470965B CN201910615736.2A CN201910615736A CN110470965B CN 110470965 B CN110470965 B CN 110470965B CN 201910615736 A CN201910615736 A CN 201910615736A CN 110470965 B CN110470965 B CN 110470965B
Authority
CN
China
Prior art keywords
carrier
semiconductor
field optical
optical probe
surface state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910615736.2A
Other languages
English (en)
Other versions
CN110470965A (zh
Inventor
程茜
解维娅
高雅
陈一铭
陈盈娜
张梦娇
张浩南
吴诗颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201910615736.2A priority Critical patent/CN110470965B/zh
Publication of CN110470965A publication Critical patent/CN110470965A/zh
Priority to PCT/CN2020/100429 priority patent/WO2021004430A1/zh
Priority to US17/275,674 priority patent/US11719739B2/en
Priority to JP2021549890A priority patent/JP7271013B2/ja
Priority to KR1020217037545A priority patent/KR102643912B1/ko
Priority to EP20837186.4A priority patent/EP3839529B1/en
Application granted granted Critical
Publication of CN110470965B publication Critical patent/CN110470965B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2642Testing semiconductor operation lifetime or reliability, e.g. by accelerated life tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2648Characterising semiconductor materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/265Contactless testing
    • G01R31/2656Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31721Power aspects, e.g. power supplies for test circuits, power saving during test
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1706Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • G01N2021/1719Carrier modulation in semiconductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2697Wafer or (micro)electronic parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S99/00Subject matter not provided for in other groups of this subclass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种半导体表面态载流子寿命测试方法,包括以下步骤:1)采用光子能量高于半导体禁带宽度的窄脉冲光源发射光脉冲,经光路准直耦合到近场光学探针中,近场光学探针在待测半导体材料的表面激发产生光生载流子;2)激发出的光生载流子集中在半导体材料的表面,以表面态作为复合中心不断发生复合,该复合速率与载流子浓度、载流子寿命成正比;3)在步骤1)和步骤2)的载流子激发和复合过程中,由于电子体积效应均产生晶格常数的变化,并产生应力波,通过高频宽带超声检测方式检测此应力波信号;4)对应力波信号进行拟合计算,得到表面态的载流子寿命τc。与现有技术相比,本发明排除了半导体体复合影响,具有测量准确等优点。

Description

一种半导体表面态载流子寿命测试方法
技术领域
本发明涉及半导体材料测试技术领域,尤其是涉及一种半导体表面态载流子寿命测试方法。
背景技术
载流子寿命作为半导体材料的一个重要参数,已作为表征器件性能,太阳能电池效率的重要参考依据。对于硅这样的IV族元素半导体来说,载流子的复合过程绝大部分是通过禁带中间的复合中心进行的。实际的半导体器件中,在半导体材料表面上理想晶格的周期性突然中断,周期势函数的破坏导致在禁带中出现电子能态,即表面态。表面态对半导体器件的特性具有非常重要的影响,特别是对于太阳能电池的性能有很大影响。
常用的载流子寿命测试方法很多,如直流光电导衰退法、微波光电导衰减法、表面光压电法等,这些方法都是对体复合时的载流子寿命进行测试。而在实际的半导体器件中,在半导体材料表面上理想晶格的周期性突然中断,周期势函数的破坏导致在禁带中出现电子能态,即表面态。表面态对半导体器件的特性具有非常重要的影响,特别是对于太阳能电池的性能有很大影响。目前尚没有较好的测试表面态载流子寿命的方法。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种半导体表面态载流子寿命测试方法。
本发明的目的可以通过以下技术方案来实现:
一种半导体表面态载流子寿命测试方法,包括以下步骤:
1)采用光子能量高于半导体禁带宽度的窄脉冲光源发射光脉冲,经光路准直耦合到近场光学探针中,近场光学探针在待测半导体材料的表面激发产生光生载流子;
2)激发出的光生载流子集中在半导体材料的表面,以表面态作为复合中心不断发生复合,该复合速率与载流子浓度、载流子寿命成正比;
3)在步骤1)和步骤2)的载流子激发和复合过程中,由于电子体积效应均产生晶格常数的变化,并产生应力波,通过高频宽带超声检测方式检测此应力波信号;
4)对应力波信号进行拟合计算,得到表面态的载流子寿命τc
所述的步骤1)中,窄脉冲光源发射的光脉冲宽度为飞秒到纳秒量级,且不超过5纳秒。
所述的步骤1)中,近场光学探针为有孔近场光学探针或无孔近场光学探针,光脉冲经准直耦合到有孔近场光学探针中或无孔近场光学探针表面。
所述的步骤1)中,近场光学探针与待测半导体材料表面的距离不超过光脉冲波长的1/10。
所述的步骤1)中,近场光学探针激发的光生载流子位于待测半导体的表面和亚表面。
所述的步骤2)中,在近场光学探针激发的待测半导体表面的光生载流子复合时,以表面态为中心进行间接复合。
所述的步骤2)中,所述的光生载流子在光脉冲辐照结束后仍持续复合,直至恢复到半导体材料内的载流子平衡状态。
所述的步骤3)中,通过高频宽带超声检测仪器进行半导体材料表面应力波信号的检测,所述的高频宽带超声检测仪器包括具有纳秒分辨率的超声换能器、激光多普勒测振和激光干涉仪。
所述的步骤4)中,对半导体材料表面受近场光激励产生的应力波信号的拖尾部分进行拟合获得表面态的载流子寿命τc,具体的拟合公式为:
Figure BDA0002123882220000021
其中,c为晶格常数,
Figure BDA0002123882220000022
为带隙压力系数,n为电子-空穴对浓度,Q为常数系数,t为时间。
与现有技术相比,本发明具有以下优点:
本发明采用近场光照射半导体材料表面,主要激发表面的光生载流子,用纳秒分辨率的高频超声换能器、激光多普勒测振和激光干涉仪对表面产生的应力波进行检测,拟合计算后能够得到半导体表面态的载流子寿命,能够排除半导体的体复合的影响,对于太阳能电池、集成电路芯片等具有重要意义。
附图说明
图1为本发明半导体表面态的载流子寿命测试方法的流程图。
图2为实测得到的半导体表面态光生应力波信号和拟合结果。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
如图1和2所示,本发明提供一种半导体表面态的载流子寿命测试方法,近提供一种新的表征半导体表面态中载流子动力学性质的方法。能够排除半导体的体复合的影响,而专注于测量表面态的载流子寿命,对于太阳能电池、集成电路芯片等具有重要意义。
具体的,它包括以下步骤:
步骤一、用光子能量高于半导体禁带宽度的窄脉冲光源发射光脉冲,经光路准直耦合到近场光学探针里,近场光在待测试半导体材料表面激发电子空穴对,也被称为光生载流子;其中,窄脉冲光源发射的光脉冲宽度为飞秒到纳秒量级。
步骤二、步骤一中激发出来的光生载流子集中在半导体材料的表面,以表面态作为复合中心不断发生复合,复合速率与载流子浓度、载流子寿命成正比。光脉冲辐照结束后,光生载流子仍将持续复合,直至恢复到半导体材料内的载流子平衡状态。
步骤三、在步骤一和步骤二的载流子激发和复合过程中,由于电子体积效应都会产生晶格常数c的变化,其相对变化量正比于电子-空穴对浓度n:
Figure BDA0002123882220000031
其中,dEG/dP是带隙压力系数,Q是一个常数系数。对于硅来说,带隙压力系数是负数(-1.4),这意味着电子空穴对浓度n增大时,硅的晶格常数变小,硅产生收缩;而当电子空穴对浓度n减小时,硅的晶格常数变大,硅产生膨胀,即电子体积效应。因此当光脉冲入射到半导体材料上时,会因为半导体材料的本征吸收和电子体积效应,会先产生收缩,再产生膨胀,产生脉冲应力波。用纳秒分辨率的高频超声换能器或激光多普勒测振或激光干涉仪对半导体材料表面产生的应力波信号进行检测;
步骤四、根据公式
Figure BDA0002123882220000041
对步骤三中接收到的应力波信号拖尾部分进行拟合计算可得出表面态的载流子寿命τc

Claims (9)

1.一种半导体表面态载流子寿命测试方法,其特征在于,包括以下步骤:
1)采用光子能量高于半导体禁带宽度的窄脉冲光源发射光脉冲,经光路准直耦合到近场光学探针中,近场光学探针在待测半导体材料的表面激发产生光生载流子;
2)激发出的光生载流子集中在半导体材料的表面,以表面态作为复合中心不断发生复合,该复合速率与载流子浓度、载流子寿命成正比;
3)在步骤1)和步骤2)的载流子激发和复合过程中,由于电子体积效应均产生晶格常数的变化,并产生应力波,通过高频宽带超声检测方式检测此应力波信号;
4)对应力波信号进行拟合计算,得到表面态的载流子寿命τc
2.根据权利要求1所述的一种半导体表面态载流子寿命测试方法,其特征在于,所述的步骤1)中,窄脉冲光源发射的光脉冲宽度为飞秒到纳秒量级,且不超过5纳秒。
3.根据权利要求1所述的一种半导体表面态载流子寿命测试方法,其特征在于,所述的步骤1)中,近场光学探针为有孔近场光学探针或无孔近场光学探针,光脉冲经准直耦合到有孔近场光学探针中或无孔近场光学探针表面。
4.根据权利要求1所述的一种半导体表面态载流子寿命测试方法,其特征在于,所述的步骤1)中,近场光学探针与待测半导体材料表面的距离不超过光脉冲波长的1/10。
5.根据权利要求1所述的一种半导体表面态载流子寿命测试方法,其特征在于,所述的步骤1)中,近场光学探针激发的光生载流子位于待测半导体的表面和亚表面。
6.根据权利要求1所述的一种半导体表面态载流子寿命测试方法,其特征在于,所述的步骤2)中,在近场光学探针激发的待测半导体表面的光生载流子复合时,以表面态为中心进行间接复合。
7.根据权利要求1所述的一种半导体表面态载流子寿命测试方法,其特征在于,所述的步骤2)中,所述的光生载流子在光脉冲辐照结束后仍持续复合,直至恢复到半导体材料内的载流子平衡状态。
8.根据权利要求1所述的一种半导体表面态载流子寿命测试方法,其特征在于,所述的步骤3)中,通过高频宽带超声检测仪器进行半导体材料表面应力波信号的检测,所述的高频宽带超声检测仪器包括具有纳秒分辨率的超声换能器、激光多普勒测振和激光干涉仪。
9.根据权利要求1所述的一种半导体表面态载流子寿命测试方法,其特征在于,所述的步骤4)中,对半导体材料表面受近场光激励产生的应力波信号的拖尾部分按照公式
Figure FDA0002486427850000021
进行拟合获得表面态的载流子寿命τc,其中,c为晶格常数,
Figure FDA0002486427850000022
为带隙压力系数,n为电子-空穴对浓度,Q为常数系数,t为时间。
CN201910615736.2A 2019-07-09 2019-07-09 一种半导体表面态载流子寿命测试方法 Active CN110470965B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201910615736.2A CN110470965B (zh) 2019-07-09 2019-07-09 一种半导体表面态载流子寿命测试方法
PCT/CN2020/100429 WO2021004430A1 (zh) 2019-07-09 2020-07-06 一种半导体表面态载流子寿命测试方法
US17/275,674 US11719739B2 (en) 2019-07-09 2020-07-06 Method for testing lifetime of surface state carrier of semiconductor
JP2021549890A JP7271013B2 (ja) 2019-07-09 2020-07-06 半導体表面状態のキャリア寿命のテスト方法
KR1020217037545A KR102643912B1 (ko) 2019-07-09 2020-07-06 반도체 표면 상태 캐리어 수명 테스트 방법
EP20837186.4A EP3839529B1 (en) 2019-07-09 2020-07-06 Semiconductor surface state carrier lifetime testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910615736.2A CN110470965B (zh) 2019-07-09 2019-07-09 一种半导体表面态载流子寿命测试方法

Publications (2)

Publication Number Publication Date
CN110470965A CN110470965A (zh) 2019-11-19
CN110470965B true CN110470965B (zh) 2020-07-28

Family

ID=68507179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910615736.2A Active CN110470965B (zh) 2019-07-09 2019-07-09 一种半导体表面态载流子寿命测试方法

Country Status (6)

Country Link
US (1) US11719739B2 (zh)
EP (1) EP3839529B1 (zh)
JP (1) JP7271013B2 (zh)
KR (1) KR102643912B1 (zh)
CN (1) CN110470965B (zh)
WO (1) WO2021004430A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110470965B (zh) 2019-07-09 2020-07-28 同济大学 一种半导体表面态载流子寿命测试方法
CN114113226B (zh) * 2021-11-12 2022-07-19 广东省科学院半导体研究所 确定新奇电子表面态存在的方法及其应用
KR20230117006A (ko) * 2022-01-28 2023-08-07 연세대학교 산학협력단 반도체 구조체 결함 모니터링 방법 및 장치
KR102604572B1 (ko) * 2022-04-20 2023-11-21 (주) 엔지온 검출 유니트, 반도체 필름층 검사 장치 및 이를 이용하는 반도체 필름층 검사 방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063159A (zh) * 1992-01-23 1992-07-29 中国科学院上海技术物理研究所 测量半导体非平衡载流子寿命的新方法
JPH04330759A (ja) * 1991-02-04 1992-11-18 Matsushita Electron Corp 半導体素子の信頼性試験方法
CN1271093A (zh) * 1998-03-27 2000-10-25 西门子公司 半导体器件少子扩散长度和少子寿命的无损测量方法
US6873932B1 (en) * 2002-12-20 2005-03-29 Advanced Micro Devices, Inc. Method and apparatus for predicting semiconductor device lifetime
CN103080730A (zh) * 2011-02-15 2013-05-01 瓦伊系统有限公司 载流子寿命的测定方法以及测定装置
CN103576066A (zh) * 2012-07-26 2014-02-12 中芯国际集成电路制造(上海)有限公司 一种半导体器件热载流子寿命的测量方法
CN103901335A (zh) * 2014-04-22 2014-07-02 哈尔滨工业大学 一种半导体少数载流子寿命分布的红外偏振光学成像检测方法与系统
CN104094389A (zh) * 2011-12-16 2014-10-08 国立大学法人东京农工大学 光致载流子寿命测量装置及光致载流子寿命测量方法
CN104819938A (zh) * 2015-05-20 2015-08-05 吉林大学 一种调制光与非调制光相结合的表面光电压测量方法
CN108051722A (zh) * 2017-12-22 2018-05-18 中国电子产品可靠性与环境试验研究所 热载流子注入效应的寿命评估方法和系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453703A (en) * 1993-11-29 1995-09-26 Semitest Inc. Method for determining the minority carrier surface recombination lifetime constant (ts of a specimen of semiconductor material
JP5295924B2 (ja) 2009-10-06 2013-09-18 株式会社神戸製鋼所 半導体キャリア寿命測定装置および該方法
EP2538204B1 (en) * 2010-02-15 2018-02-21 National University Corporation Tokyo University Of Agriculture and Technology Photoinduced carrier lifetime measuring method, light incidence efficiency measuring method, photoinduced carrier lifetime measuring device, and light incidence efficiency measuring device
CN101975815A (zh) * 2010-09-21 2011-02-16 上海大学 太阳级晶硅中复合中心浓度和陷阱中心浓度的测量方法
JP5858833B2 (ja) * 2012-03-16 2016-02-10 株式会社神戸製鋼所 半導体評価方法、及び半導体評価装置
CN102621465B (zh) * 2012-03-19 2015-01-07 中国科学院上海技术物理研究所 半导体纳米线少数载流子寿命的检测方法
CN104359737B (zh) 2014-11-21 2017-08-25 中国科学院宁波材料技术与工程研究所 晶体硅体少子寿命的测试方法
US10539538B2 (en) * 2015-07-09 2020-01-21 The Boeing Company Laser ultrasound system and method for inspection of a contoured structure
CN106680687A (zh) 2017-01-05 2017-05-17 浙江师范大学 一种晶体硅体寿命的精确测量方法
EP3492910A1 (en) * 2017-12-04 2019-06-05 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Subsurface inspection method and system
JP7000198B2 (ja) * 2018-02-16 2022-01-19 浜松ホトニクス株式会社 キャリア寿命測定方法及びキャリア寿命測定装置
CN108983063A (zh) * 2018-05-29 2018-12-11 中国计量大学 晶硅太阳能电池少子寿命的测试方法
CN110470965B (zh) * 2019-07-09 2020-07-28 同济大学 一种半导体表面态载流子寿命测试方法
US11346818B2 (en) * 2020-05-22 2022-05-31 Intel Corporation Method, device and system for non-destructive detection of defects in a semiconductor die

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04330759A (ja) * 1991-02-04 1992-11-18 Matsushita Electron Corp 半導体素子の信頼性試験方法
CN1063159A (zh) * 1992-01-23 1992-07-29 中国科学院上海技术物理研究所 测量半导体非平衡载流子寿命的新方法
CN1271093A (zh) * 1998-03-27 2000-10-25 西门子公司 半导体器件少子扩散长度和少子寿命的无损测量方法
US6873932B1 (en) * 2002-12-20 2005-03-29 Advanced Micro Devices, Inc. Method and apparatus for predicting semiconductor device lifetime
CN103080730A (zh) * 2011-02-15 2013-05-01 瓦伊系统有限公司 载流子寿命的测定方法以及测定装置
CN104094389A (zh) * 2011-12-16 2014-10-08 国立大学法人东京农工大学 光致载流子寿命测量装置及光致载流子寿命测量方法
CN103576066A (zh) * 2012-07-26 2014-02-12 中芯国际集成电路制造(上海)有限公司 一种半导体器件热载流子寿命的测量方法
CN103901335A (zh) * 2014-04-22 2014-07-02 哈尔滨工业大学 一种半导体少数载流子寿命分布的红外偏振光学成像检测方法与系统
CN104819938A (zh) * 2015-05-20 2015-08-05 吉林大学 一种调制光与非调制光相结合的表面光电压测量方法
CN108051722A (zh) * 2017-12-22 2018-05-18 中国电子产品可靠性与环境试验研究所 热载流子注入效应的寿命评估方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
晶体硅太阳能电池少子寿命测试方法;周春兰,王文静;《晶体硅太阳能电池少子寿命测试方法》;20071130;第33卷(第6期);第25-31页 *

Also Published As

Publication number Publication date
EP3839529A4 (en) 2021-12-01
US11719739B2 (en) 2023-08-08
KR102643912B1 (ko) 2024-03-05
EP3839529A1 (en) 2021-06-23
KR20220005496A (ko) 2022-01-13
JP2022521625A (ja) 2022-04-11
EP3839529B1 (en) 2022-04-27
JP7271013B2 (ja) 2023-05-11
US20220043049A1 (en) 2022-02-10
WO2021004430A1 (zh) 2021-01-14
CN110470965A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
CN110470965B (zh) 一种半导体表面态载流子寿命测试方法
Wolff et al. Rise Time of the Light Induced Electrical Field across the Function Membrane of Photosynthesis: —Registration by repetitive laser giant pulse photometry—
WO2018072660A1 (zh) 太赫兹时域反射系统
CN109580569A (zh) 涂覆浆料的检测装置
CN106680687A (zh) 一种晶体硅体寿命的精确测量方法
CN106935681B (zh) 一种全光固态超快光探测器的制备方法
CN111326433A (zh) 半导体检测装置及检测方法
JPH03119745A (ja) 結晶性半導体ウェハ中の不純物を検出測定する方法と装置
CN104914050B (zh) 一种提高光声光谱检测灵敏度的装置及方法
CN111398774B (zh) 硅片少子寿命的测试方法及装置
CN110646384B (zh) 一种半导体材料电阻率光学测量方法
JP5100986B2 (ja) 半導体キャリア寿命測定用装置,半導体キャリア寿命測定方法
CN104568766A (zh) 一种量子点表面空穴俘获动力学的探测装置及其探测方法
JPWO2021004430A5 (zh)
CN111239098A (zh) 一种探测无定形硒电中性缺陷态的方法
CN115458429A (zh) 测量晶体硅太阳能电池少子寿命的方法
JP5093795B2 (ja) 蛍光寿命測定装置及び成膜装置、蛍光寿命測定方法
KR20150117249A (ko) 실리콘 기판의 재결합 라이프타임 측정 방법
CN108089109B (zh) 一种半导体硅材料中少数载流子寿命的测试方法
JPS6242537Y2 (zh)
JPS6253944B2 (zh)
CN109239023B (zh) 一种基于自由载流子吸收成像的半导体材料特性测量方法
CN106370994A (zh) 高频光电导衰减法载流子寿命测试仪
JPH1174325A (ja) 表面光電圧による半導体表面評価方法及び装置
JPS59150443A (ja) 半導体のキヤリアライフタイム計測装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant