CN110470154A - A kind of idle call microchannel heat sink - Google Patents
A kind of idle call microchannel heat sink Download PDFInfo
- Publication number
- CN110470154A CN110470154A CN201910725945.2A CN201910725945A CN110470154A CN 110470154 A CN110470154 A CN 110470154A CN 201910725945 A CN201910725945 A CN 201910725945A CN 110470154 A CN110470154 A CN 110470154A
- Authority
- CN
- China
- Prior art keywords
- graphene
- silicon oxide
- electric treatment
- heat sink
- oxide nanofiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/70—Additives characterised by shape, e.g. fibres, flakes or microspheres
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/0008—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
- F28D7/0025—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Mechanical Engineering (AREA)
- Nanotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- Geometry (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Carbon And Carbon Compounds (AREA)
- Silicon Compounds (AREA)
Abstract
The invention belongs to domestic air conditioning technical field of heat dissipation, more particularly to a kind of idle call microchannel heat sink, the fin surface of radiator is coated with graphene heat radiation coating, graphene heat radiation coating includes electric treatment graphene, silicon oxide nanofiber material and nano copper particle, and nano copper particle is deposited in electric treatment graphene and the composite material of silicon oxide nanofiber formation by way of electro-deposition.The present invention provides idle call microchannel heat sink, maximum heat conduction effect under the premise of guaranteeing that three-dimensional structure is stablized, while mechanical stability can be enhanced.
Description
Technical field
The invention belongs to domestic air conditioning technical field of heat dissipation, and in particular to a kind of idle call microchannel heat sink.
Background technique
As the increase of convertible frequency air-conditioner function and Miniaturization Design, corresponding electronic component calorific value are consequently increased, if
The heat that heating electronic component comes out can not distribute in time, will result in heat aggregation, so as to cause each
The temperature of component is more than the temperature extremes that respectively can bear, and the reliability of electronic component just substantially reduces.
Research in terms of radiator, people by high thermal conductivity coefficient, good heat dissipation effect developing material on as research
Emphasis.Polymer composite radiating coating is the high performance material for being mainly used in radiator heat-dissipation fin of current research, mainly
Pass through mixed and modified preparation by the inorganic particulates such as polymer and metal oxide, metal nitride, metallic, carbon material
At.Wherein, polymeric matrix material imparts composite material high mechanical strength, flexibility, metal oxide such as aluminium oxide, oxidation
Magnesium, calcium oxide, metal nitride such as boron nitride, aluminium nitride, metal such as copper, aluminium, iron, zinc, nickel and silver, carbon material such as graphene,
Carbon nanotube be all as high thermal conductivity filler, but what the addition of these high thermal conductivity fillers was limited by.Due in its matrix
It is filled with a large amount of heat-conductive insulation filling, heating conduction depends on the synergistic effect between polymeric matrix and filler
It realizes.When proportion of filler is relatively low, filler is covered by polymer matrix body, cannot be contacted between particle, two-phase interface
Thermal resistance is formed, hinders the transmitting of heat, heating conduction is limited by the heating conduction of polymeric matrix at this time;With filer content
Increase, conductive particle contacts with each other, and forms the thermally conductive network chain of certain supply chain network structure-in intrinsic silicon, heat can be along thermal conductive network
Chain transmitting, can be obviously improved the heating conduction of composite material.The heating conduction of composite material depends primarily on leading for filler itself
It is hot, but also influenced by factors such as filler shape, filling kind, particle size, component compositions.
Metal-based compound coating is also a kind of common heat radiator fin coating, and height is added usually in metal base and is led
Hot filler, such as Al/SiC, Al/CNTs, W/ graphene, although these heat-conductive coatings of addition have high thermal conductivity, but
It is incorporated into there is no the porous structure formed for realizing natural cooling in Metal Substrate, air can not flow.
Summary of the invention
Based on this, the present invention provides a kind of graphene/silicon oxide nanofiber/Nanometer Copper composite coating, is guaranteeing three-dimensional
Maximum heat conduction effect under the premise of stable structure.The composite coating is realized by silicon oxide nanofiber/Nanometer Copper from heat
Source carries out heat transfer, and silicon oxide nanofiber has the porous structure of square micron size, can naturally cause cross-ventilation,
The graphene of high quality electric treatment is added in silicon oxide nanofiber as filler, and the ratio of silicon oxide nanofiber can be improved
Surface area and electric conductivity further increase the effect of subsequent electrodeposition process.In addition, metal nano copper particle passes through electrification
The mode for learning deposition is deposited on electric treatment graphene/silicon oxide nanofiber material surface, so that the machinery of reinforcing material is steady
It is qualitative.
The present invention provides a kind of graphene heat radiation coating comprising electric treatment graphene, silicon oxide nanofiber material and
Nano copper particle, nano copper particle are deposited on what electric treatment graphene and silicon oxide nanofiber were formed by way of electro-deposition
In composite material.
Wherein, it is 8%- that the electric treatment graphene, which accounts for graphene/silicon oxide nanofiber material mass percent,
12%.
The present invention also provides the preparation methods of above-mentioned graphene heat radiation coating comprising:
The first step, the preparation of electric treatment graphene;
Second step, the preparation of silicon oxide nanofiber spinning solution;
Third step, the preparation of electric treatment graphene/silicon oxide nanofiber;
4th step, stabilization processes;
5th step, Nanometer Copper electro-deposition.
Wherein, the first step is specially further the filled graphite alkene powder in hollow graphite alkene stick, by graphene stick
It as yin-yang the two poles of the earth, is fitted into the reaction chamber of device of arc with fixture, after pumping the air in arc discharge reaction chamber, is filled with
The mixed gas of high-purity helium and hydrogen connects direct current power discharge, obtains electric treatment graphene.
Wherein, the second step is further specially that tetraethyl orthosilicate is dissolved in hydrochloric acid solution and ethanol solution formation
In mixed solution, polyvinylpyrrolidone is dissolved in isopropanol and the mixed solution of n,N-Dimethylformamide formation, it will
Two kinds of spinning solutions are uniformly mixed, and form uniform solution.
Wherein, the third step is specially further the preparation of electric treatment graphene/silicon oxide nanofiber, by the first step
The electric treatment graphene of preparation is added into according to gooseberry graphene/silicon oxide nanofiber material weight ratio of ordering in formation
Second step preparation uniform solution in, 60 DEG C at a temperature of stir 12 hours, be put into electrostatic spinning apparatus, voltage 10-
Under conditions of 20kV and reception distance are 8-15cm, electrostatic spinning collects product, then by product in vacuum drying oven after 9 hours
24 hours removing residual solvents of middle drying.
Wherein, the 4th step is further specially and the product that third step obtains is put into stabilizing device, from room temperature
It is heated to certain temperature, carries out stabilization processes after maintenance.
Wherein, the 5th step is further specially that copper sulphate, sulfuric acid and deionized water are configured to 1L after mixing
Electrolyte carries out electro-deposition using bipolar electrode system and direct current, and cathode uses the stabilization material of the 4th step preparation, and anode is adopted
With the titanium basket of copper ball, current density 0.04A/cm2, control electrolyte temperature is 50~80 DEG C, in the electrolytic solution electro-deposition 50
~200min takes out electrode anode, grinds, sieving, deionized water cleaning, dry, obtains graphene/silica as coating
Nanofiber/Nanometer Copper composite radiating coating.
The present invention also provides a kind of idle call microchannel heat sink, the heat radiator fin surface is coated with above-mentioned compound
Coating.
The radiator includes end concetrated pipe, the multiport flat tube connect is vertically connected with concetrated pipe and is arranged flat
Louvered fin on flat pipe.
Condensing agent is introduced into end concetrated pipe, then enters multiport flat tube by end concetrated pipe distribution condensing agent, flat
Pipe is used as the channel of refrigerant, and end concetrated pipe is a cylindrical pipe, is separated by partition, and the multiport between two partitions is flat
Flat pipe is as a whole.
The important factor of one to be evenly distributed of influence condensation agent flux is that multiport flat tube is embedded into end set
The depth of pipe is detected by experiment, and multiterminal flat tube is embedded into the 1/4- that the depth of end concetrated pipe gathers pipe diameter for end
1/2, condensation agent flux is more uniform.
Diameter positioned at the condenser inlet tube of end collector is preferably 10-15mm, if nozzle is narrow, condensing agent
Flow velocity is too fast, influences uniformly to be distributed to multiport flat tube.
The present invention provides a kind of idle call microchannel heat sink, and heat is maximized under the premise of guaranteeing that three-dimensional structure is stablized and is passed
Effect is led, while mechanical stability can be enhanced.
Detailed description of the invention
Fig. 1 graphene/silicon oxide nanofiber/Nanometer Copper composite radiating coating Raman spectrum;
Fig. 2 a graphene/silicon oxide nanofiber/Nanometer Copper composite radiating coating scanning electron microscope (SEM) photograph;
Fig. 2 b graphene/silicon oxide nanofiber/Nanometer Copper composite radiating coating transmission electron microscope picture;
The structure chart of Fig. 3 idle call microchannel heat sink;
The channel design schematic diagram of Fig. 4 microchannel heat sink;
The partial enlargement diagram of Fig. 5 microchannel heat sink;
In figure: the end 1- concetrated pipe, 2- multiport flat tube, 3- louvered fin.
Specific embodiment
The present invention provides a kind of heat radiation coating comprising electric treatment graphene, silicon oxide nanofiber material and Nanometer Copper
Particle, nano copper particle are deposited in graphene and the composite material of silicon oxide nanofiber formation by way of electro-deposition.
The composite coating has high-specific surface area, therefore high heat transfer may be implemented due to the internal porous structure with convection current
Efficiency.It is realized by graphene/silicon oxide nanofiber/Nanometer Copper composite radiating coating from heat source and carries out heat transfer, silica
Nanofiber has the porous structure of square micron size, can naturally cause cross-ventilation, high quality electric treatment graphene
It is added in silicon oxide nanofiber as filler, the specific surface area and electric conductivity of silicon oxide nanofiber can be improved, into
One step improves the effect of subsequent electrodeposition process.In addition, metal nano copper particle is deposited on by way of electrochemical deposition
Electric treatment graphene/silicon oxide nanofiber material surface, thus the mechanical stability of reinforcing material.
It is 8%-12% that electric treatment graphene, which accounts for graphene/silicon oxide nanofiber material mass percent,.
The preparation method of heat radiation coating comprising:
The first step, the preparation of electric treatment graphene, filled graphite alkene powder, graphene stick is made in hollow graphite alkene stick
It for yin-yang the two poles of the earth, is fitted into the reaction chamber of device of arc with fixture, after pumping the air in arc discharge reaction chamber, is filled with height
The mixed gas of pure helium and hydrogen connects direct current power discharge, obtains electric treatment graphene;
Tetraethyl orthosilicate is dissolved in hydrochloric acid solution and ethyl alcohol by second step, the preparation of silicon oxide nanofiber spinning solution
In the mixed solution that solution is formed, by the mixing that polyvinylpyrrolidone is dissolved in isopropanol and n,N-Dimethylformamide is formed
In solution, two kinds of spinning solutions are uniformly mixed, form uniform solution;
Electric treatment graphene prepared by the first step is pressed in third step, the preparation of electric treatment graphene/silicon oxide nanofiber
It impinges upon the gooseberry graphene/silicon oxide nanofiber material weight ratio of ordering to be formed and is added into uniform solution prepared by second step
In, 60 DEG C at a temperature of stir 12 hours, be put into electrostatic spinning apparatus, voltage is 10-20kV and receives distance to be 8-15cm
Under conditions of, electrostatic spinning collects product after 9 hours, then by product, removing in dry 24 hours is remaining molten in vacuum drying oven
Agent;
The product that third step obtains is put into stabilizing device, is heated to centainly from room temperature by the 4th step, stabilization processes
Temperature carries out stabilization processes after maintenance;
Copper sulphate, sulfuric acid and deionized water are configured to 1L electrolyte by the 5th step, Nanometer Copper electro-deposition after mixing,
Electro-deposition is carried out using bipolar electrode system and direct current, cathode uses the stabilization material of the 4th step preparation, and anode uses copper ball
Titanium basket, current density 0.04A/cm2, control electrolyte temperature be 50~80 DEG C, in the electrolytic solution electro-deposition 50~
200min takes out electrode anode, grinds, sieving, deionized water cleaning, dry, obtains and receives as graphene/silica of coating
Rice fiber/Nanometer Copper composite radiating coating.
In the first step, the diameter of hollow graphite alkene stick is preferably 4mm-10mm, further preferably 6mm, and length is preferably
10cm-20cm, further preferably 15cm.The graphene amount of filling is 1g-2g.
It is preferably 500~600Torr that electric arc, which puts pressure a little, preferably 500Torr, and the flow velocity of hydrogen and helium is
300sccm-400sccm, preferably 350sccm connect direct current power discharge, electric current 120A-180A, preferably 150A.
In second step, preferably every 1.2g-1.8g tetraethyl orthosilicate is dissolved in 0.6g-0.8g hydrochloric acid solution and 0.3g-0.5g
In the mixed solution that ethanol solution is formed.
It is preferred that 1.0g-1.2g polyvinylpyrrolidone is dissolved in 4.7g-5.0g isopropanol and 8.0g-8.3gN, N- diformazan
In the mixed solution that base formamide is formed.By addition polyvinylpyrrolidone as spinning-aid agent, tetraethyl orthosilicate can be helped
Preferably carry out electrostatic spinning.
250 DEG C are heated to from room temperature with the 5 DEG C/min rate of heat addition in 4th step, maintains 250 DEG C of progress stabilization processes
2-4 hours.
In 5th step, the concentration of copper sulphate is preferably 100~200g/L in electroplate liquid, and the concentration of sulfuric acid is preferably 40~
80g/L。
Below using embodiment and attached drawing come the embodiment that the present invention will be described in detail, how skill is applied to the present invention whereby
Art means solve technical problem, and the realization process for reaching technical effect can fully understand and implement.
The preparation of 1 electric treatment graphene of embodiment
Diameter be 6mm a length of 15cm hollow graphite alkene stick in fill 1g graphene powder, using graphene stick as
Yin-yang the two poles of the earth, are fitted into the reaction chamber of discharge equipment with fixture, after pumping the air in exoelectrical reaction room, are filled with high-purity helium
Flow velocity with the mixed gas of hydrogen, pressure 500Torr, hydrogen and helium is 400sccm, connects direct current power discharge,
Electric current is 150A, obtains graphene.
The preparation of 2 electric treatment graphene of embodiment/silicon oxide nanofiber
1.5g tetraethyl orthosilicate is dissolved in the mixed solution that 0.6g hydrochloric acid solution and 0.4g ethanol solution are formed, it will
1.1g polyvinylpyrrolidone is dissolved in 4.9g isopropanol and 8.2gN, in the mixed solution that dinethylformamide is formed, by two
Kind spinning solution is uniformly mixed, and forms uniform solution;Electric treatment graphene prepared by embodiment 1 is according to the electric treatment in formation
Graphene/silicon oxide nanofiber material weight ratio 15% is added into the uniform solution of preparation, 60 DEG C at a temperature of
Stirring 12 hours, is put into electrostatic spinning apparatus, and voltage is 15kV and receives under conditions of distance is 10cm or so, electrostatic spinning, 9
Product is collected after hour, product is then dried to 24 hours removing residual solvents in vacuum drying oven.
Product is put into stabilizing device, is heated to 250 DEG C from room temperature with the 5 DEG C/min rate of heat addition, maintain 250 DEG C into
Row stabilization processes 2 hours.
3 Nanometer Copper electro-deposition of embodiment
It is 150g/L copper sulphate by concentration, concentration is that 60g/L sulfuric acid and deionized water are configured to 1L electrolysis after mixing
Liquid carries out electro-deposition using bipolar electrode system and direct current, and cathode uses the stabilization material of the 4th step preparation, and anode uses copper
The titanium basket of ball, current density 0.04A/cm2, control electrolyte temperature is 60 DEG C, and electro-deposition 100min, takes out in the electrolytic solution
Electrode anode is ground, sieving, deionized water cleaning, dry, obtains graphene/silicon oxide nanofiber/nanometer as coating
Copper composite radiating coating.
The form of material of the present invention and structural analysis pass through scanning electron microscope (SEM, Nova SEM, FEI), transmission electricity
(Horiba, LabRAMHR-UV-vis-NIR, Raman are micro- for sub- microscope (TEM, Tecnai G2 F20, FEI) and Raman spectrum
Mirror, 488nm Ar laser, 514nm Ar laser, 785nm diode laser) observation.
The Raman spectrogram of Fig. 1 display addition composite radiating coating, using 514nm as laser hole drilling illuminator, on the figure
It has been shown that, in 1340.5cm-1Show IDDiffraction maximum, in 1569.2cm-1Show IGDiffraction maximum, in 2678.7cm-1Show I2DDiffraction
Peak, IDThe sp of diffraction maximum presentation electric treatment graphene2Various disordered structures and defective locations in track, IGCarbon is presented in diffraction maximum
The pulled out condition in plane that carbon key is formed.
Fig. 2 a and Fig. 2 b illustrate the scanning electron microscope (SEM) photograph (SEM) that electric treatment graphene is obtained by way of arc discharge and
Transmission electron microscope picture (TEM) can be seen that the size of electric treatment graphene in the micron-scale by Fig. 2 a and Fig. 2 b, and mutually hand over
It is woven in together.By Fig. 2 b, the part B especially amplified can be seen that electric treatment graphene have smooth configuration of surface and
The surface texture of layering.
The graphene obtained by the way of arc discharge, prepares nanofiber together with tetraethyl orthosilicate, and graphene is filled out
The specific surface area and electric conductivity of silicon oxide nanofiber can be improved in the silicon oxide nanofiber filled, and further increases below
Electrodeposition process efficiency.
We are using BET method measurement electric treatment graphene, silicon oxide nanofiber and using the filling of electric treatment graphene
The specific surface area of three kinds of substances of silicon oxide nanofiber, measurement result are as shown in table 2.
2 different materials specific surface area of table compares
Sample | Specific surface area (m2/g) |
Electric arc graphene | 39.21 |
Silicon oxide nanofiber | 16.72 |
Electric treatment graphene-silicon oxide nanofiber | 25.95 |
Electric treatment graphene-silicon oxide nanofiber specific surface area is smaller than pure electric treatment graphene, this is because at electricity
Reason graphene is embedded into silicon oxide nanofiber, but it is greater than silicon oxide nanofiber, this is because electric treatment graphene
High weight ratio and two-dimentional shape changeable structure affect the original form of silicon oxide nanofiber, so as to cause specific surface area
Increase.
Electric treatment graphene is packed into silicon oxide nanofiber, improves the electric conductivity of material first, while embedded
Electric treatment graphene also enhance crystallinity.Silicon oxide nanofiber, the electric treatment of acquisition are filled by electric treatment graphene
Graphene-silicon oxide nanofiber material due to silica rigidity and become frangible and brittle, this material is not easy directly
Using therefore, it is necessary to further strengthen the mechanical performance of this material.
We test the additive amount of electric treatment graphene to electric treatment graphene-silicon oxide nanofiber electric conductivity
It influences, the results are shown in Table 3.We have found that electric conductivity is best when the electric treatment graphene of addition 8%-12%.
The additive amount of 3 electric treatment graphene of table is to electric treatment graphene-silicon oxide nanofiber Conductivity
Additive amount (%) | Conductivity (S/cm) |
0% | 12.06 |
1% | 12.37 |
5% | 13.62 |
8% | 16.17 |
12% | 18.26 |
15% | 18.63 |
We select 12% electric treatment graphene additive amount to prepare electric treatment graphene-silicon oxide nanofiber and carry out electricity
Deposit the process of Nanometer Copper.In order to compare the post-depositional material structure figure of Nanometer Copper, unilateral material is selected to carry out electrochemical deposition.
According to the tensile property of ASTM D638 canonical measure material, it the results are shown in Table 4.
4 different materials tensile strength of table
Material | Tensile strength (MPa) |
Silicon oxide nanofiber | 1.21 |
Electric treatment graphene/silicon oxide nanofiber | 1.89 |
Electric treatment graphene/silicon oxide nanofiber/copper | 23.16 |
From table 4, it can be seen that improving the tensile strength of material by addition nano copper particle, that is, improving material
Mechanical performance.
The preparation of 1 silicon oxide nanofiber of comparative example
1.5g tetraethyl orthosilicate is dissolved in the mixed solution that 0.6g hydrochloric acid solution and 0.4g ethanol solution are formed, it will
1.1g polyvinylpyrrolidone is dissolved in 4.9g isopropanol and 8.2gN, in the mixed solution that dinethylformamide is formed, by two
Kind spinning solution is uniformly mixed, and forms uniform solution;Electric treatment graphene prepared by embodiment 1 is according to the electric treatment in formation
Graphene/silicon oxide nanofiber material weight ratio 15% is added into the uniform solution of preparation, 60 DEG C at a temperature of
Stirring 12 hours, is put into electrostatic spinning apparatus, and voltage is 15kV and receives under conditions of distance is 10cm or so, electrostatic spinning, 9
Product is collected after hour, product is then dried to 24 hours removing residual solvents in vacuum drying oven.
Product is put into stabilizing device, is heated to 250 DEG C from room temperature with the 5 DEG C/min rate of heat addition, maintain 250 DEG C into
Row stabilization processes 2 hours.
3 Nanometer Copper electro-deposition of embodiment
It is 150g/L copper sulphate by concentration, concentration is that 60g/L sulfuric acid and deionized water are configured to 1L electrolysis after mixing
Liquid carries out electro-deposition using bipolar electrode system and direct current, and cathode uses the stabilization material of the 4th step preparation, and anode uses copper
The titanium basket of ball, current density 0.04A/cm2, control electrolyte temperature is 60 DEG C, and electro-deposition 100min, takes out in the electrolytic solution
Electrode anode is ground, sieving, deionized water cleaning, dry, obtains graphene/silicon oxide nanofiber/nanometer as coating
Copper composite radiating coating.
We test the graphene heat radiation coating heat dissipation performance, used sky on idle call microchannel heat sink fin
Call microchannel heat sink as shown in Figures 3 to 5, spreader surface is coated with above-mentioned composite coating, and radiator includes end
Concetrated pipe 1 is vertically connected the multiport flat tube 2 connect and the louvered fin being arranged on flat tube 3 with concetrated pipe.Multiterminal
The depth that flat tube is embedded into end concetrated pipe is that end gathers the 1/2 of pipe diameter, positioned at the condenser entrance of end collector
The diameter of pipe is preferably 10mm.
Air-conditioning is carried out using the heat transfer wind tunnel laboratory at Zhejiang University's Shandong industrial research institute graphene application study center
It is detected with the heat dissipation performance of microchannel heat sink, specific experiment condition are as follows: declared working condition, normal atmosphere pressure, cooling medium charging
Measure 150g;Wind-tunnel nozzle diameter 50mm, Boiler pressure control is in 120m3/h;Frequency converter frequency 37.70Hz;Inlet side environment temperature is set
It is set to 20 DEG C of dry-bulb temperature, 15 DEG C of wet-bulb temperature.It the results are shown in Table 5.
The experiment uses three groups of tests, and sample 1 uses GN-706 high thermal conductivity radiation nano ceramic coating/coating graphite alkene
Coating (Guangzhou also take in the fresh material Science and Technology Ltd. offer), sample 2 is not coated by any heat radiation coating, and sample 3 coats the present invention
The heat radiation coating that embodiment 3 provides.
5 various sample heat dissipation performance of table compares
Parameter | Sample 1 | Sample 2 | Sample 3 |
It enters the wind dry-bulb temperature (DEG C) | 20.00 | 20.03 | 20.01 |
It enters the wind wet-bulb temperature (DEG C) | 14.99 | 15.00 | 15.01 |
Air quantity (m3/h) | 121.85 | 122.53 | 122.38 |
Atmospheric density (kg/m3) | 1.11 | 1.13 | 1.10 |
Outlet air dry-bulb temperature (DEG C) | 42.84 | 37.01 | 44.81 |
Outlet air wet-bulb temperature (DEG C) | 23.46 | 21.46 | 24.03 |
Input power (W) | 661.99 | 730.70 | 610.17 |
Enthalpy difference (KJ/Kg) | 26.72 | 19.58 | 28.75 |
Cooling/heating amount (W) | 818.47 | 632.76 | 883.93 |
Energy Efficiency Ratio | 1.24 | 0.87 | 1.45 |
As can be seen from the above table, aobvious using the enthalpy difference, refrigerating capacity and Energy Efficiency Ratio of the radiator after heat radiation coating of the present invention
It writes and is higher than sample 1 and sample 2, illustrate that the heat dissipation effect of idle call microchannel heat sink of the present invention is more preferable.
All above-mentioned this intellectual properties of primarily implementation, there is no this new products of implementation of setting limitation other forms
And/or new method.Those skilled in the art will utilize this important information, above content modification, to realize similar execution feelings
Condition.But all modifications or transformation belong to the right of reservation based on new product of the present invention.
The above described is only a preferred embodiment of the present invention, being not that the invention has other forms of limitations, appoint
What those skilled in the art changed or be modified as possibly also with the technology contents of the disclosure above equivalent variations etc.
Imitate embodiment.But without departing from the technical solutions of the present invention, according to the technical essence of the invention to above embodiments institute
Any simple modification, equivalent variations and the remodeling made, still fall within the protection scope of technical solution of the present invention.
Claims (5)
1. a kind of idle call microchannel heat sink, it is characterised in that: the fin surface of the radiator radiates coated with graphene
Coating, the graphene heat radiation coating include electric treatment graphene, silicon oxide nanofiber material and nano copper particle, Nanometer Copper
In the composite material that particle is deposited on electric treatment graphene by way of electro-deposition and silicon oxide nanofiber is formed.
2. idle call microchannel heat sink as described in claim 1, it is characterised in that: the electric treatment graphene accounts for graphite
Alkene/silicon oxide nanofiber material mass percent is 8%-12%.
3. idle call microchannel heat sink as claimed in claim 1 or 2, it is characterised in that: the radiator includes end collection
It closes pipe, be vertically connected the multiport flat tube connect and the louvered fin being arranged on flat tube with concetrated pipe.
4. idle call microchannel heat sink as described in claims 1 to 3, it is characterised in that: multiterminal flat tube is embedded into end
The depth of concetrated pipe is the 1/4-1/2 that pipe diameter is gathered in end.
5. the idle call microchannel heat sink as described in Claims 1-4, it is characterised in that: positioned at the cool solidifying of end collector
The diameter of device inlet tube is 10-15mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910725945.2A CN110470154A (en) | 2019-08-07 | 2019-08-07 | A kind of idle call microchannel heat sink |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910725945.2A CN110470154A (en) | 2019-08-07 | 2019-08-07 | A kind of idle call microchannel heat sink |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110470154A true CN110470154A (en) | 2019-11-19 |
Family
ID=68511538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910725945.2A Pending CN110470154A (en) | 2019-08-07 | 2019-08-07 | A kind of idle call microchannel heat sink |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110470154A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113532155A (en) * | 2020-04-03 | 2021-10-22 | 浙江大学 | High-efficiency heat exchanger of fuel cell temperature control system and processing device thereof |
IT202100006266A1 (en) * | 2021-03-16 | 2022-09-16 | X Phaethon S R L S | HEAT EXCHANGER TUBE WITH IMPROVED CONDUCTIVITY CHARACTERISTICS |
IT202100006272A1 (en) * | 2021-03-16 | 2022-09-16 | X Phaethon S R L S | HEAT EXCHANGER TUBE WITH IMPROVED CONDUCTIVITY CHARACTERISTICS |
WO2022195481A1 (en) * | 2021-03-16 | 2022-09-22 | SALA, Federico Mario | Heat exchanger tube having improved heat conductivity characteristics |
CN116426074A (en) * | 2023-05-29 | 2023-07-14 | 江苏海洋大学 | Preparation method of double-crosslinked-network-enhanced stabilized ethylene propylene diene monomer rubber |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103148718A (en) * | 2013-03-15 | 2013-06-12 | 上海交通大学 | Microchannel heat exchanger |
CN109827248A (en) * | 2019-03-26 | 2019-05-31 | 山东烯泰天工节能科技有限公司 | Internet of Things screen display minimizes outdoor machine of air-conditioner |
CN109880408A (en) * | 2019-01-19 | 2019-06-14 | 深圳市国创珈伟石墨烯科技有限公司 | A kind of inorganic modified high temperature resistant high emissivity graphene coating and preparation method thereof |
-
2019
- 2019-08-07 CN CN201910725945.2A patent/CN110470154A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103148718A (en) * | 2013-03-15 | 2013-06-12 | 上海交通大学 | Microchannel heat exchanger |
CN109880408A (en) * | 2019-01-19 | 2019-06-14 | 深圳市国创珈伟石墨烯科技有限公司 | A kind of inorganic modified high temperature resistant high emissivity graphene coating and preparation method thereof |
CN109827248A (en) * | 2019-03-26 | 2019-05-31 | 山东烯泰天工节能科技有限公司 | Internet of Things screen display minimizes outdoor machine of air-conditioner |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113532155A (en) * | 2020-04-03 | 2021-10-22 | 浙江大学 | High-efficiency heat exchanger of fuel cell temperature control system and processing device thereof |
IT202100006266A1 (en) * | 2021-03-16 | 2022-09-16 | X Phaethon S R L S | HEAT EXCHANGER TUBE WITH IMPROVED CONDUCTIVITY CHARACTERISTICS |
IT202100006272A1 (en) * | 2021-03-16 | 2022-09-16 | X Phaethon S R L S | HEAT EXCHANGER TUBE WITH IMPROVED CONDUCTIVITY CHARACTERISTICS |
WO2022195481A1 (en) * | 2021-03-16 | 2022-09-22 | SALA, Federico Mario | Heat exchanger tube having improved heat conductivity characteristics |
CN116426074A (en) * | 2023-05-29 | 2023-07-14 | 江苏海洋大学 | Preparation method of double-crosslinked-network-enhanced stabilized ethylene propylene diene monomer rubber |
CN116426074B (en) * | 2023-05-29 | 2024-04-26 | 江苏海洋大学 | Preparation method of double-crosslinked-network-enhanced stabilized ethylene propylene diene monomer rubber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110470154A (en) | A kind of idle call microchannel heat sink | |
Li et al. | New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors | |
Bai et al. | Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes | |
CN107343374A (en) | Radiator that a kind of graphene heat conducting coating is modified and preparation method thereof | |
CN104010990B (en) | The compact substance material and the utilization thereof that comprise carbon nanohorn | |
CN106711415B (en) | A kind of porous silicon composite cathode material and preparation method thereof | |
CN106941167A (en) | A kind of porous composite negative pole material of lithium ion battery and preparation method thereof | |
CN100420626C (en) | Preparation method of pure nano-carbon tube film | |
CN103172050A (en) | Preparation method of boron nitride-coated carbon nanotubes | |
CN109546108A (en) | A kind of low bulk silicon based composite material and preparation method, silicon based anode material and lithium ion battery | |
CN106140162B (en) | A kind of preparation method of the copper nano-particle for electrocatalytic hydrogen evolution/carbon nano-fiber hybrid material | |
CN107385269A (en) | A kind of method that carbon nanotube reinforced copper-base composite material is prepared using microwave | |
CN109093108A (en) | High starch breeding alkene-carbon nanotube mixing Cu-base composites and preparation method thereof | |
CN103232246A (en) | Preparation method of thermal spraying powder for ferrite corrosion-resistant coating | |
Zhao et al. | Cloth-derived anisotropic carbon scroll attached with 2D oriented graphite layers for supporting phase change material with efficient thermal storage | |
CN105895380A (en) | Three-dimensional reticular polyaniline/phenolic resin-based carbon sphere composite material and preparation method thereof | |
CN109128149A (en) | The method for preparing three-dimensional carbon nanomaterial in aluminium powder surface in situ using sodium chloride template | |
CN109368616A (en) | A kind of controllable method for preparing of three-dimensional grapheme carbon nano tube compound material | |
Chen et al. | Anisotropically enhancing thermal conductivity of epoxy composite with a low filler load by an AlN/C fiber skeleton | |
Zhang et al. | Size dependent electrochemical detection of trace heavy metal ions based on nano-patterned carbon sphere electrodes | |
CN110437652A (en) | A kind of graphene heat radiation coating and preparation method thereof | |
CN109827248A (en) | Internet of Things screen display minimizes outdoor machine of air-conditioner | |
CN105645376A (en) | Method for direct growth of porous carbon nanotube graphene hybrid on nano-porous copper | |
CN106221153A (en) | A kind of modified ABS/PLA luminescent composite | |
CN115287488A (en) | Diamond-graphene hybrid reinforced copper-based composite material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191119 |
|
RJ01 | Rejection of invention patent application after publication |