CN110457803B - 一种无人驾驶协同探测方法 - Google Patents

一种无人驾驶协同探测方法 Download PDF

Info

Publication number
CN110457803B
CN110457803B CN201910701002.6A CN201910701002A CN110457803B CN 110457803 B CN110457803 B CN 110457803B CN 201910701002 A CN201910701002 A CN 201910701002A CN 110457803 B CN110457803 B CN 110457803B
Authority
CN
China
Prior art keywords
vehicle
shielding
coordinate system
obstacle
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910701002.6A
Other languages
English (en)
Other versions
CN110457803A (zh
Inventor
应沛然
沈拓
欧冬秀
曾小清
刘通
郑智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201910701002.6A priority Critical patent/CN110457803B/zh
Publication of CN110457803A publication Critical patent/CN110457803A/zh
Application granted granted Critical
Publication of CN110457803B publication Critical patent/CN110457803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/12Simultaneous equations, e.g. systems of linear equations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

本发明涉及一种无人驾驶协同探测方法,包括:S1、通过车载传感器,分别获取主车以及遮蔽车的相关信息,并分别建立主车坐标系和遮蔽车坐标系;S2、判断遮蔽车周围是否存在障碍物,若判断为是,则执行步骤S3,否则返回步骤S1;S3、基于遮蔽车坐标系,获取障碍物的位置信息和速度信息;S4、判断障碍物是否位于主车的探测盲区内,若判断为是,则执行步骤S5,否则返回步骤S1;S5、遮蔽车将遮蔽车相关信息以及障碍物相关信息发送给主车,基于主车坐标系,由主车生成对应场景。与现有技术相比,本发明通过车辆间协同探测,能够解决车辆相对运动遮挡造成的探测范围受限问题,从而有效提高车辆安全,实现车辆周边场景全息感知。

Description

一种无人驾驶协同探测方法
技术领域
本发明涉及无人驾驶技术领域,尤其是涉及一种无人驾驶协同探测方法。
背景技术
无人驾驶技术主要是通过传感器获取车辆外部信息,从而在数字世界中构建一个可供分析、决策的场景模型,然而传感器的检测常常会受到各种干扰、阻碍或遮蔽,即存在探测盲区,使得探测盲区内的障碍物体无法被车辆探测到,这种现象在无人驾驶的运动环境中更为明显。
车辆在运动过程中的相对运动,由于相互之间距离较近,且存在车身的阻碍,导致车辆传感器的探测范围受到限制,容易产生探测盲区,一旦探测盲区内存在障碍物体,由于车辆无法提前获取探测盲区内的障碍物体信息,因此极容易引发安全事故。
综上所述,若能对探测盲区进行协同探测,使车辆根据探测信息生成对应场景,将有利于提升无人驾驶的安全性,减少因为车辆相对运动导致探测范围受限产生的不利影响,并防止由于探测范围受限造成的车辆决策失误。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种无人驾驶协同探测方法。
本发明的目的可以通过以下技术方案来实现:一种无人驾驶协同探测方法,包括以下步骤:
S1、通过主车和遮蔽车各自的车载传感器,分别获取主车的姿态信息、速度信息以及遮蔽车的姿态信息、速度信息,以分别建立主车坐标系和遮蔽车坐标系,其中,主车坐标系的原点数据即为主车的位置信息,遮蔽车坐标系的原点数据即为遮蔽车的位置信息;
S2、通过遮蔽车的第一车载探测器获取遮蔽车周围的行驶环境数据,根据行驶环境数据,判断遮蔽车周围是否存在障碍物,若判断为是,则执行步骤S3,否则返回步骤S1;
S3、基于遮蔽车坐标系,通过遮蔽车的第二车载探测器获取障碍物的位置信息和速度信息;
S4、判断遮蔽车周围的障碍物是否位于主车的探测盲区内,若判断为是,则执行步骤S5,否则返回步骤S1;
S5、遮蔽车将遮蔽车自身的尺寸信息、位置信息、姿态信息、速度信息以及障碍物尺寸信息、位置信息和速度信息发送给主车,基于主车坐标系,由主车生成对应场景。
优选地,所述步骤S1中车载传感器为MARG传感器,姿态信息包括侧倾偏角、俯仰偏角和车头指向偏角,主车坐标系具体为:主车坐标系原点位于主车的顶部中心位置,根据主车的车头指向偏角,确定主车坐标系的Y轴正方向,主车所在平面顺时针垂直于Y轴正方向为X轴正方向,由右手定则确定Z轴正方向;
遮蔽车坐标系具体为:遮蔽车坐标系原点位于遮蔽车的顶部中心位置,根据遮蔽车的车头指向偏角,确定遮蔽车坐标系的Y轴正方向,遮蔽车所在平面顺时针垂直于Y轴正方向为X轴正方向,由右手定则确定Z轴正方向;
主车速度信息是由主车的MARG传感器获取的在主车坐标系下的主车绝对速度;
遮蔽车速度信息是由遮蔽车的MARG传感器获取的在遮蔽车坐标系下的遮蔽车绝对速度。
优选地,所述步骤S2中第一车载探测器为图像探测器,用于获取车辆周围行驶环境的图像数据。
优选地,所述步骤S3中第二车载探测器包括激光雷达探测器和超声波探测器,所述获取障碍物的位置信息和速度信息的具体过程为:
S31、基于遮蔽车坐标系,遮蔽车的第二车载探测器以第一预设时间间隔分别探测障碍物的角度和距离数据,得到障碍物的第一组角度和距离数据,以及第二组角度和距离数据;
S32、根据障碍物的角度和距离数据,确定障碍物在遮蔽车坐标系下的位置信息,分别得到障碍物的第一位置信息和第二位置信息;
S33、将障碍物的第二位置信息减去障碍物的第一位置信息,得到障碍物的位置差信息,将障碍物的位置差信息除以第一预设时间间隔,得到障碍物在遮蔽车坐标系下的速度信息。
优选地,所述步骤S32中障碍物在遮蔽车坐标系下的位置信息为:
Figure BDA0002150790600000031
其中,(xji,yji,zji)表示障碍物在遮蔽车坐标系下的坐标数据,dji表示障碍物在遮蔽车坐标系下与遮蔽车之间的距离,αji表示障碍物在遮蔽车坐标系下的仰角,θji表示障碍物在遮蔽车坐标系下的方向角;
所述步骤S33中障碍物在遮蔽车坐标系下的速度信息为:
Figure BDA0002150790600000032
其中,(Δvjix,Δvjiy,Δvjiz)表示障碍物在遮蔽车坐标系下与遮蔽车之间的相对速度,
Figure BDA0002150790600000033
表示障碍物在遮蔽车坐标系下的第一位置信息,/>
Figure BDA0002150790600000034
表示障碍物在遮蔽车坐标系下的第二位置信息,T表示第一预设时间间隔。
优选地,所述步骤S4具体包括以下步骤:
S41、分别确定主车和障碍物在遮蔽车坐标系下的位置信息,以建立主车与障碍物之间的探测线方程;
S42、根据遮蔽车的尺寸信息,构建遮蔽车空间立方体模型,并确定遮蔽车空间立方体模型的约束条件;
S43、结合探测线方程以及遮蔽车空间立方体模型的约束条件,判断探测线与遮蔽车空间立方体之间是否存在交点,若存在交点,则确定障碍物位于主车的探测盲区内,若不存在交点,则确定障碍物没有位于主车的探测盲区内。
优选地,所述步骤S41中主车与障碍物之间的探测线方程为:
Figure BDA0002150790600000041
其中,(xl,yl,zl)表示在遮蔽车坐标系下探测线上的点的坐标数据,(x0i,y0i,z0i)表示主车在遮蔽车坐标系下的坐标数据,(xji,yji,zji)表示障碍物在遮蔽车坐标系下的坐标数据,k表示在遮蔽车坐标系下探测线上的点到主车的线段长度与探测线长度的比例系数;
所述步骤S42中遮蔽车空间立方体模型的约束条件包括:
正面约束:
Figure BDA0002150790600000042
后面约束:
Figure BDA0002150790600000043
右侧面约束:
Figure BDA0002150790600000044
左侧面约束:
Figure BDA0002150790600000045
顶面约束:
Figure BDA0002150790600000046
底面约束:
Figure BDA0002150790600000047
其中,(xs,ys,zs)表示遮蔽车空间立方体模型上的点的坐标数据,(li,wi,hi)表示遮蔽车长度、宽度和高度的尺寸信息;
所述步骤S43中判断探测线与遮蔽车空间立方体之间是否存在交点的具体过程为:依次将遮蔽车空间立方体模型的正面、后面、右侧面、左侧面、顶面和底面约束中点的坐标数据替换为探测线上点的坐标数据,若替换之后,所有约束条件中只要有一个约束条件依然成立,则判断探测线与遮蔽车空间立方体之间存在交点,即确定障碍物位于主车的探测盲区内,若替换之后,所有约束条件均不成立,则判断探测线与遮蔽车空间立方体之间不存在交点,即确定障碍物没有位于主车的探测盲区内。
优选地,所述步骤S5中主车生成对应场景的具体过程为:
S51、基于主车坐标系,获取遮蔽车与主车之间的空间关系信息,其中,遮蔽车与主车之间的空间关系信息包括遮蔽车在主车坐标系下的位置信息、遮蔽车与主车的相对速度以及遮蔽车的绝对速度;
S52、基于主车坐标系,获取障碍物与主车之间的空间关系信息,其中,障碍物与主车之间的空间关系信息包括障碍物在主车坐标系下的位置信息、障碍物与主车的相对速度以及障碍物的绝对速度;
S53、根据遮蔽车与主车之间的空间关系信息、障碍物与主车之间的空间关系信息,结合主车、遮蔽车以及障碍物各自的尺寸信息,生成对应的场景模型。
优选地,所述步骤S51具体包括以下步骤:
S511、基于主车坐标系,主车的第二车载探测器以第二预设时间间隔分别探测遮蔽车的角度和距离数据,得到遮蔽车的第一组角度和距离数据,以及第二组角度和距离数据;
S512、根据遮蔽车的角度和距离数据,确定遮蔽车在主车坐标系下的位置信息,分别得到遮蔽车的第一位置信息和第二位置信息;
S513、将遮蔽车的第二位置信息减去遮蔽车的第一位置信息,得到遮蔽车的位置差信息,将遮蔽车的位置差信息除以第二预设时间间隔,得到遮蔽车在主车坐标系下与主车的相对速度;
S514、结合遮蔽车与主车的相对速度、主车的绝对速度,计算得到主车坐标系下的遮蔽车绝对速度;
遮蔽车在主车坐标系下的位置信息为:
Figure BDA0002150790600000051
其中,(xi0,yi0,zi0)表示遮蔽车在主车坐标系下的坐标数据,di0表示遮蔽车在主车坐标系下与主车之间的距离,αi0表示遮蔽车在主车坐标系下的仰角,θi0表示遮蔽车在主车坐标系下的方向角;
遮蔽车在主车坐标系下与主车的相对速度为:
Figure BDA0002150790600000061
其中,(Δvi0x,Δvi0y,Δvi0z)表示遮蔽车在主车坐标系下与主车之间的相对速度,
Figure BDA0002150790600000062
表示遮蔽车在主车坐标系下的第一位置信息,/>
Figure BDA0002150790600000063
表示遮蔽车在主车坐标系下的第二位置信息,T′表示第二预设时间间隔;
遮蔽车在主车坐标系下的绝对速度为:
Figure BDA0002150790600000064
其中,(vix,viy,viz)表示遮蔽车在主车坐标系下的绝对速度,(v0x,v0y,v0z)表示主车在主车坐标系下的绝对速度。
优选地,所述步骤S52中障碍物在主车坐标系下的位置信息为:
Figure BDA0002150790600000065
Figure BDA0002150790600000066
Figure BDA0002150790600000067
Figure BDA0002150790600000068
其中,(xj0yj0,zj0)表示障碍物在主车坐标系下的坐标数据,Rx表示主车坐标系在X轴方向的旋转矩阵,Ry表示主车坐标系在Y轴方向的旋转矩阵,Rz表示主车坐标系在Z轴方向的旋转矩阵,γi0表示遮蔽车在主车坐标系下的俯仰偏角,βi0表示遮蔽车在主车坐标系下的侧倾偏角,δi0表示遮蔽车在主车坐标系下的车头指向偏角;
障碍物在主车坐标系下与主车的相对速度为:
Figure BDA0002150790600000069
其中,(Δvj0x,Δvj0y,Δvj0z)表示障碍物在主车坐标系下与主车之间的相对速度;
障碍物在主车坐标系下的绝对速度为:
Figure BDA0002150790600000071
其中,(vix,viy,viz)表示障碍物在主车坐标系下的绝对速度。
与现有技术相比,本发明采用主车与遮蔽车协同探测的方式,解决了车辆相对运动时遮蔽车对主车造成的探测盲区问题,能够使主车从遮蔽车提前获取探测盲区内障碍物的信息,充分感知周围环境,从而提高无人驾驶的安全性;
本发明通过建立主车与障碍物之前的探测线方程,结合遮蔽车空间立方体模型,能有效确定障碍物是否位于主车的探测盲区内,并通过遮蔽车与主车之间的通信,将主车探测盲区内的障碍物信息及时发送给主车;
本发明在不增加现有无人驾驶车辆传感器架构的基础上,利用车辆现有架构的车载传感器和车载探测器获取车辆之间、车辆与障碍物之间的空间关系,并通过建立车辆自身坐标系,能将其他车辆信息以及障碍物信息对应转换为自身坐标系下的数据,有利于车辆快速生成对应场景。
附图说明
图1为本发明的方法流程图;
图2为实施例中建立主车与障碍物之间探测线的示意图;
图3为实施例中主车生成的场景示意图;
图中标记说明:10、障碍物,20、第一遮蔽车,30、第二遮蔽车,40、主车,50、第一探测盲区,60、第二探测盲区。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
如图1所示,一种无人驾驶协同探测方法,包括以下步骤:
S1、通过主车和遮蔽车各自的车载传感器,分别获取主车的姿态信息、速度信息以及遮蔽车的姿态信息、速度信息,以分别建立主车坐标系和遮蔽车坐标系,其中,主车坐标系的原点数据即为主车的位置信息,遮蔽车坐标系的原点数据即为遮蔽车的位置信息;
S2、通过遮蔽车的第一车载探测器获取遮蔽车周围的行驶环境数据,根据行驶环境数据,判断遮蔽车周围是否存在障碍物,若判断为是,则执行步骤S3,否则返回步骤S1;
S3、基于遮蔽车坐标系,通过遮蔽车的第二车载探测器获取障碍物的位置信息和速度信息;
S4、判断遮蔽车周围的障碍物是否位于主车的探测盲区内,若判断为是,则执行步骤S5,否则返回步骤S1;
S5、遮蔽车将遮蔽车自身的尺寸信息、位置信息、姿态信息、速度信息以及障碍物尺寸信息、位置信息和速度信息发送给主车,基于主车坐标系,由主车生成对应场景。
其中,车载传感器为MARG传感器,用于获取车辆自身的姿态信息,姿态信息包括姿态信息包括侧倾偏角、俯仰偏角和车头指向偏角,通过车头指向偏角确定车辆坐标系XaYaZa的Y轴方向,以车辆所在平面顺时针垂直于Y轴正方向为X轴正方向,由右手定则确定Z轴正方向,车辆坐标系XaYaZa分为主车坐标系X0Y0Z0(下标0表示主车)和遮蔽车坐标系XiYiZi(下标i表示遮蔽车);
第一车载探测器为图像探测器,用于获取车辆周围的行驶环境图像数据,以确定车辆周围是否存在障碍物j,第二车载探测器包括激光雷达探测器和超声波探测器,用于获取障碍物j的位置信息和速度信息;
上述各传感器和探测器根据自身特点,在不同探测精度和距离上进行信息检测,为统一基准,需要将各传感器和探测器测量数据均转换为在车辆自身坐标系XaYaZa下的数据,再进行计算;
探测盲区是由于遮蔽车与主车间相对运动造成遮蔽车遮挡主车传感器和探测器,导致主车无法探测盲区内障碍物所致,其中,遮蔽车通过以下方法判断主车对障碍物的观测是否被自身遮挡:
在遮蔽车坐标系XiYiZi下,根据探测结果确定主车位置(x0i,y0i,z0i),各传感器和探测器因安装在车身位置不同导致探测视野有所细微差异,在此,忽略探测视野细微差异,默认各传感器和探测器的探测视角均从主车坐标系原点处出发,即车辆顶部中间位置;
遮蔽车在遮蔽车坐标系XiYiZi下,判断主车观测点(x0i,y0i,z0i)和障碍物坐标(xjiyji,zji)连线段与遮蔽车所包围空间的交点,如果交点个数为0个,则认为障碍物没有被遮蔽车遮挡,如果交点个数大于0,则认为障碍物被遮蔽车遮挡,该障碍物位于主车的探测盲区内。
本发明方法的具体应用过程为:
步骤101,无人驾驶车辆通过车载传感器,探测主车与遮蔽车相互空间位置、遮蔽车与障碍物相互空间位置;
步骤102,若遮蔽车周围不存在障碍物,则遮蔽车发送安全信息给主车,并返回步骤101,否则执行步骤103;
步骤103,如图2所示,建立主车40与障碍物10之间的探测线,其中,第一遮蔽车20被抽象成空间立方体模型,该空间立方体模型的长宽高数据由第一遮蔽车20自身的尺寸信息获得,通过判断探测线是否与遮蔽车的空间立方体产生交点,以判断障碍物10是否位于主车40的探测盲区内,若判断结果为“是”,执行步骤104,否则,返回步骤101;
步骤104,探测盲区对应遮蔽车将障碍物检测概要信息发送给对应探测盲区的主车;
步骤105,主车融合车载传感器探测信息和其他车辆探测信息进行场景建模。
无人驾驶车辆通过车车通信装置,进行信息发送和接收,信息内容包括车辆空间尺寸信息、姿态信息,并将对应主车探测盲区内障碍物概要信息发送至相应车辆,概要信息包括障碍物尺寸、运动速度、障碍物在遮蔽车坐标系XiYiZi下空间位置。
图3所示为实施例中主车生成的场景示意图,在该场景下,第一遮蔽车20、第二遮蔽车30和主车40分别通过各自的车载传感器和探测器对周围场景进行探测,以主车40为例,由于第一遮蔽车20和第二遮蔽车30的存在,分别导致了第一探测盲区50和第二探测盲区60,由于探测盲区内信息无法被主车探测,因此第一探测盲区50内的障碍物10无法被主车40探测到,障碍物10对主车40存在潜在安全威胁。
本实施例中,主车和遮蔽车的空间位置关系包括:在主车坐标系下的主车绝对速度v0(v0x,v0y,v0z),遮蔽车和主车的相对速度Δvi0(Δvi0x,Δvi0y,Δvi0z)(i=1,2...),遮蔽车绝对速度vi(vix,viy,viz)(i=1,2...);
主车和遮蔽车所在坐标系原点距离di0(i=1,2...),遮蔽车坐标系原点的方向角θi0(i=1,2...),遮蔽车坐标系原点与主车坐标系原点连线和X0Y0平面的仰角αi0(i=1,2...),主车尺寸大小(l0,w0,h0),遮蔽车尺寸大小(li,wi,hi)(i=1,2...);
遮蔽车辆i(i=1,2...)在主车坐标系X0Y0Z0下空间位置,通过遮蔽车辆i坐标系XiYiZi原点所在位置(xi0,yi0,zi0)进行描述,公式如下:
Figure BDA0002150790600000101
遮蔽车和主车的相对速度为Δvi0(Δvi0x,Δvi0y,Δvi0z)(i=1,2...):
Figure BDA0002150790600000102
其中,
Figure BDA0002150790600000103
表示遮蔽车在主车坐标系下的第一位置信息,/>
Figure BDA0002150790600000104
表示遮蔽车在主车坐标系下的第二位置信息,即有(Δxi0t,Δyi0t,Δzi0t)为前后两次主车探测得到的遮蔽车在主车坐标系的X0,Y0,Z0方向上的位移,T′表示主车上第二车载探测器的探测时间间隔;
遮蔽车在主车坐标系下的绝对速度为vi(vix,viy,viz)(i=1,2...):
Figure BDA0002150790600000105
式中,(vix,viy,viz)表示遮蔽车在主车坐标系下的绝对速度,(v0x,v0v,v0z)表示主车在主车坐标系下的绝对速度。
障碍物运动信息包括:在遮蔽车坐标系下的障碍物j和遮蔽车i的相对速度Δvji(Δvjix,Δvjiy,Δvjiz)(j=1,2...),障碍物j在遮蔽车坐标系XiYiZi的空间位置(xjiyji,zji)(j=1,2...),障碍物j与遮蔽车坐标系原点距离dji(j=1,2...)、方向角θji(j=1,2...)、仰角αji(j=1,2...),障碍物j的尺寸大小(lj,wj,hj)(j=1,2...)。
遮蔽车辆i获取障碍物j相对于遮蔽车辆的空间位置(xjiyji,zji)(j=1,2...),根据以下公式计算得到:
Figure BDA0002150790600000106
障碍物j和遮蔽车i相对速度Δvji(Δvjix,Δvjiy,Δvjiz)(j=1,2...):
Figure BDA0002150790600000111
式中,(Δvjix,Δvjiy,Δvjiz)表示障碍物在遮蔽车坐标系下与遮蔽车之间的相对速度,
Figure BDA0002150790600000112
表示障碍物在遮蔽车坐标系下的第一位置信息,/>
Figure BDA0002150790600000113
表示障碍物在遮蔽车坐标系下的第二位置信息,即有(Δxjit,Δyjit,Δzjit)为前后两次遮蔽车探测得到的障碍物j在遮蔽车坐标系Xi,Yi,Zi方向上的位移,T表示遮蔽车上第二车载探测器的探测时间间隔。
遮蔽车坐标系XiYiZi相对主车坐标系X0Y0Z0中侧倾偏角βi0、俯仰偏角γi0、车头指向偏角δi0,主车观测到障碍物j在X0Y0Z0坐标系下的位置(xj0yj0,zj0)通过以下公式计算得到:
Figure BDA0002150790600000114
Figure BDA0002150790600000115
Figure BDA0002150790600000116
Figure BDA0002150790600000117
式中,Rx表示主车坐标系在X轴方向的旋转矩阵,Ry表示主车坐标系在Y轴方向的旋转矩阵,Rz表示主车坐标系在Z轴方向的旋转矩阵,
主车通过以下公式(10)计算得到障碍物j在主车坐标系下相对于主车的相对速度Δvj0(Δvj0x,Δvj0y,Δvj0z):
Figure BDA0002150790600000118
此外,主车通过以下公式(11)计算得到障碍物j在主车坐标系下的绝对速度vj(vjx,vjy,vjz):
Figure BDA0002150790600000119
遮蔽车i观测到障碍物j在遮蔽车坐标系下的绝对速度v′j(v′jx,v′jy,v′jz):
Figure BDA0002150790600000121
综上所述,本发明能有效解决车辆相对运动车身遮挡所造成的探测盲区问题,提升无人驾驶车辆的安全性能,构建全息式数字场景,防止因为感知范围受限造成的车辆决策失误具,从而有效减小事故发生风险。
本发明方法简明,在不改变现有无人驾驶硬件架构的基础上,通过算法改进,使无人驾驶车辆充分感知周围环境,进行场景重建,提升无人驾驶车辆行驶安全性。

Claims (6)

1.一种无人驾驶协同探测方法,其特征在于,包括以下步骤:
S1、通过主车和遮蔽车各自的车载传感器,分别获取主车的姿态信息、速度信息以及遮蔽车的姿态信息、速度信息,以分别建立主车坐标系和遮蔽车坐标系,其中,主车坐标系的原点数据即为主车的位置信息,遮蔽车坐标系的原点数据即为遮蔽车的位置信息;
S2、通过遮蔽车的第一车载探测器获取遮蔽车周围的行驶环境数据,根据行驶环境数据,判断遮蔽车周围是否存在障碍物,若判断为是,则执行步骤S3,否则返回步骤S1;
S3、基于遮蔽车坐标系,通过遮蔽车的第二车载探测器获取障碍物的位置信息和速度信息;
S4、判断遮蔽车周围的障碍物是否位于主车的探测盲区内,若判断为是,则执行步骤S5,否则返回步骤S1;
S5、遮蔽车将遮蔽车自身的尺寸信息、位置信息、姿态信息、速度信息以及障碍物尺寸信息、位置信息和速度信息发送给主车,基于主车坐标系,由主车生成对应场景;
所述步骤S3中第二车载探测器包括激光雷达探测器和超声波探测器,所述获取障碍物的位置信息和速度信息的具体过程为:
S31、基于遮蔽车坐标系,遮蔽车的第二车载探测器以第一预设时间间隔分别探测障碍物的角度和距离数据,得到障碍物的第一组角度和距离数据,以及第二组角度和距离数据;
S32、根据障碍物的角度和距离数据,确定障碍物在遮蔽车坐标系下的位置信息,分别得到障碍物的第一位置信息和第二位置信息;
S33、将障碍物的第二位置信息减去障碍物的第一位置信息,得到障碍物的位置差信息,将障碍物的位置差信息除以第一预设时间间隔,得到障碍物在遮蔽车坐标系下的速度信息;
所述步骤S32中障碍物在遮蔽车坐标系下的位置信息为:
Figure FDA0004184568100000021
其中,(xji,yji,zji)表示障碍物在遮蔽车坐标系下的坐标数据,dji表示障碍物在遮蔽车坐标系下与遮蔽车之间的距离,αji表示障碍物在遮蔽车坐标系下的仰角,θji表示障碍物在遮蔽车坐标系下的方向角;
所述步骤S33中障碍物在遮蔽车坐标系下的速度信息为:
Figure FDA0004184568100000022
其中,(Δvjix,Δvjiy,Δvjiz)表示障碍物在遮蔽车坐标系下与遮蔽车之间的相对速度,
Figure FDA0004184568100000023
表示障碍物在遮蔽车坐标系下的第一位置信息,/>
Figure FDA0004184568100000024
表示障碍物在遮蔽车坐标系下的第二位置信息,T表示第一预设时间间隔;
所述步骤S4具体包括以下步骤:
S41、分别确定主车和障碍物在遮蔽车坐标系下的位置信息,以建立主车与障碍物之间的探测线方程;
S42、根据遮蔽车的尺寸信息,构建遮蔽车空间立方体模型,并确定遮蔽车空间立方体模型的约束条件;
S43、结合探测线方程以及遮蔽车空间立方体模型的约束条件,判断探测线与遮蔽车空间立方体之间是否存在交点,若存在交点,则确定障碍物位于主车的探测盲区内,若不存在交点,则确定障碍物没有位于主车的探测盲区内;
所述步骤S41中主车与障碍物之间的探测线方程为:
Figure FDA0004184568100000025
其中,(xl,yl,zl)表示在遮蔽车坐标系下探测线上的点的坐标数据,(x0i,y0i,z0i)表示主车在遮蔽车坐标系下的坐标数据,(xji,yji,zji)表示障碍物在遮蔽车坐标系下的坐标数据,k表示在遮蔽车坐标系下探测线上的点到主车的线段长度与探测线长度的比例系数;
所述步骤S42中遮蔽车空间立方体模型的约束条件包括:
正面约束:
Figure FDA0004184568100000031
后面约束:
Figure FDA0004184568100000032
右侧面约束:
Figure FDA0004184568100000033
左侧面约束:
Figure FDA0004184568100000034
顶面约束:
Figure FDA0004184568100000035
底面约束:
Figure FDA0004184568100000036
其中,(xs,ys,zs)表示遮蔽车空间立方体模型上的点的坐标数据,(li,wi,hi)表示遮蔽车长度、宽度和高度的尺寸信息;
所述步骤S43中判断探测线与遮蔽车空间立方体之间是否存在交点的具体过程为:依次将遮蔽车空间立方体模型的正面、后面、右侧面、左侧面、顶面和底面约束中点的坐标数据替换为探测线上点的坐标数据,若替换之后,所有约束条件中只要有一个约束条件依然成立,则判断探测线与遮蔽车空间立方体之间存在交点,即确定障碍物位于主车的探测盲区内,若替换之后,所有约束条件均不成立,则判断探测线与遮蔽车空间立方体之间不存在交点,即确定障碍物没有位于主车的探测盲区内。
2.根据权利要求1所述的一种无人驾驶协同探测方法,其特征在于,所述步骤S1中车载传感器为MARG传感器,姿态信息包括侧倾偏角、俯仰偏角和车头指向偏角,主车坐标系具体为:主车坐标系原点位于主车的顶部中心位置,根据主车的车头指向偏角,确定主车坐标系的Y轴正方向,主车所在平面顺时针垂直于Y轴正方向为X轴正方向,由右手定则确定Z轴正方向;
遮蔽车坐标系具体为:遮蔽车坐标系原点位于遮蔽车的顶部中心位置,根据遮蔽车的车头指向偏角,确定遮蔽车坐标系的Y轴正方向,遮蔽车所在平面顺时针垂直于Y轴正方向为X轴正方向,由右手定则确定Z轴正方向;
主车速度信息是由主车的MARG传感器获取的在主车坐标系下的主车绝对速度;
遮蔽车速度信息是由遮蔽车的MARG传感器获取的在遮蔽车坐标系下的遮蔽车绝对速度。
3.根据权利要求1所述的一种无人驾驶协同探测方法,其特征在于,所述步骤S2中第一车载探测器为图像探测器,用于获取车辆周围行驶环境的图像数据。
4.根据权利要求1所述的一种无人驾驶协同探测方法,其特征在于,所述步骤S5中主车生成对应场景的具体过程为:
S51、基于主车坐标系,获取遮蔽车与主车之间的空间关系信息,其中,遮蔽车与主车之间的空间关系信息包括遮蔽车在主车坐标系下的位置信息、遮蔽车与主车的相对速度以及遮蔽车的绝对速度;
S52、基于主车坐标系,获取障碍物与主车之间的空间关系信息,其中,障碍物与主车之间的空间关系信息包括障碍物在主车坐标系下的位置信息、障碍物与主车的相对速度以及障碍物的绝对速度;
S53、根据遮蔽车与主车之间的空间关系信息、障碍物与主车之间的空间关系信息,结合主车、遮蔽车以及障碍物各自的尺寸信息,生成对应的场景模型。
5.根据权利要求1所述的一种无人驾驶协同探测方法,其特征在于,所述步骤S51具体包括以下步骤:
S511、基于主车坐标系,主车的第二车载探测器以第二预设时间间隔分别探测遮蔽车的角度和距离数据,得到遮蔽车的第一组角度和距离数据,以及第二组角度和距离数据;
S512、根据遮蔽车的角度和距离数据,确定遮蔽车在主车坐标系下的位置信息,分别得到遮蔽车的第一位置信息和第二位置信息;
S513、将遮蔽车的第二位置信息减去遮蔽车的第一位置信息,得到遮蔽车的位置差信息,将遮蔽车的位置差信息除以第二预设时间间隔,得到遮蔽车在主车坐标系下与主车的相对速度;
S514、结合遮蔽车与主车的相对速度、主车的绝对速度,计算得到主车坐标系下的遮蔽车绝对速度;
遮蔽车在主车坐标系下的位置信息为:
Figure FDA0004184568100000051
其中,(xi0,yi0,zi0)表示遮蔽车在主车坐标系下的坐标数据,di0表示遮蔽车在主车坐标系下与主车之间的距离,αi0表示遮蔽车在主车坐标系下的仰角,θi0表示遮蔽车在主车坐标系下的方向角;
遮蔽车在主车坐标系下与主车的相对速度为:
Figure FDA0004184568100000052
其中,(Δvi0x,Δvi0y,Δvi0z)表示遮蔽车在主车坐标系下与主车之间的相对速度,
Figure FDA0004184568100000053
表示遮蔽车在主车坐标系下的第一位置信息,/>
Figure FDA0004184568100000054
表示遮蔽车在主车坐标系下的第二位置信息,T′表示第二预设时间间隔;
遮蔽车在主车坐标系下的绝对速度为:
Figure FDA0004184568100000055
其中,(vix,viy,viz)表示遮蔽车在主车坐标系下的绝对速度,(v0x,v0y,v0z)表示主车在主车坐标系下的绝对速度。
6.根据权利要求5所述的一种无人驾驶协同探测方法,其特征在于,所述步骤S52中障碍物在主车坐标系下的位置信息为:
Figure FDA0004184568100000056
Figure FDA0004184568100000057
Figure FDA0004184568100000058
Figure FDA0004184568100000061
其中,(xj0,yj0,zj0)表示障碍物在主车坐标系下的坐标数据,Rx表示主车坐标系在X轴方向的旋转矩阵,Ry表示主车坐标系在Y轴方向的旋转矩阵,Rz表示主车坐标系在Z轴方向的旋转矩阵,γi0表示遮蔽车在主车坐标系下的俯仰偏角,βi0表示遮蔽车在主车坐标系下的侧倾偏角,δi0表示遮蔽车在主车坐标系下的车头指向偏角;
障碍物在主车坐标系下与主车的相对速度为:
Figure FDA0004184568100000062
其中,(Δvj0x,Δvj0y,Δvj0z)表示障碍物在主车坐标系下与主车之间的相对速度;
障碍物在主车坐标系下的绝对速度为:
Figure FDA0004184568100000063
其中,(vix,viy,viz)表示障碍物在主车坐标系下的绝对速度。
CN201910701002.6A 2019-07-31 2019-07-31 一种无人驾驶协同探测方法 Active CN110457803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910701002.6A CN110457803B (zh) 2019-07-31 2019-07-31 一种无人驾驶协同探测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910701002.6A CN110457803B (zh) 2019-07-31 2019-07-31 一种无人驾驶协同探测方法

Publications (2)

Publication Number Publication Date
CN110457803A CN110457803A (zh) 2019-11-15
CN110457803B true CN110457803B (zh) 2023-07-04

Family

ID=68484206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910701002.6A Active CN110457803B (zh) 2019-07-31 2019-07-31 一种无人驾驶协同探测方法

Country Status (1)

Country Link
CN (1) CN110457803B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111198385A (zh) * 2019-12-26 2020-05-26 北京旷视机器人技术有限公司 障碍物检测方法、装置、计算机设备和存储介质
CN111966108A (zh) * 2020-09-02 2020-11-20 成都信息工程大学 基于导航系统的极端天气无人驾驶控制系统
CN114578370A (zh) * 2022-04-06 2022-06-03 北京安录国际技术有限公司 一种激光雷达协同应用系统和应用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105270399A (zh) * 2014-07-17 2016-01-27 株式会社万都 利用车辆通信控制车辆的设备及其方法
CN108447304A (zh) * 2018-04-18 2018-08-24 北京交通大学 基于车路协同的施工道路行人车辆避撞预警系统及方法
CN108875658A (zh) * 2018-06-26 2018-11-23 大陆汽车投资(上海)有限公司 一种基于v2x通讯设备的对象识别方法
CN109572555A (zh) * 2018-11-13 2019-04-05 百度在线网络技术(北京)有限公司 一种应用于无人车的遮挡信息显示方法和系统
CN109996212A (zh) * 2019-04-11 2019-07-09 深圳市大富科技股份有限公司 车辆盲区信息获取方法、车载终端以及存储设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109212530B (zh) * 2017-07-04 2022-03-11 阿波罗智能技术(北京)有限公司 用于确定障碍物速度的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105270399A (zh) * 2014-07-17 2016-01-27 株式会社万都 利用车辆通信控制车辆的设备及其方法
CN108447304A (zh) * 2018-04-18 2018-08-24 北京交通大学 基于车路协同的施工道路行人车辆避撞预警系统及方法
CN108875658A (zh) * 2018-06-26 2018-11-23 大陆汽车投资(上海)有限公司 一种基于v2x通讯设备的对象识别方法
CN109572555A (zh) * 2018-11-13 2019-04-05 百度在线网络技术(北京)有限公司 一种应用于无人车的遮挡信息显示方法和系统
CN109996212A (zh) * 2019-04-11 2019-07-09 深圳市大富科技股份有限公司 车辆盲区信息获取方法、车载终端以及存储设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蒂莫西•D•巴富特.距离-方位角-俯仰角模型.《人工智能与机器人系列 机器人学中的状态估计》.2018, *

Also Published As

Publication number Publication date
CN110457803A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
US11198341B2 (en) Trailer detection and autonomous hitching
CN110457803B (zh) 一种无人驾驶协同探测方法
US10424081B2 (en) Method and apparatus for calibrating a camera system of a motor vehicle
CN106054174B (zh) 使用雷达和摄像机用于横越交通应用的融合方法
CN109115173B (zh) 基于直线定位模型的掘进机机身位姿单目视觉测量方法
JP4052650B2 (ja) 障害物検出装置、方法及びプログラム
CN110745140B (zh) 一种基于连续图像约束位姿估计的车辆换道预警方法
EP2209091B1 (en) System and method for object motion detection based on multiple 3D warping and vehicle equipped with such system
EP2256690B1 (en) Object motion detection system based on combining 3D warping techniques and a proper object motion detection
US6812831B2 (en) Vehicle surroundings monitoring apparatus
US9280824B2 (en) Vehicle-surroundings monitoring device
CN108596058A (zh) 基于计算机视觉的行车障碍物测距方法
US9661319B2 (en) Method and apparatus for automatic calibration in surrounding view systems
CN111381248B (zh) 一种考虑车辆颠簸的障碍物检测方法及系统
CN107615201A (zh) 自身位置估计装置及自身位置估计方法
JP2004086779A (ja) 障害物検出装置及びその方法
US11783507B2 (en) Camera calibration apparatus and operating method
US10740908B2 (en) Moving object
US11030761B2 (en) Information processing device, imaging device, apparatus control system, movable body, information processing method, and computer program product
JP7171425B2 (ja) 移動量推定装置
CN108961313B (zh) 二维世界坐标系的俯视行人风险量化方法
KR20160120467A (ko) 차량용 2차원 레이더의 방위각 보정 장치 및 방법
CN106885523B (zh) 一种车辆路径跟随误差视觉测量优化方法
JP2007280387A (ja) 物体移動の検出方法及び検出装置
CN109059863B (zh) 将平视行人轨迹点向量映射至二维世界坐标系的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant