CN110452692A - 一种离子液体修饰的荧光碳点的制备和应用 - Google Patents
一种离子液体修饰的荧光碳点的制备和应用 Download PDFInfo
- Publication number
- CN110452692A CN110452692A CN201910649556.6A CN201910649556A CN110452692A CN 110452692 A CN110452692 A CN 110452692A CN 201910649556 A CN201910649556 A CN 201910649556A CN 110452692 A CN110452692 A CN 110452692A
- Authority
- CN
- China
- Prior art keywords
- fluorescent carbon
- carbon point
- ionic liquid
- preparation
- liquid modified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/65—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N21/643—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6432—Quenching
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
本发明属于纳米材料制备和光学传感检测领域,具体为一种离子液体修饰的荧光碳点的制备和应用。主要包括以下步骤:(1)4‑甲氨基吡啶与柠檬酸混合后,在一定温度下,经脱水缩合得到吡啶修饰的荧光碳点材料;(2)1,6‑二溴己烷与步骤1中制备的荧光碳点反应得到离子液体修饰的功能性荧光碳点材料;(3)1‑溴十二烷与步骤1中制备的荧光碳点反应得到两亲性荧光碳点材料;(4)步骤2,3中所得功能性碳点实现对亚铁离子选择性检测。本发明的有益效果是:制备方法简单,成本低廉,所得功能性荧光碳点材料具有良好的稳定性,对Fe2+检测有良好的选择性和较高的灵敏度。
Description
技术领域
本发明属于纳米材料制备和光学传感检测领域,具体为一种离子液体修饰的荧光碳点的制备和应用。
背景技术
近年来,碳量子点(CDs)、石墨烯量子点、多环芳烃等发光材料受到了广泛的关注,且已广泛应用于传感器和生物成像领域。其中,荧光碳点材料不再仅限于由共轭基团或凝聚基团组成的发射源,它表现出特殊的物理化学和光学特性。在CDs的合成中,常用柠檬酸作为碳源,通过聚合或热裂解与胺类低聚物反应,得到目标荧光材料。前期研究表明,选择不同化学结构的胺前驱体,可以获得可调控的光学性能。然而,现有的制备方法和相关应用也存在着一定的缺陷,主要是选择的胺前驱体结构单一和所得荧光材料应用范围有限。
此外,大多数制备的荧光碳点材料对不同pH值溶液敏感,稳定性较差,容易产生荧光猝灭,极大地限制其在某些领域的进一步应用。鉴于此,对现有的合成方法进行改进具有重要的实际价值和研究意义。
发明内容
本发明的目的是在于提供一种离子液体修饰的荧光碳点的制备方法和应用研究。本发明的技术任务之一:提供一种制备方法简单,成本低廉的合成方法。
本发明的技术任务之二:所得功能性荧光碳点材料应具有良好的稳定性,对Fe2+检测有良好的选择性和较高的灵敏度。
为实现上述目的,本发明采用的技术方案如下:
1. 一种离子液体修饰的荧光碳点的制备,步骤如下:
(1)在耐压试管中依次称取加入2.10-4.20g柠檬酸,3.24-6.48 g 4-甲氨基吡啶和20-40 mL乙醇,在一定温度下搅拌,反应完全后即可获得荧光碳点材料CDs-1;
(2)将步骤1中制备的CDs-1与3.66-7.32 g 1,6-二溴己烷混合,在一定温度下搅拌,减压除去溶剂,20-30 mL正己烷洗涤产物,真空干燥,即可获得离子液体修饰的功能性荧光碳点材料CDs-2;
(3)将步骤1中制备的CDs-1与7.47-1.494 g 1-溴十二烷混合,在一定温度下搅拌,减压除去溶剂,用20-30 mL正己烷洗涤产物,真空干燥,即可获得离子液体修饰的功能性荧光碳点材料CDs-3。
进一步地,步骤(1)中反应温度为155 ℃,磁力搅拌转速为300-500 r/min,反应完全时间为8 h。
进一步地,步骤(2)中反应温度为85 ℃,磁力搅拌转速为300-500 r/min,反应完全时间为24 h。
进一步地,步骤(3)中反应温度为85 ℃,磁力搅拌转速为300-500 r/min,反应完全时间为24 h。
2. 如上1所述的制备方法制备的碳点复合材料CDs-2和CDs-3用于荧光信号检测Fe2+的应用,步骤如下:
(4)分别称取100-200 mg CDs-2和100-200 mg CDs-3溶于50-100 mL去离子水,配制成相应溶液,取1 mL上述溶液对不同浓度的 Fe2+水溶液进行荧光强度检测,记录相应荧光强度的变化。
进一步地,步骤(4)中Fe2+检测所用激发波长为350 nm,波长范围为360-675 nm,Fe2+浓度范围为 0.08-1.5 μM。
本发明的有益效果是:制备方法简单,成本低廉,所得功能性荧光碳点材料具有良好的稳定性,对Fe2+检测有良好的选择性和较高的灵敏度等优势。
具体实施方式
现在结合具体实施例对本发明做进一步说明,以下实施例旨在说明本发明而不是对本发明的进一步限定。
实施例一:一种离子液体修饰的荧光碳点的制备
(1)在耐压试管中依次称取加入2.10柠檬酸,3.24g 4-甲氨基吡啶和20 mL乙醇,升温至155 ℃,300 r/min磁力搅拌,反应8 h后即可获得荧光碳点材料4.88 g CDs-1。
(2)将步骤1中制备的CDs-1与3.66 g 1,6-二溴己烷混合,升温至85 ℃,300 r/min磁力搅拌,反应24 h后,减压除去溶剂,20 mL正己烷洗涤产物,真空干燥,即可获得离子液体修饰的功能性荧光碳点材料CDs-2,产率为82%。
(3)将步骤1中制备的CDs-1与7.47 g 1-溴十二烷混合,升温至85 ℃,300 r/min磁力搅拌,反应24 h后,减压除去溶剂,20 mL正己烷洗涤产物,真空干燥,即可获得离子液体修饰的功能性荧光碳点材料CDs-3,产率为86%。
实施例二:Fe2+检测
分别称取100 mg实施例一中步骤(2)和(3)制备的 CDs-2和CDs-3,溶于溶于50 mL去离子水,配制成相应溶液,取1 mL上述溶液对1 μM Fe2+水溶液进行荧光强度检测,检测过程中所用激发波长为350 nm,检测波长范围为360-675 nm,记录相应荧光强度的变化。实验结果表明,CDs-2作为荧光探针时,Fe2+对其荧光强度影响较小;CDs-3作为荧光探针时,Fe2+对其荧光强度影响较大,发生明显的荧光猝灭现象。通过两者信号差异的比较,可以有效排除其他金属离子的干扰,确定了对Fe2+的专一性检测。同时在0.08-1.5 μM范围内保持良好的线性关系,相关系数在0.994以上,检测限为0.01 μM。
Claims (5)
1.一种离子液体修饰的荧光碳点的制备和应用,其特征在于包括以下步骤:
(1)在耐压试管中依次称取加入2.10-4.20g柠檬酸,3.24-6.48 g 4-甲氨基吡啶和20-40 mL乙醇,在一定温度下搅拌,反应完全后即可获得荧光碳点材料CDs-1;
(2)将步骤1中制备的CDs-1与3.66-7.32 g 1,6-二溴己烷混合,在一定温度下搅拌,减压除去溶剂,20-30 mL正己烷洗涤产物,真空干燥,即可获得离子液体修饰的功能性荧光碳点材料CDs-2;
(3)将步骤1中制备的CDs-1与7.47-1.494 g 1-溴十二烷混合,在一定温度下搅拌,减压除去溶剂,用20-30 mL正己烷洗涤产物,真空干燥,即可获得具有两亲性的功能性荧光碳点材料CDs-3;
(4)分别称取100-200 mg CDs-2和100-200 mg CDs-3溶于50-100 mL去离子水,配制成相应溶液,取1 mL上述溶液对不同浓度 Fe2+水溶液进行荧光强度检测,记录相应荧光强度的变化。
2.根据权利要求1所述的一种离子液体修饰的荧光碳点的制备和应用,其特征是:所述步骤(1)中反应温度为155 ℃,磁力搅拌转速为300-500 r/min,反应完全时间为8 h。
3.根据权利要求1所述的一种离子液体修饰的荧光碳点的制备和应用,其特征是:所述步骤(2)中反应温度为85 ℃,磁力搅拌转速为300-500 r/min,反应完全时间为24 h。
4. 根据权利要求1所述的一种离子液体修饰的荧光碳点的制备和应用,其特征是:所述步骤(3)中反应温度为85 ℃,磁力搅拌转速为300-500 r/min,反应完全时间为24 h。
5. 根据权利要求1所述的一种离子液体修饰的荧光碳点的制备和应用,其特征是:所述步骤(4)中Fe2+检测所用激发波长为350 nm,波长范围为360-675 nm,浓度范围为0.08-1.5 μM。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910649556.6A CN110452692B (zh) | 2019-07-18 | 2019-07-18 | 一种离子液体修饰的荧光碳点的制备和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910649556.6A CN110452692B (zh) | 2019-07-18 | 2019-07-18 | 一种离子液体修饰的荧光碳点的制备和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110452692A true CN110452692A (zh) | 2019-11-15 |
CN110452692B CN110452692B (zh) | 2022-06-24 |
Family
ID=68482880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910649556.6A Active CN110452692B (zh) | 2019-07-18 | 2019-07-18 | 一种离子液体修饰的荧光碳点的制备和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110452692B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111272717A (zh) * | 2020-02-10 | 2020-06-12 | 河南师范大学 | 基于离子液体新型荧光碳点的一步水热合成及其对磺胺噻唑的检测应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104327851A (zh) * | 2014-09-18 | 2015-02-04 | 中国科学院长春光学精密机械与物理研究所 | 两亲性碳纳米点及其制备方法与应用 |
CN105176528A (zh) * | 2015-08-24 | 2015-12-23 | 中物院成都科学技术发展中心 | 一种氮掺杂碳基量子点的制备方法 |
CN108384539A (zh) * | 2018-02-08 | 2018-08-10 | 中国科学院苏州生物医学工程技术研究所 | 一种绿色荧光碳量子点、制备方法及其应用 |
-
2019
- 2019-07-18 CN CN201910649556.6A patent/CN110452692B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104327851A (zh) * | 2014-09-18 | 2015-02-04 | 中国科学院长春光学精密机械与物理研究所 | 两亲性碳纳米点及其制备方法与应用 |
CN105176528A (zh) * | 2015-08-24 | 2015-12-23 | 中物院成都科学技术发展中心 | 一种氮掺杂碳基量子点的制备方法 |
CN108384539A (zh) * | 2018-02-08 | 2018-08-10 | 中国科学院苏州生物医学工程技术研究所 | 一种绿色荧光碳量子点、制备方法及其应用 |
Non-Patent Citations (1)
Title |
---|
MEICE LU ET AL.,: ""One-step sonochemical synthesis of versatile nitrogen-doped carbon quantum dots for sensitive detection of Fe2+ ions and temperature in vitro"", 《MATERIALS SCIENCE & ENGINEERING C》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111272717A (zh) * | 2020-02-10 | 2020-06-12 | 河南师范大学 | 基于离子液体新型荧光碳点的一步水热合成及其对磺胺噻唑的检测应用 |
CN111272717B (zh) * | 2020-02-10 | 2024-02-27 | 河南师范大学 | 基于离子液体新型荧光碳点的一步水热合成及其对磺胺噻唑的检测应用 |
Also Published As
Publication number | Publication date |
---|---|
CN110452692B (zh) | 2022-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wei et al. | Multicolor and photothermal dual-readout biosensor for visual detection of prostate specific antigen | |
Chen et al. | Fluorescence immunoassay based on the phosphate-triggered fluorescence turn-on detection of alkaline phosphatase | |
Zhao et al. | Fluorescence immunoassay based on the alkaline phosphatase triggered in situ fluorogenic reaction of o-phenylenediamine and ascorbic acid | |
Wang et al. | Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma | |
Liu et al. | Turn-on fluorescence sensor for the detection of heparin based on rhodamine B-modified polyethyleneimine–graphene oxide complex | |
Liu et al. | A novel fluorescent DNA sensor for ultrasensitive detection of Helicobacter pylori | |
Yang et al. | A two dimensional metal–organic framework nanosheets-based fluorescence resonance energy transfer aptasensor with circular strand-replacement DNA polymerization target-triggered amplification strategy for homogenous detection of antibiotics | |
Yang et al. | A multicolor fluorescence nanoprobe platform using two-dimensional metal organic framework nanosheets and double stirring bar assisted target replacement for multiple bioanalytical applications | |
Wang et al. | Carbon dots based fluorescence methods for the detections of pesticides and veterinary drugs: Response mechanism, selectivity improvement and application | |
Bao et al. | A fluorescent conjugated polymer for trace detection of diamines and biogenic polyamines | |
Zhang et al. | CRISPR/Cas Systems‐Inspired Nano/Biosensors for Detecting Infectious Viruses and Pathogenic Bacteria | |
Qian et al. | Simultaneous detection of multiple DNA targets by integrating dual‐color graphene quantum dot nanoprobes and carbon nanotubes | |
Guo et al. | A pH-responsive colorimetric strategy for DNA detection by acetylcholinesterase catalyzed hydrolysis and cascade amplification | |
Song et al. | A facile fluorescence method for versatile biomolecular detection based on pristine α-Fe2O3 nanoparticle-induced fluorescence quenching | |
Jampasa et al. | Ultrasensitive electrochemiluminescence sensor based on nitrogen-decorated carbon dots for Listeria monocytogenes determination using a screen-printed carbon electrode | |
Yin et al. | Dual-wavelength electrochemiluminescence biosensor based on a multifunctional Zr MOFs@ PEI@ AuAg nanocomposite with intramolecular self-enhancing effect for simultaneous detection of dual microRNAs | |
Wu et al. | A novel recyclable surface-enhanced Raman spectroscopy platform with duplex-specific nuclease signal amplification for ultrasensitive analysis of microRNA 155 | |
Deng et al. | Ratiometric detection of DNA and protein in serum by a universal tripyridinyl RuII complex–encapsulated SiO2@ polydopamine fluorescence nanoplatform | |
Cheng et al. | A coumarin-connected carboxylic indolinium sensor for cyanide detection in absolute aqueous medium and its application in biological cell imaging | |
Ouyang et al. | Recent trends in click chemistry as a promising technology for virus-related research | |
Bahari et al. | Graphdiyne/graphene quantum dots for development of FRET ratiometric fluorescent assay toward sensitive detection of miRNA in human serum and bioimaging of living cancer cells | |
Fan et al. | Catalytic hairpin assembly indirectly covalent on Fe3O4@ C nanoparticles with signal amplification for intracellular detection of miRNA | |
CN106520913A (zh) | 基于酶切循环放大的石墨烯氧化物‑dna传感器的制备方法和在检测凝血酶上的应用 | |
Wu et al. | PCN-224/nano-zinc oxide nanocomposite-based electrochemiluminescence biosensor for HPV-16 detection by multiple cycling amplification and hybridization chain reaction | |
Yan et al. | A sandwich-hybridization assay for simultaneous determination of HIV and tuberculosis DNA targets based on signal amplification by quantum dots-PowerVision™ polymer coding nanotracers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |