CN110449143B - 多功能混合模式色谱固定相及其制备方法 - Google Patents

多功能混合模式色谱固定相及其制备方法 Download PDF

Info

Publication number
CN110449143B
CN110449143B CN201910302998.3A CN201910302998A CN110449143B CN 110449143 B CN110449143 B CN 110449143B CN 201910302998 A CN201910302998 A CN 201910302998A CN 110449143 B CN110449143 B CN 110449143B
Authority
CN
China
Prior art keywords
silica gel
stationary phase
use according
reaction
mercapto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910302998.3A
Other languages
English (en)
Other versions
CN110449143A (zh
Inventor
陈桐
宋广三
肖震
周洪斌
王现平
李平
徐亮
陆毅
刘涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhenjiang Center For Disease Prevention And Control
Zhenjiang Customs Of People's Republic Of China
Original Assignee
Zhenjiang Center For Disease Prevention And Control
Zhenjiang Customs Of People's Republic Of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhenjiang Center For Disease Prevention And Control, Zhenjiang Customs Of People's Republic Of China filed Critical Zhenjiang Center For Disease Prevention And Control
Priority to CN201910302998.3A priority Critical patent/CN110449143B/zh
Publication of CN110449143A publication Critical patent/CN110449143A/zh
Application granted granted Critical
Publication of CN110449143B publication Critical patent/CN110449143B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/482
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种Au‑S/SO3H修饰的多功能混合模式色谱固定相及其制备方法。该色谱固定相是一种新的环境友好的亲水固定相,即可以节省大量试剂成本和减少环境污染,又可对同类或不同类极性食品添加剂和非法添加物实现同步分离,提高检测效率。

Description

多功能混合模式色谱固定相及其制备方法
技术领域
本发明属于材料领域,涉及一种液相色谱固定相,具体涉及一种Au-S/SO3H修饰的多功能混合模式色谱固定相及其制备方法。
背景技术
目前,食品添加剂存在的安全风险主要包括两个方面:一是法定允许使用的食品添加剂过量、超范围使用,二是不法生产者将一些工业用的化学品或未达到食品添加剂标准的原料非法添加到食品当中。按化学性质,食品添加剂可划分为强极性、中等极性和弱极性三类。这三类物质中,大部分弱极性和中等极性的化合物可以用反相色谱(Reversed-phase liquid chromatography,RPLC)来分离。但是RPLC对极性食品添加剂和非法添加物保留很弱或无法保留。而正相色谱通常使用非极性的溶剂做流动相,极性分析物很难溶解于非极性的流动相中。目前,分离极性食品添加剂和非法添加物的主要手段是亲水作用色谱(Hydrophilic interaction liquid chromatography,HILIC)。在亲水色谱柱上,正相色谱所使用的非极性流动相体系被水和有机溶剂体系所代替,这就解决了极性分析物在正相色谱体系中不溶解的问题。相关文献已经证明,极性化合物在亲水色谱柱上有强保留,分离效果较好(Kamichatani W.,et al,Analytica Chimica Acta, 2015,853,602-607;HajekR.,et al,Analytical Chemistry,2017,89,12425-12432)。
但是,在HILIC模式下,流动相需使用大量的乙腈(acetonitrile,ACN),含量在70%以上,但是大量使用会对自然环境造成严重污染。近些年,富水液相色谱(Per aqueousliquid chromatography,PALC)的出现,解决了上述问题(Gritti F.,et al,Journal ofChromatography A,2010,1217,683-688)。PALC不但可以替代HILIC对极性化合物高效分离;而且流动相中水的比例通常>90%,极大的减少有害溶剂的使用,是一种具有发展潜力的绿色色谱技术(Li Y.Y.,et al,Analytica Chimica Acta,2012,726,102-108)。目前,国内外对于PALC的文献报道非常少。此类固定相的种类还十分有限,面对复杂样品的有效分离,必须研发更多新型的、具有良好的稳定性并且分离效能较高的 PALC固定相。
发明内容
本发明的目的是提供一种Au-S/SO3H修饰的多功能混合模式色谱固定相及其制备方法。这是一种新的环境友好的亲水固定相,即可以节省大量试剂成本和减少环境污染,又可对同类或不同类极性食品添加剂和非法添加物实现同步分离,提高检测效率。
本发明提供的Au-S/SO3H修饰的多功能混合模式色谱固定相,其结构示意可为由式I所示基团通过取代位与-SO3H或金纳米颗粒相连组成;
*代表所述取代位;
每个取代位只能连接所述-SO3H和金纳米颗粒中任意一种;
Figure BDA0002028849560000021
上述固定相的示意具体可为如下式I1所示:
Figure BDA0002028849560000022
其中,·-代表金纳米颗粒。
上述固定相中,所述金纳米颗粒的粒径为5-15nm。
上述固定相也为按照下述本发明提供的方法制得的产品。
本发明提供的制备所述固定相的方法,包括:
将巯基功能化的硅胶分散于氯金酸水溶液中进行氧化还原反应,反应完毕得到所述固定相。
上述方法中,所述氯金酸水溶液的质量百分浓度为0.01~0.05%;
每克所述巯基功能化的硅胶所需氯金酸水溶液的剂量为5~20mL;具体为10mL;
所述氧化还原反应步骤中,温度为室温;时间为20-30h;具体为24h。
所述方法还包括:在所述氧化还原反应步骤之后,将所得产物洗涤,真空干燥;
所述洗涤步骤中,洗涤剂依次为超纯水和甲醇;
所述真空干燥步骤中,温度具体为60℃;时间为12h;
所述巯基功能化的硅胶按照包括如下步骤的方法制得:
将预处理后的硅胶于有机溶剂中与巯基功能化试剂进行巯基功能化,反应完毕得到所述巯基功能化的硅胶。
上述巯基功能化的硅胶的制备方法中,所述有机溶剂为无水甲苯;
所述巯基功能化试剂为巯基硅烷;所述巯基硅烷具体选自巯基丙基三甲氧基硅烷和巯基丙基三乙氧基硅烷中至少一种;
每克所述预处理后的硅胶所需有机溶剂的剂量为10~30mL;具体为15mL;
每克所述预处理后的硅胶所需巯基功能化试剂的剂量为0.5~1.5mL;具体为1.0mL;
所述巯基功能化反应步骤中,温度为90-120℃;具体为110℃;时间为12-24h;具体为20h;
所述巯基功能化反应在惰性气氛中进行;所述惰性气氛具体为氮气气氛;
所述方法还包括:在所述巯基功能化之后,将所得产物洗涤,真空干燥;
具体的,所述洗涤步骤中,所用洗涤剂依次为二氯甲烷、丙酮和甲醇;
所述真空干燥步骤中,温度具体为60℃;时间为12h;
所述预处理的硅胶中,预处理为羟基化;
具体的,上述预处理可为各种常规羟基化方法,如可按照如下步骤进行预处理:将硅胶分散在3mol/L的盐酸中,回流10-12h,然后用超纯水洗至中性,100-150℃真空干燥12-20h。
该步骤所得预处理的硅胶的直径为4-6μm,孔径为10-50nm,比表面积为300-500m2/g。所述预处理的硅胶的直径为4-6μm,孔径为10-50nm,比表面积为300-500 m2/g。
上述本发明提供的Au-S/SO3H修饰的多功能混合模式色谱固定相的合成路线如图6所示。
该方法主要是通过Au-S键固定到硅胶表面。此过程有三步反应:首先,将Au3+还原成Au NPs;然后,将HS氧化成SO3H;最后,Au NPs与未反应的HS配体配位,形成稳定的Au-S键。
另外,上述本发明提供的固定相作为色谱柱的固定相在同柱多色谱分离中的应用及该固定相在分离极性物质或非法添加物中的应用,也属于本发明的保护范围。具体的,所述同柱多色谱分离为同柱HILIC/离子交换分离或PALC/离子交换分离;
所述极性物质为极性的食品添加剂或极性的维生素化合物;所述极性的食品添加剂具体选自山梨酸钾、苯甲酸钠和糖精钠中至少一种;所述极性的维生素化合物具体选自维生素B1、维生素C、烟酰胺和维生素B2中至少一种。
本发明具有如下优点:
1.结构新颖,分离复杂样品能力强。本发明合成的固定相通过一步还原法将金纳米颗粒键合于硅胶外表面,同时-HS被氧化成-SO3H。相比于传统的反相固定相,此固定相结合了纳米颗粒的高比表面积和优异的选择性以及传统色谱填料良好的机械强度等优点,同时将大量的巯基氧化成了磺酸基团,不但具有强阳离子交换作用,而且增加了固定相的亲水性,保证固定相在富水流动相中长时间使用有良好的稳定性,固定相能够表现出HILIC/离子交换或PALC/离子交换的混合模式保留机理,实现同柱多色谱分离模式,可显著提高分离复杂样品的能力。该固定相制备简单、性能稳定、使用寿命长、分离效果好。
2.绿色环保。此色谱柱主要在PALC模式下使用,流动相主要采用超纯水,避免了HILIC模式下的大比例的乙腈的使用,有利于环境保护。
3.应用范围广。本发明合成的固定相对食品中多种类极性添加剂和非法添加物有很强的分离能力,为实现检测领域的难点——高通量检测提供可能,具有重要的应用价值。
附图说明
图1为球型硅胶的投射电镜图。
图2为球型硅胶局部边缘的投射电镜图。
图3为Au-S/SO3H修饰的球型硅胶(固定相)的投射电镜图。
图4为山梨酸钾、苯甲酸钠和糖精钠的色谱分离图。
图5为维生素B1、维生素C、烟酰胺和维生素B2的色谱分离图。
图6为本发明提供的Au-S/SO3H修饰的多功能混合模式色谱固定相的合成路线。
具体实施方式
下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获得。
实施例1
1)巯基功能化的硅胶的制备
预处理过程包括如下步骤:将硅胶分散在3mol/L的盐酸中,回流10-12h,然后用超纯水洗至中性,100-150℃真空干燥12-20h。
该步骤所得预处理的硅胶的直径为4-6μm,孔径为10-50nm,比表面积为300-500m2/g。
将2.0g预处理后的硅胶分散在30mL无水甲苯中,加入2.0mL巯基丙基三甲氧基硅烷搅拌使其混合均匀,在氮气保护下110℃回流搅拌进行巯基功能化反应20h。反应结束后,过滤混合物,分别用二氯甲烷、丙酮和甲醇洗涤固体材料,所得固体在 60℃条件下真空干燥过夜,得到巯基功能化的硅胶。
2)Au-S/SO3H修饰的硅胶的制备
将20mL 0.01%HAuCl4水溶液倒入圆底烧瓶中,然后向其中加入2g巯基功能化的硅胶,室温下搅拌24h。反应结束后,过滤反应混合物,分别用超纯水和甲醇洗涤固体材料,所得固体在60℃条件下真空干燥过夜,得到Au-S/SO3H修饰的硅胶。此过程有三步反应:首先,将Au3+还原成Au NPs;同时,将HS氧化成SO3H;最后, Au NPs与未反应的HS配体配位,形成稳定的Au-S键。
图1为球型硅胶的投射电镜图。
图2为球型硅胶局部边缘的投射电镜图。
图3为Au-S/SO3H修饰的球型硅胶(固定相)的投射电镜图。
由图可知,硅胶表面修饰Au NPs后,采用透射电镜对硅胶修饰前后的表面形貌进行了研究。从图1和2可以看出,纯硅胶外表面比较光滑,而Au-S/SO3H修饰的硅胶(图3),许多Au纳米颗粒通过Au-S键附着在其外表面。同时,部分-HS基团被氧化成-SO3H基团。以上结果说明,此Au-S/SO3H修饰的硅胶作为亲水固定相的合成成功。
该Au-S/SO3H修饰的多功能混合模式色谱固定相的结构确认结果如下:
通过傅里叶红外光谱仪(FT-IR)研究了球形硅胶、巯基功能化的硅胶和Au-S/SO3H修饰的硅胶的表面化学结构变化。与球形硅胶相比,巯基功能化的硅胶在2568cm-1出现了HS的振动吸收峰。由表1的元素分析结果也可以看到,巯基功能化的硅胶的碳、氢和硫元素的含量增加,表明巯基成功的被修饰于硅胶表面。而Au-S/SO3H修饰的硅胶作为亲水固定相在1250cm-1附近出现了SO3H基团的伸缩振动峰,而2568cm-1的 HS振动吸收峰明显减弱,主要是因为部分HS基团被氧化成SO3H基团所致;元素分析结果显示,与巯基功能化的硅胶相比,碳、氢和硫元素的含量略有下降,这可能是引入了Au NPs的原因。上述结果清晰的表明成功的制备了Au-S/SO3H修饰的硅胶亲水固定相。
表1、固定相合成各个阶段的元素分析结果
Figure BDA0002028849560000061
实施例2
用实施例1所得到的Au-S/SO3H修饰的硅胶亲水固定相,采用匀浆法填充于长150mm,内径为4.6mm的不锈钢柱子中,将所得色谱柱用于分析分离样品,在富水液相色谱模式下,分离三种水溶性食品添加剂:山梨酸钾,苯甲酸钠,糖精钠。
色谱条件:流动相为由乙腈和5mmol/L的乙酸铵水溶液以体积比5:95混匀而得的混合液;流速为1mL/min;温度为室温;检测波长:230nm。
图4为其色谱分离结果。
实施例3
用实施例1所得到的Au-S/SO3H修饰的硅胶亲水固定相,采用匀浆法填充于长150mm,内径为4.6mm的不锈钢柱子中,将所得色谱柱用于分析分离样品,在富水液相色谱模式下,分离四种水溶性维生素化合物:维生素B1,维生素C,烟酰胺,维生素B2
色谱条件:流动相为由乙腈和10mmol/L乙酸铵水溶液以体积比10:90混匀而得的混合液;流速为1mL/min;温度为室温;检测波长:280nm。
图5为其色谱分离结果。
图4和图5说明,本发明提供的Au-S/SO3H修饰的硅胶亲水固定相,在富水液相色谱模式下,对极性的食品添加剂和非法添加物具有很好的保留和分离选择性。
上述实施例仅是为了清楚的说明本发明所作的举例,而并非是对本发明的实施方式的限定,这里无法对所有的实施方式予以举例。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (11)

1.一种固定相作为色谱柱的固定相在同柱多色谱分离中的应用;
所述同柱多色谱分离为同柱HILIC/离子交换分离或PALC/离子交换分离;
所述固定相分离的是极性的食品添加剂;
所述固定相的制备方法,包括:
将巯基功能化的硅胶分散于氯金酸水溶液中进行氧化还原反应,反应完毕得到所述固定相;
所述固定相为Au-S/SO3H修饰的多功能混合模式色谱固定相,所述固定相中含有金纳米颗粒。
2.一种固定相作为色谱柱的固定相在同柱多色谱分离中的应用;
所述同柱多色谱分离为同柱HILIC/离子交换分离或PALC/离子交换分离;
所述固定相分离的是极性的维生素化合物;
所述固定相的制备方法,包括:
将巯基功能化的硅胶分散于氯金酸水溶液中进行氧化还原反应,反应完毕得到所述固定相;
所述固定相为Au-S/SO3H修饰的多功能混合模式色谱固定相,所述固定相中含有金纳米颗粒。
3.根据权利要求1或2所述的应用,其特征在于:所述氯金酸水溶液的质量百分浓度为0.01~0.05%;
每克所述巯基功能化的硅胶所需氯金酸水溶液的剂量为5~20 mL。
4.根据权利要求3所述的应用,其特征在于:每克所述巯基功能化的硅胶所需氯金酸水溶液的剂量为10mL。
5.根据权利要求1或2所述的应用,其特征在于:所述氧化还原反应步骤中,温度为室温;时间为20-30h。
6.根据权利要求1或2所述的应用,其特征在于:所述巯基功能化的硅胶按照包括如下步骤的方法制得:
将预处理后的硅胶于有机溶剂中与巯基功能化试剂进行巯基功能化反应,反应完毕得到所述巯基功能化的硅胶。
7.根据权利要求6所述的应用,其特征在于:所述有机溶剂为无水甲苯;
所述巯基功能化试剂为巯基硅烷;
每克所述预处理后的硅胶所需有机溶剂的剂量为10~30 mL;
每克所述预处理后的硅胶所需巯基功能化试剂的剂量为0.5~1.5 mL;
所述巯基功能化反应步骤中,温度为90-120℃;时间为12-24h;
所述预处理的硅胶中,预处理为羟基化;
所述预处理的硅胶的直径为4-6 μm,孔径为10-50 nm,比表面积为300-500 m2/g。
8.根据权利要求7所述的应用,其特征在于:所述巯基硅烷选自巯基丙基三甲氧基硅烷和巯基丙基三乙氧基硅烷中至少一种;
每克所述预处理后的硅胶所需有机溶剂的剂量为15mL;
每克所述预处理后的硅胶所需巯基功能化试剂的剂量为1.0mL;
所述巯基功能化反应步骤中,温度为110℃;时间为20h。
9.根据权利要求1或2所述的应用,其特征在于:所述金纳米颗粒的粒径为5-15 nm。
10.根据权利要求1所述的应用,其特征在于:所述极性的食品添加剂选自山梨酸钾、苯甲酸钠和糖精钠中至少一种。
11.根据权利要求2所述的应用,其特征在于:所述极性的维生素化合物选自维生素B1、维生素C、烟酰胺和维生素B2中至少一种。
CN201910302998.3A 2019-04-16 2019-04-16 多功能混合模式色谱固定相及其制备方法 Active CN110449143B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910302998.3A CN110449143B (zh) 2019-04-16 2019-04-16 多功能混合模式色谱固定相及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910302998.3A CN110449143B (zh) 2019-04-16 2019-04-16 多功能混合模式色谱固定相及其制备方法

Publications (2)

Publication Number Publication Date
CN110449143A CN110449143A (zh) 2019-11-15
CN110449143B true CN110449143B (zh) 2022-04-19

Family

ID=68480908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910302998.3A Active CN110449143B (zh) 2019-04-16 2019-04-16 多功能混合模式色谱固定相及其制备方法

Country Status (1)

Country Link
CN (1) CN110449143B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111841515B (zh) * 2020-07-21 2023-03-28 镇江海关综合技术中心 作为富水色谱固定相的离子液体桥联杂化氧化硅及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101785998A (zh) * 2010-02-26 2010-07-28 上海师范大学 一种巯基功能化有序介孔硅固载的Au非均相催化剂及其制备方法和应用
CN105833849A (zh) * 2016-02-02 2016-08-10 大连依利特分析仪器有限公司 反相-强阳离子交换混合机理色谱固定相的制备方法
CN106432645A (zh) * 2016-09-26 2017-02-22 山东省分析测试中心 一种“巯基‑金”修饰硅胶表面苏丹红分子印迹材料、制备方法及应用
CN109433170A (zh) * 2018-12-24 2019-03-08 中国科学院兰州化学物理研究所 一种纳米金杂化硅胶及十八烷基硫醇修饰纳米金杂化硅胶的制备和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101785998A (zh) * 2010-02-26 2010-07-28 上海师范大学 一种巯基功能化有序介孔硅固载的Au非均相催化剂及其制备方法和应用
CN105833849A (zh) * 2016-02-02 2016-08-10 大连依利特分析仪器有限公司 反相-强阳离子交换混合机理色谱固定相的制备方法
CN106432645A (zh) * 2016-09-26 2017-02-22 山东省分析测试中心 一种“巯基‑金”修饰硅胶表面苏丹红分子印迹材料、制备方法及应用
CN109433170A (zh) * 2018-12-24 2019-03-08 中国科学院兰州化学物理研究所 一种纳米金杂化硅胶及十八烷基硫醇修饰纳米金杂化硅胶的制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Facile method for the synthesis of core/shell Fe3O4@SiO2@SiO2-SH-Au: a super magnetic nanocatalyst for water‑medium and solvent‑free alkyne hydration;Shahnaz Rostamizadeh et al.;《J. Iran. Chem. Soc.》;20160419;第13卷(第7期);摘要、催化剂制备部分、图1 *
Water-Medium and Solvent-Free Organic Reactions over a Bifunctional Catalyst with Au Nanoparticles Covalently Bonded to HS/SO3H Functionalized Periodic Mesoporous Organosilica;Feng-Xia Zhu et al.;《J. Am. Chem. Soc.》;20110627;第133卷;摘要、催化剂制备部分 *

Also Published As

Publication number Publication date
CN110449143A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
Rocío-Bautista et al. Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches
US10464811B2 (en) Method of forming a particulate porous metal oxide or metalloid oxide
Cestari et al. The removal of anionic dyes from aqueous solutions in the presence of anionic surfactant using aminopropylsilica—A kinetic study
Inoue et al. Adsorptive separation of some metal ions by complexing agent types of chemically modified chitosan
Mehdinia et al. Design of a surface-immobilized 4-nitrophenol molecularly imprinted polymer via pre-grafting amino functional materials on magnetic nanoparticles
Lu et al. Hydrophilic maltose-modified magnetic metal-organic framework for highly efficient enrichment of N-linked glycopeptides
CN109794294B (zh) 一种磺化金属酞菁@zif-8的光催化剂及其制备方法和应用
Zhang et al. Zeolitic imidazolate framework-8/fluorinated graphene coated SiO2 composites for pipette tip solid-phase extraction of chlorophenols in environmental and food samples
Wang et al. Ambient temperature fabrication of a covalent organic framework from 1, 3, 5-triformylphloroglucinol and 1, 4-phenylenediamine as a coating for use in open-tubular capillary electrochromatography of drugs and amino acids
CN103949288B (zh) 分子筛负载的Cu‑Co希夫碱配合物及其制备方法和应用
CN104549183A (zh) 硅胶色谱填料及其制备方法
CN110449143B (zh) 多功能混合模式色谱固定相及其制备方法
CN110302560A (zh) 一种磺酸根功能化共价有机聚合物固相萃取柱
CN107930544B (zh) 磁响应性负载型Janus多级孔SiO2复合微球及其制备方法
Yang et al. One-step double emulsion via amphiphilic SeN supramolecular interactions: Towards porous multi-cavity beads for efficient recovery lithium from brine
Liu et al. Periodic mesoporous organosilica for chromatographic stationary phases: From synthesis strategies to applications
Liu et al. Efficient adsorptive removal of dibenzothiophene from model fuels by encapsulated of Cu+ and phosphotungstic acid (PTA) in Co-MOF
Zhang et al. Rational design of efficient polar heterogeneous catalysts for catalytic oxidative-adsorptive desulfurization in fuel oil
Dong et al. Chiral covalent organic framework-based open tubular capillary electrochromatography column for enantioseparation of selected amino acids and pesticides
Xiang et al. Efficient recovery of gold using Macroporous Metal-Organic framework prepared by the'MOF in MOF'method
Ba et al. Mesoporous covalent organic framework microspheres with dual-phase separation strategy for high-purity glycopeptide enrichment
Cui et al. Cellulose-incorporated imprinted materials with amphiphilic crosslinking structure for selective adsorption of bisphenol A
Li et al. Three-layer coated composite materials PMoV2@ UiO-66-X@ mSiO2: Efficient oxidative desulfurization catalysts
Gao et al. Enantioseparation by zeolitic imidazolate framework-8-silica hybrid monolithic column with sulfobutylether-β-cyclodextrin as a chiral additive in capillary electrochromatography
Wang et al. Naturally occurring kaolinite as a sorbent for solid-phase extraction of calcitriol in soft capsules

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant