CN110448700A - 一种用于靶向诊疗胃癌的纳米载药复合物及制备方法 - Google Patents
一种用于靶向诊疗胃癌的纳米载药复合物及制备方法 Download PDFInfo
- Publication number
- CN110448700A CN110448700A CN201910791814.4A CN201910791814A CN110448700A CN 110448700 A CN110448700 A CN 110448700A CN 201910791814 A CN201910791814 A CN 201910791814A CN 110448700 A CN110448700 A CN 110448700A
- Authority
- CN
- China
- Prior art keywords
- nano
- targeting
- micelle
- diagnosis
- gastric cancer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/28—Compounds containing heavy metals
- A61K31/282—Platinum compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/0002—General or multifunctional contrast agents, e.g. chelated agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0013—Luminescence
- A61K49/0017—Fluorescence in vivo
- A61K49/005—Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
- A61K49/0052—Small organic molecules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0013—Luminescence
- A61K49/0017—Fluorescence in vivo
- A61K49/005—Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
- A61K49/0054—Macromolecular compounds, i.e. oligomers, polymers, dendrimers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0063—Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
- A61K49/0069—Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
- A61K49/0089—Particulate, powder, adsorbate, bead, sphere
- A61K49/0091—Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
- A61K49/0093—Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/08—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
- A61K49/10—Organic compounds
- A61K49/101—Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals
- A61K49/103—Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals the complex-forming compound being acyclic, e.g. DTPA
- A61K49/105—Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals the complex-forming compound being acyclic, e.g. DTPA the metal complex being Gd-DTPA
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/08—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
- A61K49/10—Organic compounds
- A61K49/14—Peptides, e.g. proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
- A61K49/1821—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
- A61K49/1824—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
- A61K49/1827—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
- A61K49/1833—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule
- A61K49/1836—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule the small organic molecule being a carboxylic acid having less than 8 carbon atoms in the main chain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
- A61K49/1821—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
- A61K49/1824—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
- A61K49/1827—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
- A61K49/1866—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle the nanoparticle having a (super)(para)magnetic core coated or functionalised with a peptide, e.g. protein, polyamino acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5169—Proteins, e.g. albumin, gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
本发明首先通过四苯乙烯(TPE)的疏水作用与DSPE‑PEG形成核壳结构的纳米胶束,从而制备了出具有聚集诱导发光性能的可荧光成像的纳米胶束;然后将三价钆离子的螯合剂DTPA修饰在荧光纳米胶束的表面并进一步螯合钆,形成具有MRI成像和荧光成像的双模态成像纳米胶束;再在双模态纳米胶束表面修饰GX1靶向多肽,使得纳米胶束具有靶向性;最后将DACHPt与纳米胶束反应结合,得到靶向双模态成像载药纳米胶束;本发明提出了可以靶向胃肿瘤细胞的GX1靶向肽为靶标,构筑具有靶向胃肿瘤细胞的诊疗一体化试剂。
Description
技术领域
本发明属于生物医用材料领域,尤其涉及一种用于靶向诊疗胃癌的纳米载药及制备方法。
背景技术
胃癌是我国最常见的消化道恶性肿瘤,由于多数胃癌发现于中晚期,预后差,其死亡率高居该类肿瘤首位。全球每年新发现的胃癌病例超过百万例。近年,我国胃癌患病人数也不断上升,胃癌给我国社会和经济发展带来了巨大的负担,严重威胁了我国人民的健康。
研究证明胃癌的发病受环境和遗传因素的影响,是多种基因和多种因素共同参与的复杂过程。目前胃癌发生和发展的分子机制尚未完全阐明。由于早期胃癌患者没有明显的临床症状,因此胃癌早期诊断率很低,多数胃癌患者被确诊时处于中晚期。由于中晚期胃癌患者手术治疗效果不佳,而且胃癌细胞化疗药物敏感性较低,导致其化疗效果差,胃癌患者5年生存率低于30%。化疗是中晚期胃癌重要的治疗手段,但是,胃癌细胞对化疗药物敏感性低常影响其化疗的效果,这是胃癌高致死率的重要原因之一。因此,发展集靶向治疗与成像示踪于一体的新技术手段成为了胃癌诊疗一个重要的课题。
一方面,顺铂是常用于各种肿瘤的化疗药物,但其毒性较大,(1,2-二氨基环己烷)二氯化铂(DACHPt)是一种顺铂的类似物,比顺铂毒性低且与顺铂无交叉耐药,已被广泛用于胃癌化疗。另一方面,分子影像学能在分子水平显示肿瘤的早期变化,它的出现为胃癌的诊断提供了新的思路。MRI技术是肿瘤诊断中重要的模态,具有空间分辨率高和无辐射的优点,被广泛应用于肿瘤分子成像,例如三价钆离子能够改变T1加权像的弛豫时间,从而增强MRI成像效果。但是MRI探针要想用于胃癌的早期临床诊断,还存在特异性和敏感性不足的问题,因此需要寻找特异性更强的靶向分子,以实现诊断试剂的高度特异性,增强靶区信号改变的同时降低非特异性区域的背景信号。一种肿瘤血管靶向多肽GX1由我国第四军医大学利用胃癌移植瘤小鼠模型体内筛选得到,该短肽由9个氨基酸构成,序列为CGNSNPKSC,能靶向聚集于胃癌肿瘤血管。以上给胃癌诊疗一体化提供了可能性
发明内容
本发明的目的在于提供一种用于靶向诊疗胃癌的纳米载药复合物及制备方法。本发明通过设计制备一种集靶向胃癌治疗与MRI(核磁共振)成像示踪于一体的纳米载药复合物,胃癌的治疗过程中(1,2-二氨基环己烷)二氯化铂(DACHPt)的治疗效果和纳米载药复合物在病变区域的MRI成像功能,以期增加靶向位点药物浓度以及提高药物作用时间。
为实现上述目的,本发明采取的技术方案为:
一种用于靶向诊疗胃癌的纳米载药复合物的制备方法,包括以下步骤:
S1以四苯乙烯、二硬脂酰基磷脂酰乙醇胺-聚乙二醇-羧基、二硬脂酰基磷脂酰乙醇胺-聚乙二醇-氨基为原料,溶于二氯甲烷,通过无皂乳液聚合得到荧光纳米胶束;
S2以GdCl3.6H2O为荧光增强剂,通过DTPA将三价钆离子偶联到步骤S1所得的荧光纳米胶束上,制得用于MRI成像纳米胶束的纳米胶束;
S3将靶向肽(GX1)偶联到步骤S2所得用于MRI成像纳米胶束的纳米胶束上,制得靶向肽GX1修饰的荧光纳米胶束;
S4将步骤S3获得的GX1修饰的荧光纳米胶束加入到DACHPt复合水溶液中,制得负载DACHPt的靶向双模态成像纳米胶束。
优选地,所述步骤S1采用以下方法实现:将四苯乙烯用二氯甲烷溶解备用;然后将二硬脂酰基磷脂酰乙醇胺-聚乙二醇-羧基和二硬脂酰基磷脂酰乙醇胺-聚乙二醇-氨基溶解于二氯甲烷室温混合均匀;再将四苯乙烯溶液滴加入聚乙二醇溶液,混合均匀;再边超声边将前面的混合溶液滴加入纯水中,并超声,之后将产物转移到透析袋中,透析,将透析完的产品冷冻干燥,得到产品冻干粉。
优选地,所述在步骤S1中四苯乙烯、二硬脂酰基磷脂酰乙醇胺-聚乙二醇-羧基、二硬脂酰基磷脂酰乙醇胺-聚乙二醇-氨基的用量分别为:4~20份、20~100份、20~100份。
优选地,所述超声时间为0.5~2h;所述透析参数为:透析袋2000~5000Da中,透析2~3天,每天换纯水2~3次。
优选地,所述在步骤S2采用以下方法实现:将DTPA、1-(3-二甲氨丙基)-3-乙基碳二亚胺盐酸盐和N-羟基琥珀酰亚胺溶于纯水中,常温搅拌活化后,加入S1制备所得的荧光纳米胶束,常温搅拌反应,然后调节pH至6~6.5,加入六水合三氯化钆,搅拌反应,反应结束后用透析袋透析三天,将产物冷冻干燥,得到产品冻干粉。
优选地,所述在步骤S2中DTPA、1-(3-二甲氨丙基)-3-乙基碳二亚胺盐酸盐(EDC)、N-羟基琥珀酰亚胺(NHS)、六水合三氯化钆(GdCl3.6H2O)的用量分别为:4~20份、2~10份、4~20份、1~5份。
优选地,所述步骤S2中胶束溶液中粉状固体、1-(3-二甲氨丙基)-3-乙基碳二亚胺盐酸盐、N-羟基琥珀酰亚胺、DTPA和六水合氯化钆的质量比为8:2:4:4:1。
优选地,所述在步骤S3采用以下方法实现:将所述步骤S2制备所得的用于MRI成像纳米胶束的纳米胶束分散在纯水中,然后加入1-(3-二甲氨丙基)-3-乙基碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS),常温搅拌后,加入靶向肽GX1,继续常温搅拌过夜,反应结束后产物移入透析袋中透析,将透析液冷冻干燥后,得到产品冻干粉。
优选地,所述在步骤S3中1-(3-二甲氨丙基)-3-乙基碳二亚胺盐酸盐(EDC)、N-羟基琥珀酰亚胺(NHS)、靶向肽GX1的用量分别为:6~18份、12~36份、50~150份。
优选地,所述在步骤S4采用以下方法实现:首先制备二氯(1,2-环己二胺)铂(DACHPt)复合水溶液,将所述步骤S3所得的GX1修饰的荧光纳米胶束加入到DACHPt复合水溶液中,避光常温搅拌,反应结束后,冷冻干燥即得靶向双模态成像纳米载药复合物。
优选地,所述二氯(1,2-环己二胺)铂(DACHPt)复合水溶液采用以下方法制备:将DACHPt分散在纯水中,然后加入硝酸银,混合溶液避光常温反应,通过分离除去沉淀物AgCl2,然后上清液过滤,收集得到DACHPt复合水溶液。
优选地,所述步骤S4中二氯(1,2-环己二胺)铂(DACHPt)的用量分别为:5~20份。
本发明还提供一种采用上述制备方法制备的用于靶向诊疗胃癌的纳米载药复合物。
优选地,所述复合物具有壳核结构,内核层由两亲性磷脂片段形成,外壳层由亲水性聚乙二醇片段形成,疏水的四苯乙烯被包裹于内核层中。
优选地,所述纳米载药复合物的粒径为30~200nm。
本发明首先通过四苯乙烯(TPE)的疏水作用与DSPE-PEG形成核壳结构的纳米胶束,从而制备了出具有聚集诱导发光性能的可荧光成像的纳米胶束;然后将三价钆离子的螯合剂DTPA修饰在荧光纳米胶束的表面并进一步螯合钆,形成具有MRI成像和荧光成像的双模态成像纳米胶束;再在双模态纳米胶束表面修饰GX1靶向多肽,使得纳米胶束具有靶向性;最后将DACHPt与纳米胶束反应结合,得到靶向双模态成像载药纳米胶束;本发明提出了可以靶向胃肿瘤细胞的GX1靶向肽为靶标,构筑具有靶向胃肿瘤细胞的诊疗一体化试剂。
本发明利用诊疗一体化试剂可以实现药物的靶向递送和缓释,提高药物的长循环和蓄积作用,因此药物使用量比常规化疗药物少;另外Gd3+具有7个不成对电子,是一种顺磁性很强的金属离子,能显著缩短T1、T2的驰豫时间,尤以T1更为明显,在一定范围内驰豫时间呈直线下降,从而影响MRI的信号强度,注射量较少即可进行MRI成像,72小时后可被完全代谢,对人体安全影响很小。
本发明的有益效果:本发明通过设计制备一种集靶向胃癌治疗与MRI成像和荧光成像示踪于一体的纳米载药复合物,研究胃癌的治疗过程中二氯(1,2-环己二胺)铂(DACHPt)的治疗效果和纳米载药复合物在病变区域的MRI成像与荧光成像功能,以期增加靶向位点药物浓度以及提高药物作用时间;本发明在胃癌的靶向诊疗和药物缓释方面具有广泛的应用前景。
附图说明
图1样品粒径分布和对应的TEM图(其中a表示未载药空白载体的多分散性,b表示未载药空白载体的平均粒径;c表示实施例3载药纳米胶束的多分散性,d表示实施例3载药纳米胶束的平均粒径)。
图2为实施例3制备的纳米束胶荧光图谱(其中a表示纳米胶束在乙腈/水混合液中的荧光光谱图,水含量从0到95vol%;b表示纳米胶束在乙腈/水混合液中最大荧光强度,水含量从0到95vol%)。
图3实施例3制备的纳米束胶缓释曲线图。
具体实施方式
为了更加简洁明了的展示本发明的技术方案、目的和优点,下面结合具体实施例及其附图对本发明做进一步的详细描述。
实施例1制备用于MRI成像的纳米胶束
本实施例提供一种用于MRI成像纳米胶束的制备方法,其包括以下步骤:称取4mgDTPA、2mg EDC和4mg NHS溶于20mL纯水中,常温搅拌1h。然后加入含有20mg二硬脂酰基磷脂酰乙醇胺-聚乙二醇-羧基和20mg二硬脂酰基磷脂酰乙醇胺-聚乙二醇-氨基的混合水溶液,常温搅拌反应过夜后,调节pH至6.5,然后加入1mg GdCl3·6H2O,50℃下搅拌反应4h,反应结束后产物移入透析袋(2000Da)中,透析三天,每天换纯水两次,将透析液冷冻干燥后,收集固体产物,4℃下保存即可。
实施例2制备用于GX1修饰的靶向MRI成像纳米胶束
本实施例提供一种用于GX1修饰的靶向MRI成像纳米胶束的制备方法,其包括以下步骤:称取4mgDTPA、2mgEDC和4mgNHS溶于20mL纯水中,常温搅拌1h。然后加入含有20mg二硬脂酰基磷脂酰乙醇胺-聚乙二醇-羧基和20mg二硬脂酰基磷脂酰乙醇胺-聚乙二醇-氨基的混合水溶液,常温搅拌反应过夜后,调节pH至6.5,然后加入1mg GdCl3·6H2O,50℃下搅拌反应4h,反应结束后产物移入透析袋(2000Da)中,透析三天,每天换纯水两次,将透析液冷冻干燥后,收集固体产物,4℃下保存备用。将上述胶束粉末分散在20mL纯水中,然后加入6mgEDC和12mg NHS,常温搅拌1h后,加入50mg GX1(GX1序列为CGNSNPKSC,纯度:98%,供应商:上海楚肽生物科技有限公司),继续常温搅拌过夜,反应结束后产物移入透析袋(2000Da)中,透析三天,每天换纯水两次,将透析液冷冻干燥后,收集固体产物于4℃下保存备用,即可。
对制备的靶向MRI成像纳米载药复合物采用动态激光光散射仪测定粒子的粒径分布,用透射电子显微镜观察其形貌,实验结果如图1a和图1b所示,未载药的空白载体多分散性为0.1823,平均粒径为48nm,粒子呈球形,分散比较均匀。
实施例3制备用于负载DACHPt的靶向MRI成像纳米胶束
本实施例提供一种用于负载DACHPt的靶向MRI成像纳米胶束,其包括以下步骤:
S1)制备荧光纳米胶束
称取4mg四苯乙烯(TPE)溶于4mL二氯甲烷,溶解后备用,得到溶液1;然后将20mg二硬脂酰基磷脂酰乙醇胺-聚乙二醇-羧基(DSPE-PEG-COOH)和20mg二硬脂酰基磷脂酰乙醇胺-聚乙二醇-氨基(DSPE-PEG-NH2)溶解于二氯甲烷,室温混合均匀,得到溶液2;将溶液1滴加入溶液2中得到溶液3;然后用超声探头边超声边将溶液3滴入40mL纯水中,超声1h后,将最终产物移入2000Da透析袋中,透析3天,每天换纯水两次,将透析液冷冻干燥后,收集固体产物于4℃下保存备用,获得荧光纳米胶束。
S2)制备用于MRI成像纳米胶束的纳米胶束
称取4mg DTPA、2mg 1-(3-二甲氨丙基)-3-乙基碳二亚胺盐酸盐(EDC)和4mg N-羟基琥珀酰亚胺(NHS)溶于20mL纯水中,常温搅拌1h活化后;加入S1的荧光胶束,胶束溶液的浓度为1mg/mL,常温搅拌反应过夜后,调节pH至6.5,然后加入1mg GdCl3.6H2O,50℃下搅拌反应4h,反应结束后产物移入2000Da透析袋中,透析2天,每天换纯水两次,将透析液冷冻干燥后,收集固体产物于4℃下保存备用,获得鳌合三氯化钆的荧光纳米胶束粉末。
S3)制备GX1修饰的成像纳米胶束
将S2的胶束粉末分散在20mL纯水中,然后加入6mg EDC和12mg NHS,常温搅拌1h后,加入50mg靶向肽(GX1),继续常温搅拌过夜,反应结束后产物移入2000Da透析袋中,透析3天,每天换纯水两次,将透析液冷冻干燥后,收集固体产物于4℃下保存备用,固体产物即为靶向肽GX1修饰的纳米胶束。
S4)制备DACHPt复合水溶液
称取5mg二氯(1,2-环己二胺)铂(DACHPt)分散在5mL纯水中,然后加入5mg硝酸银,混合溶液避光常温反应24h,通过分离除去沉淀物AgCl2,然后上清液通过0.22um滤头,收集得到DACHPt复合水溶液,于4℃下避光保存备用。
S5)制备负载DACHPt的靶向双模态成像纳米胶束
取5mg S3所得的粉状产品加入到5mL S4所得的DACHPt复合水溶液中,避光常温搅拌120h。反应结束后,冷冻干燥即得靶向双模态成像纳米载药复合物。
对制备的靶向MRI成像纳米载药复合物采用动态激光光散射仪测定粒子的粒径分布,用透射电子显微镜观察其形貌,实验结果如图1c和图1d所示,分散比较均匀,载药的载体多分散性为0.2369,平均粒径为150nm,粒子呈球形。
实施例4
S1)制备荧光纳米胶束
称取20mg四苯乙烯(TPE)溶于4mL二氯甲烷,溶解后备用,得到溶液1;然后将100mg二硬脂酰基磷脂酰乙醇胺-聚乙二醇-羧基(DSPE-PEG-COOH)和100mg二硬脂酰基磷脂酰乙醇胺-聚乙二醇-氨基(DSPE-PEG-NH2)溶解于二氯甲烷,室温混合均匀,得到溶液2;将溶液1滴加入溶液2中得到溶液3;然后用超声探头边超声边将溶液3滴入200mL纯水中,超声2h后,将最终产物移入5000Da透析袋中,透析3天,每天换纯水3次,将透析液冷冻干燥后,收集固体产物于4℃下保存备用,获得荧光纳米胶束。
S2)制备鳌合三氯化钆的荧光纳米胶束
称取20mg DTPA、10mg 1-(3-二甲氨丙基)-3-乙基碳二亚胺盐酸盐(EDC)和20mgN-羟基琥珀酰亚胺(NHS)溶于40mL纯水中,常温搅拌1h活化后;加入S1的荧光胶束,胶束溶液的浓度为1mg/mL,常温搅拌反应过夜后,调节pH至6.0,然后加入5mg GdCl3.6H2O,50℃下搅拌反应6h,反应结束后产物移入5000Da透析袋中,透析3天,每天换纯水3次,将透析液冷冻干燥后,收集固体产物于4℃下保存备用,获得鳌合三氯化钆的荧光纳米胶束粉末。
S3)制备GX1修饰的靶向纳米胶束
将S2的胶束粉末分散在20mL纯水中,然后加入18mg EDC和36mg NHS,常温搅拌1h后,加入150mg靶向肽(GX1序列为CGNSNPKSC,纯度:98%,供应商:上海楚肽生物科技有限公司),继续常温搅拌过夜,反应结束后产物移入2000Da透析袋中,透析3天,每天换纯水两次,将透析液冷冻干燥后,收集固体产物于4℃下保存备用,固体产物即为靶向肽GX1修饰的纳米胶束。
S4)制备DACHPt复合水溶液
称取20mg二氯(1,2-环己二胺)铂(DACHPt)分散在10mL纯水中,然后加入20mg硝酸银,混合溶液避光常温反应24h,通过分离除去沉淀物AgCl2,然后上清液通过0.22um滤头,收集得到DACHPt复合水溶液,于4℃下避光保存备用。
S5)制备负载DACHPt的靶向双模态成像纳米胶束
取20mg S3所得的粉状产品加入到5mL S4所得的DACHPt复合水溶液中,避光常温搅拌120h。反应结束后,冷冻干燥即得靶向双模态成像纳米载药复合物。
本实施例制备的纳米载药复合物的平均粒径为100nm。
实施例5
S1)制备荧光纳米胶束
称取10mg四苯乙烯(TPE)溶于4mL二氯甲烷,溶解后备用,得到溶液1;然后将50mg二硬脂酰基磷脂酰乙醇胺-聚乙二醇-羧基(DSPE-PEG-COOH)和50mg二硬脂酰基磷脂酰乙醇胺-聚乙二醇-氨基(DSPE-PEG-NH2)溶解于二氯甲烷,室温混合均匀,得到溶液2;将溶液1滴加入溶液2中得到溶液3;然后用超声探头边超声边将溶液3滴入100mL纯水中,超声1h后,将最终产物移入5000Da透析袋中,透析3天,每天换纯水两次,将透析液冷冻干燥后,收集固体产物于4℃下保存备用,获得荧光纳米胶束。
S2)制备鳌合三氯化钆的荧光纳米胶束
称取8mg DTPA、4mg 1-(3-二甲氨丙基)-3-乙基碳二亚胺盐酸盐(EDC)和8mg N-羟基琥珀酰亚胺(NHS)溶于16mL纯水中,常温搅拌1h活化后;加入16mg S1的荧光胶束粉末,胶束溶液的浓度为1mg/mL,常温搅拌反应过夜后,调节pH至6.5,然后加入2mg GdCl3.6H2O,50℃下搅拌反应4h,反应结束后产物移入2000Da透析袋中,透析2天,每天换纯水两次,将透析液冷冻干燥后,收集固体产物于4℃下保存备用,获得鳌合三氯化钆的荧光纳米胶束粉末。其中,加入的S1荧光胶束、EDC、NHS、DTPA与GdCl3.6H2O的质量比为8:2:4:4:1。
S3)制备GX1修饰的靶向纳米胶束
将S2的胶束粉末分散在20mL纯水中,然后加入12mg EDC和20mg NHS,常温搅拌1h后,加入100mg靶向肽(GX1)(其序列为CGNSNPKSC,纯度:98%,供应商:上海楚肽生物科技有限公司),继续常温搅拌过夜,反应结束后产物移入2000Da透析袋中,透析3天,每天换纯水两次,将透析液冷冻干燥后,收集固体产物于4℃下保存备用,固体产物即为靶向肽GX1修饰的纳米胶束。
S4)制备DACHPt复合水溶液
称取10mg二氯(1,2-环己二胺)铂(DACHPt)分散在5mL纯水中,然后加入10mg硝酸银,混合溶液避光常温反应24h,通过分离除去沉淀物AgCl2,然后上清液通过0.22um滤头,收集得到DACHPt复合水溶液,于4℃下避光保存备用。
S5)制备负载DACHPt的靶向双模态成像纳米胶束
取10mg S3所得的粉状产品加入到5mL S4所得的DACHPt复合水溶液中,避光常温搅拌120h。反应结束后,冷冻干燥即得靶向双模态成像纳米载药复合物。
本实施例制备的纳米载药复合物的平均粒径为200nm。
对比例1无靶向MRI成像纳米载药复合物
本对比例提供用MRI成像纳米载药复合物的制备方法,其包括以下步骤:将4mgDTPA溶解于纯水中,加入2mgEDC和4mgNHS活化一小时,再加入20mgDSPE-PEG-NH2,反应过夜,调节pH至6.3,然后加入1mg GdCl3·6H2O,55℃下搅拌反应4h,用截留分子量2000D的透析袋透析,然后将产品溶液冷冻干燥,得到固体粉末备用;称量上诉固体粉末5mg加入5mLDACHPt复合水溶液,搅拌反应120h,反应结束后,冷冻干燥即得无靶向MRI成像纳米载药复合物。
实施例6荧光性能测定
将实施例3制备的靶向双模态成像纳米复合载药胶束溶解在乙腈中,配置1mg/mL的溶液,然后按照梯度,配置一系列乙腈/水复合胶束溶液,利用荧光分光光度计测试,扫描波长为350nm~600nm。结果如图2所示。在稀乙腈溶液中,化合物显示非常弱的荧光。当fw从0到50%,溶液的荧光强度只有微小的变化,当fw达到60%以上后,荧光强度有明显的增强,比纯乙腈中的荧光强度高大约200倍,荧光增强归因于加入水诱导的聚集,因此可证明该化合物具有聚集诱导发光的性质(AIE)。
实施例7靶向MRI成像纳米载药复合物载药率和包封率测定
将实施例3制备的样品的载药率和包封率通过电感耦合等离子体原子发射光谱法(ICP-AES)测定并且用到如下公式:
表1载药率和包封率
实施例8靶向MRI成像纳米载药复合物缓释性能的测定
样品的缓释性能测定方法为:将实施例3制备的样品配制成2mg/mL,转移1mL至截留分子量3500Da的透析袋,将透析袋放入装有10mL缓释溶液的离心管,将离心管放入37℃恒温箱,150rpm震荡。取离心管内的透析液检测Pt含量,并计算累计含量,每次取样1mL,再补加1mL新鲜缓释溶液,取样时间为:0.15h,0.5h,1.5h,3.5h,5.5h,7.5h,23h,25h,29h,31h,48h。所述缓释溶液为0.01M且pH=7.4的PBS溶液。测定出所述样品的释药曲线如图3所示,最终释药率为96%。
实施例9纳米复合物靶向性能的测定
靶向性能的测定通过实施例3所制备的靶向MRI成像纳米载药复合物和对比例制备的无靶向MRI成像纳米载药复合物为注射药剂,分别给予各组动物水合氯醛麻醉后连接小动物专用核磁扫描四通道相控阵线圈(直径5cm)行MRI扫描,在MRI常规序列上观察注射无靶向和靶向材料0、4、12、24h后信号演变情况。测量注射药剂的T1信号强度(如表2所示),实施例3中制备的纳米载体复合物比对比例制备的纳米载体复合物的信号强度更强:注射靶向纳米载体复合物24h后的裸鼠的低信号比注射无靶向纳米载体复合物的裸鼠高47.6%。这表明本发明纳米载药复合物可以聚集于小鼠胃癌病变区域,具有良好的显影功能,并且靶向诊疗制剂的靶向性更佳。
表2所述样品的T1信号强度
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
1.一种用于靶向诊疗胃癌的纳米载药复合物的制备方法,其特征在于,包括以下步骤:
S1以四苯乙烯、二硬脂酰基磷脂酰乙醇胺-聚乙二醇-羧基、二硬脂酰基磷脂酰乙醇胺-聚乙二醇-氨基为原料,溶于二氯甲烷,通过无皂乳液聚合得到荧光纳米胶束;
S2以GdCl3.6H2O为荧光增强剂,通过DTPA将三价钆离子偶联到步骤S1所得的荧光纳米胶束上,制得用于MRI成像纳米胶束的纳米胶束;
S3将靶向肽(GX1)偶联到步骤S2所得用于MRI成像纳米胶束的纳米胶束上,制得靶向肽GX1修饰的荧光纳米胶束;
S4将步骤S3获得的GX1修饰的荧光纳米胶束加入到DACHPt复合水溶液中,制得负载DACHPt的靶向双模态成像纳米胶束。
2.如权利要求1所述的用于靶向诊疗胃癌的纳米载药复合物的制备方法,其特征在于,所述步骤S1采用以下方法实现:将四苯乙烯用二氯甲烷溶解备用;然后将二硬脂酰基磷脂酰乙醇胺-聚乙二醇-羧基和二硬脂酰基磷脂酰乙醇胺-聚乙二醇-氨基溶解于二氯甲烷室温混合均匀;再将四苯乙烯溶液滴加入聚乙二醇溶液,混合均匀;再边超声边将前面的混合溶液滴加入纯水中,并超声,之后将产物转移到透析袋中,透析,将透析完的产品冷冻干燥,得到产品冻干粉。
3.如权利要求2所述的用于靶向诊疗胃癌的纳米载药复合物的制备方法,其特征在于,所述在步骤S1中四苯乙烯、二硬脂酰基磷脂酰乙醇胺-聚乙二醇-羧基、二硬脂酰基磷脂酰乙醇胺-聚乙二醇-氨基的用量分别为:4~20份、20~100份、20~100份。
4.如权利要求1所述的用于靶向诊疗胃癌的纳米载药复合物的制备方法,其特征在于,所述在步骤S2采用以下方法实现:将DTPA、1-(3-二甲氨丙基)-3-乙基碳二亚胺盐酸盐和N-羟基琥珀酰亚胺溶于纯水中,常温搅拌活化后,加入S1制备所得的荧光纳米胶束,常温搅拌反应,然后调节pH至6~6.5,加入六水合三氯化钆,搅拌反应,反应结束后用透析袋透析三天,将产物冷冻干燥,得到产品冻干粉。
5.如权利要求4所述的用于靶向诊疗胃癌的纳米载药复合物的制备方法,其特征在于,所述在步骤S2中DTPA、1-(3-二甲氨丙基)-3-乙基碳二亚胺盐酸盐(EDC)、N-羟基琥珀酰亚胺(NHS)、六水合三氯化钆(GdCl3.6H2O)的用量分别为:4~20份、2~10份、4~20份、1~5份;其中所述步骤S2中胶束溶液中粉状固体、1-(3-二甲氨丙基)-3-乙基碳二亚胺盐酸盐、N-羟基琥珀酰亚胺、DTPA和六水合氯化钆的质量比为8:2:4:4:1。
6.如权利要求1所述的用于靶向诊疗胃癌的纳米载药复合物的制备方法,其特征在于,所述在步骤S3采用以下方法实现:将所述步骤S2制备所得的用于MRI成像纳米胶束的纳米胶束分散在纯水中,然后加入1-(3-二甲氨丙基)-3-乙基碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS),常温搅拌后,加入靶向肽GX1,继续常温搅拌过夜,反应结束后产物移入透析袋中透析,将透析液冷冻干燥后,得到产品冻干粉。
7.如权利要求6所述的用于靶向诊疗胃癌的纳米载药复合物的制备方法,其特征在于,所述在步骤S3中1-(3-二甲氨丙基)-3-乙基碳二亚胺盐酸盐(EDC)、N-羟基琥珀酰亚胺(NHS)、靶向肽GX1的用量分别为:6~18份、12~36份、50~150份。
8.如权利要求1所述的用于靶向诊疗胃癌的纳米载药复合物的制备方法,其特征在于,所述在步骤S4采用以下方法实现:首先制备二氯(1,2-环己二胺)铂(DACHPt)复合水溶液,将所述步骤S3所得的GX1修饰的荧光纳米胶束加入到DACHPt复合水溶液中,避光常温搅拌,反应结束后,冷冻干燥即得靶向双模态成像纳米载药复合物。
9.一种采用如权利要求1~8任一项所述的制备方法制备的用于靶向诊疗胃癌的纳米载药复合物。
10.如权利要求9所述的用于靶向诊疗胃癌的纳米载药复合物,其特征在于,所述复合物具有壳核结构,内核层由两亲性磷脂片段形成,外壳层由亲水性聚乙二醇片段形成,疏水的四苯乙烯被包裹于内核层中,所述纳米载药复合物的粒径为30~200nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910791814.4A CN110448700B (zh) | 2019-08-26 | 2019-08-26 | 一种用于靶向诊疗胃癌的纳米载药复合物及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910791814.4A CN110448700B (zh) | 2019-08-26 | 2019-08-26 | 一种用于靶向诊疗胃癌的纳米载药复合物及制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110448700A true CN110448700A (zh) | 2019-11-15 |
CN110448700B CN110448700B (zh) | 2020-12-25 |
Family
ID=68489213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910791814.4A Active CN110448700B (zh) | 2019-08-26 | 2019-08-26 | 一种用于靶向诊疗胃癌的纳米载药复合物及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110448700B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111690032A (zh) * | 2020-05-28 | 2020-09-22 | 华南理工大学 | 一种aie分子标记的生物表面活性剂及其载药胶束制备方法与应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106176602A (zh) * | 2016-07-21 | 2016-12-07 | 中国科学院海洋研究所 | 一种靶向作用于胃癌组织的多西紫杉醇壳聚糖纳米胶束及制备方法和应用 |
CN106566532A (zh) * | 2014-04-07 | 2017-04-19 | 香港科技大学深圳研究院 | 两亲性的具有聚集诱导发光特性的发光物及其应用 |
WO2017176216A1 (en) * | 2016-04-06 | 2017-10-12 | Agency For Science, Technology And Research | A multimodal fluorescent probe |
-
2019
- 2019-08-26 CN CN201910791814.4A patent/CN110448700B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106566532A (zh) * | 2014-04-07 | 2017-04-19 | 香港科技大学深圳研究院 | 两亲性的具有聚集诱导发光特性的发光物及其应用 |
WO2017176216A1 (en) * | 2016-04-06 | 2017-10-12 | Agency For Science, Technology And Research | A multimodal fluorescent probe |
CN106176602A (zh) * | 2016-07-21 | 2016-12-07 | 中国科学院海洋研究所 | 一种靶向作用于胃癌组织的多西紫杉醇壳聚糖纳米胶束及制备方法和应用 |
Non-Patent Citations (1)
Title |
---|
KAI LI等: "Gadolinium-functionalized Aggregation-Induced Emission Dots as Dual-Modality Probes for Cancer Metastasis Study", 《ADVANCED HEALTHCARE MATERIALS》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111690032A (zh) * | 2020-05-28 | 2020-09-22 | 华南理工大学 | 一种aie分子标记的生物表面活性剂及其载药胶束制备方法与应用 |
CN111690032B (zh) * | 2020-05-28 | 2022-01-18 | 华南理工大学 | 一种aie分子标记的生物表面活性剂及其载药胶束制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN110448700B (zh) | 2020-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer | |
Zhang et al. | Folic acid-targeted iron oxide nanoparticles as contrast agents for magnetic resonance imaging of human ovarian cancer | |
US7560097B2 (en) | Pharmaceutical preparation containing magnetic vesicular particles, manufacturing method thereof and diagnostic therapeutic system | |
Shi et al. | Hemoglobin-mediated biomimetic synthesis of paramagnetic O2-evolving theranostic nanoprobes for MR imaging-guided enhanced photodynamic therapy of tumor | |
CN103143043B (zh) | 一种Fe3O4/Au复合纳米颗粒的制备方法 | |
EP1842554A1 (en) | Coated magnetic particle containing preparation, process for producing the same and diagnostic therapeutic system | |
Lin et al. | Multifunctional drug carrier on the basis of 3d–4f Fe/La-MOFs for drug delivery and dual-mode imaging | |
CN108559091A (zh) | 具有聚集诱导发光及双重敏感性的聚合物药物载体、载药胶束及其制备方法 | |
US20180161461A1 (en) | Rare Earth Oxide Particles and Use Thereof in Particular In Imaging | |
CN108404142A (zh) | 一种磁共振成像纳米载体、纳米载药系统及其制备方法 | |
Wei et al. | Biocompatible low-retention superparamagnetic iron oxide nanoclusters as contrast agents for magnetic resonance imaging of liver tumor | |
Ren et al. | Tb-Doped core–shell–shell nanophosphors for enhanced X-ray induced luminescence and sensitization of radiodynamic therapy | |
CN103446588B (zh) | 靶向型诊疗联用药物及其制备方法和应用 | |
CN103768620B (zh) | Fe/介孔氧化硅纳米复合材料及其制备方法和应用 | |
Ma et al. | Nano-Metal–Organic Framework Decorated With Pt Nanoparticles as an Efficient Theranostic Nanoprobe for CT/MRI/PAI Imaging-Guided Radio-Photothermal Synergistic Cancer Therapy | |
Li et al. | MiRNA-520a-3p combined with folic acid conjugated Fe2O3@ PDA multifunctional nanoagents for MR imagine and antitumor gene-photothermal therapy | |
CN110448700A (zh) | 一种用于靶向诊疗胃癌的纳米载药复合物及制备方法 | |
CN109172828A (zh) | 一种新型稀土纳米双模态显像剂及其制备方法和应用 | |
Bai et al. | Modular design of Bi-specific nanoplatform engaged in malignant lymphoma immunotherapy | |
CN105797175A (zh) | PAAsMnO(OH)-RGD药物释放载体的制备方法及应用 | |
CN112870387B (zh) | 一种磁性纳米药物载体及其制备方法和应用 | |
CN114366822A (zh) | 一种主动靶向多模态分子影像探针及其制备方法和应用 | |
CN105963277A (zh) | 一种具有pH和葡萄糖双重响应的纳米球及其制备和应用 | |
Ma et al. | Hyaluronic acid-modified mesoporous silica nanoprobes for target identification of atherosclerosis | |
CN104338151A (zh) | 新型主被动双靶向金纳米棒制备方法及其肿瘤诊断治疗一体化的新途径 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |