CN110441559B - Force real-time adjustable micro-nano probe automatic forming device and control method - Google Patents

Force real-time adjustable micro-nano probe automatic forming device and control method Download PDF

Info

Publication number
CN110441559B
CN110441559B CN201910791610.0A CN201910791610A CN110441559B CN 110441559 B CN110441559 B CN 110441559B CN 201910791610 A CN201910791610 A CN 201910791610A CN 110441559 B CN110441559 B CN 110441559B
Authority
CN
China
Prior art keywords
probe
micro
force
nano
forming device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910791610.0A
Other languages
Chinese (zh)
Other versions
CN110441559A (en
Inventor
沈斐玲
曹宁
李恒宇
岳涛
谢少荣
罗均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201910791610.0A priority Critical patent/CN110441559B/en
Publication of CN110441559A publication Critical patent/CN110441559A/en
Application granted granted Critical
Publication of CN110441559B publication Critical patent/CN110441559B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本发明涉及微机电一体化,具体是一种力实时可调的微纳探针自动成型装置和控制方法,通过对探针加工时施加主动力的实时调节,以及视觉检测模块对探针进行实时成像,耦合力检测模块感知碰触信息,结合而成的多模式伺服反馈,来实现微纳探针的自动成型制作,具有自动化成型、力实时可调、结构简单且易实现等优点。

Figure 201910791610

The invention relates to micro-electromechanical integration, in particular to a micro-nano probe automatic forming device and a control method with real-time adjustable force. The real-time adjustment of the active force applied to the probe during processing and a visual detection module are used to perform real-time monitoring on the probe. The imaging and coupling force detection module senses the touch information, and the combined multi-mode servo feedback realizes the automatic forming and manufacturing of the micro-nano probe. It has the advantages of automatic forming, real-time adjustable force, simple structure and easy implementation.

Figure 201910791610

Description

一种力实时可调的微纳探针自动成型装置和控制方法A real-time adjustable force micro-nano probe automatic forming device and control method

技术领域technical field

本发明涉及微纳技术领域,尤其涉及微机电一体化,具体是一种力实时可调的微纳探针自动成型装置和控制方法。The invention relates to the field of micro-nano technology, in particular to micro-electromechanical integration, in particular to a micro-nano probe automatic forming device and a control method with real-time adjustable force.

背景技术Background technique

随着科学研究逐步走进微观化,微纳米级的世界已经逐渐展开在研究人员的眼里,目前,微纳探针作为微纳米级研究领域的常用工具,具备结构单一、制备方法相对简单、成本低廉等优势,在微纳操作和测量等方面具有明显的经济和实用效益。通常情况下,会根据科学研究任务的需要,将微纳探针制作成为各种满足要求的形状,以便于任务的顺利进行,而为了易于获得简单的探针形状结构,一般采用传统的手动加工工方法制作。尽管手动加工方法制作能够满足探针简单形状加工的最基本要求,但制作效率低下,成型效果差,产品良品率低,产品加工精度低,难以满足高效任务需要,易增加制作成本。另外,手动加工方法制作加工成型的微纳探针结构单一,无法满足复杂研究任务对探针特殊形状的需求。As scientific research gradually becomes microscopic, the world of micro-nano level has gradually unfolded in the eyes of researchers. At present, micro-nano probes, as common tools in the field of micro-nano level research, have the advantages of single structure, relatively simple preparation method, Low cost and other advantages have obvious economic and practical benefits in micro-nano operation and measurement. Usually, according to the needs of scientific research tasks, the micro-nano probes are made into various shapes that meet the requirements, so as to facilitate the smooth progress of the task, and in order to easily obtain a simple probe shape structure, traditional manual processing is generally used. Manufacturing method. Although the manual processing method can meet the most basic requirements of simple shape processing of the probe, it has low production efficiency, poor molding effect, low product yield, low product processing accuracy, difficult to meet the needs of efficient tasks, and easy to increase the production cost. In addition, the micro-nano probes fabricated by manual processing methods have a single structure, which cannot meet the needs of complex research tasks for special probe shapes.

发明内容SUMMARY OF THE INVENTION

为了解决现有技术的不足,本发明提出一种力实时可调的微纳探针自动成型装置和控制方法,解决了现有手工制作微纳探针存在的成型结构单一、效率低、成型效果差且精度低等问题,同时可实现主动力实时可调、力动态计算、多模式伺服反馈等功能,具有自动化成型、力实时可调、结构简单且易实现等特点。In order to solve the deficiencies of the prior art, the present invention proposes a micro-nano probe automatic forming device and control method with real-time adjustable force, which solves the problems of single forming structure, low efficiency and forming effect of the existing hand-made micro-nano probes. At the same time, it can realize functions such as real-time adjustment of main power, dynamic calculation of force, multi-mode servo feedback, etc. It has the characteristics of automatic molding, real-time adjustment of force, simple structure and easy implementation.

本发明要解决的技术问题是通过以下技术方案实现的:The technical problem to be solved by the present invention is achieved through the following technical solutions:

一种力实时可调的微纳探针自动成型装置,包括底板,底板通过第一支撑杆固定在与底板平行的基础平台上,底板上固定有执行机构和可移动的探针支撑机构,所述探针支撑机构包括固定在底板上的固定导轨和在固定导轨上滑动的两个可动滑轨件,可动滑轨件上通过第二支撑杆支撑起可换探针支撑底座,两个可动滑轨件上设置的可换探针支撑底座共同支撑起一根探针;所述执行机构包括圆盘状的周向旋转模块和固定在周向旋转模块圆周处的弯形执行器,弯形执行器通过第一中间连接件固定在周向旋转模块的圆周上,弯形执行器为圆弧状,弯形执行器的圆弧内侧设置有可换弹性连接件,弯形执行器的圆弧背侧设置有力可调模块;所述基础平台上竖直固定有悬臂梁,所述力可调模块的一端固定在第一中间连接件与弯形执行器的连接处,另一端通过第二中间连接件固定到悬臂梁的顶部;所述周向旋转模块由设置在底板上的微马达带动。An automatic forming device for micro-nano probes with real-time adjustable force, comprising a base plate, the base plate is fixed on a basic platform parallel to the base plate through a first support rod, an actuator and a movable probe support mechanism are fixed on the base plate, so The probe support mechanism includes a fixed guide rail fixed on the bottom plate and two movable slide rail pieces that slide on the fixed guide rail. The replaceable probe support base set on the movable slide rail supports a probe together; the actuator includes a disk-shaped circumferential rotation module and a curved actuator fixed at the circumference of the circumferential rotation module, The curved actuator is fixed on the circumference of the circumferential rotation module through the first intermediate connecting piece. A force-adjustable module is arranged on the back side of the arc; a cantilever beam is vertically fixed on the base platform, one end of the force-adjustable module is fixed at the connection between the first intermediate connecting piece and the curved actuator, and the other end passes through the Two intermediate connecting pieces are fixed to the top of the cantilever beam; the circumferential rotation module is driven by a micromotor arranged on the bottom plate.

在本发明中,所述固定导轨上方设置有力检测模块,力检测模块通过第一可伸缩连接件设置在固定导轨上,位于探针下方。In the present invention, a force detection module is arranged above the fixed guide rail, and the force detection module is arranged on the fixed guide rail through the first retractable connecting piece, and is located below the probe.

在本发明中,所述弯形执行器的圆弧内侧设置有半圆形连接器,所述可换弹性连接件的一端连接在弯形执行器的顶端,另一端与半圆形连接器的一端相连接,所述半圆形连接器的另一端铰接到弯形执行器的中部。In the present invention, a semicircular connector is provided on the inner side of the arc of the curved actuator, one end of the replaceable elastic connector is connected to the top end of the curved actuator, and the other end is connected to the semicircular connector. One end is connected, and the other end of the semicircular connector is hinged to the middle of the curved actuator.

在本发明中,所述力可调模块的中部位置处对称安装电磁正转紧固件和电磁反转紧固件,对力可调模块的承受力进行调节。In the present invention, the electromagnetic forward rotation fastener and the electromagnetic reverse rotation fastener are symmetrically installed at the middle position of the adjustable force module to adjust the bearing force of the adjustable force module.

在本发明中,所述悬臂梁的顶部和底部均设置有传感器,两个传感器配合来实时检测悬臂梁的形变量。In the present invention, the top and bottom of the cantilever beam are provided with sensors, and the two sensors cooperate to detect the deformation amount of the cantilever beam in real time.

在本发明中,所述周向旋转模块与微马达轴向布置,通过轴承和联轴器进行连接,所述微马达通过微马达底座安装在底板上,轴承通过轴承底座安装在底板上。In the present invention, the circumferential rotation module is axially arranged with the micromotor and is connected by a bearing and a coupling, the micromotor is mounted on the base plate through the micromotor base, and the bearing is mounted on the base plate through the bearing base.

进一步的,所述微马达的转轴与探针平行布置。Further, the rotating shaft of the micromotor is arranged in parallel with the probe.

在本发明中,所述可换探针支撑底座上铰接有可换探针固定上盖件,可换探针固定上盖件与可换探针支撑底座配合来实现不同尺寸微纳探针的装夹和固定。In the present invention, a replaceable probe fixing upper cover is hinged on the replaceable probe support base, and the replaceable probe fixing upper cover cooperates with the replaceable probe support base to realize different sizes of micro-nano probes. Clamping and fixing.

在本发明中,所述底板上还设置有视觉检测模块,视觉检测模块通过第二可伸缩连接件固定在底板上,对探针的装夹固定位置和加工位置进行识别。In the present invention, the base plate is further provided with a visual detection module, and the visual detection module is fixed on the base plate through the second retractable connector to identify the clamping and fixing position and the processing position of the probe.

基于上述构造,一种力实时可调的微纳探针自动成型装置控制方法,具体操作步骤如下:Based on the above structure, a method for controlling a micro-nano probe automatic forming device with real-time adjustable force, the specific operation steps are as follows:

1) 利用计算机对微纳探针目标形状进行数据离散化处理,分析微纳探针目标形状的主要特征参数;1) Use computer to discretize the target shape of the micro-nano probe, and analyze the main characteristic parameters of the target shape of the micro-nano probe;

2) 通过分别调节第一可伸缩连接件和第二可伸缩连接件,精确控制力检测模块和视觉检测模块升降,从而确定它们的合适高度L1和L2;2) By adjusting the first retractable connector and the second retractable connector respectively, accurately control the lifting and lowering of the force detection module and the visual detection module, thereby determining their appropriate heights L1 and L2;

3) 根据微纳探针目标形状需要,自动调整两个可动滑轨件的相对位置间距;3) According to the needs of the target shape of the micro-nano probe, automatically adjust the relative position spacing of the two movable slide rails;

4) 将微纳探针放置在可换探针支撑底座上,利用可换探针固定上盖件对微纳探针进行装夹和固定;4) Place the micro-nano probe on the replaceable probe support base, and use the replaceable probe to fix the upper cover to clamp and fix the micro-nano probe;

5) 通过更换可换弹性连接件施加不同夹紧力,并利用微马达驱动周向旋转模块运动;5) Apply different clamping forces by replacing the replaceable elastic connectors, and use the micromotor to drive the movement of the circumferential rotation module;

6) 利用视觉检测模块实时成像探针形状,计算探针形状实际偏差量,自动控制电磁正转紧固件和电磁反转紧固件联合动作,动态调节施加主动力大小,从而达到力实时可调的目的;6) Use the visual inspection module to image the probe shape in real time, calculate the actual deviation of the probe shape, automatically control the joint action of the electromagnetic forward rotation fastener and the electromagnetic reverse fastener, and dynamically adjust the applied active force, so as to achieve real-time force control. the purpose of tuning;

7) 利用两个传感器感知形变量,动态计算施加主动力大小;7) Use two sensors to perceive the deformation variables, and dynamically calculate the magnitude of the applied active force;

8) 探针产生形变向下移动,与力检测模块发生触碰,将感知信息传输至计算机系统;8) The probe is deformed and moves downward, touches the force detection module, and transmits the sensing information to the computer system;

9) 当计算机系统收到力检测模块感知到探针的碰触信息时,应用视觉检测模块实时获取探针的实际形状,利用模板匹配法自动判断探针实际形状与目标形状主要特征参数的匹配接近度,若满足设定要求则判定微纳探针实际形状达到成型目标,反之则重复上述力实时可调的微纳探针自动成型装置控制方法。9) When the computer system receives the touch information of the probe perceived by the force detection module, the visual detection module is used to obtain the actual shape of the probe in real time, and the template matching method is used to automatically determine the match between the actual shape of the probe and the main characteristic parameters of the target shape. Proximity, if the set requirements are met, it is determined that the actual shape of the micro-nano probe reaches the forming target; otherwise, the above-mentioned control method of the micro-nano probe automatic forming device with adjustable force in real time is repeated.

与现有技术相比,本发明解决了现有手工制作微纳探针存在的成型结构单一、效率低、成型效果差且精度低等问题;利用电磁正转紧固件和电磁反转紧固件的自动联动控制,实现了对探针施加主动力的实时可调;装置悬臂梁上布置传感器感知形变量,以此动态计算主动力,达到实时有效控制弹性连接件刚度的目的;通过视觉检测模块对探针进行实时成像,耦合力检测模块感知碰触信息,从而实现多模式伺服反馈,以此实现微纳探针的自动成型制作;具有自动化成型、力实时可调、结构简单且易实现等优点。Compared with the prior art, the invention solves the problems of single molding structure, low efficiency, poor molding effect and low precision of the existing hand-made micro-nano probes; the electromagnetic forward-rotating fastener and the electromagnetic reverse-rotating fastening are used. The automatic linkage control of the parts realizes the real-time adjustment of the active force applied to the probe; the sensor is arranged on the cantilever beam of the device to sense the deformation, and the active force is dynamically calculated to achieve the purpose of effectively controlling the stiffness of the elastic connector in real time; through visual inspection The module performs real-time imaging of the probe, and the coupling force detection module senses the touch information, thereby realizing multi-mode servo feedback, so as to realize the automatic forming and manufacturing of micro-nano probes; it has automatic forming, real-time adjustable force, simple structure and easy implementation. Etc.

附图说明Description of drawings

图1为本发明的力实时可调的微纳探针自动成型装置控制方法流程图;Fig. 1 is the flow chart of the control method of the micro-nano probe automatic forming device with adjustable force in real time according to the present invention;

图2为本发明的力实时可调的微纳探针自动成型装置结构示意图;2 is a schematic structural diagram of the micro-nano probe automatic forming device with real-time adjustable force of the present invention;

图3为图2的右视示意图。FIG. 3 is a schematic right side view of FIG. 2 .

图中:基础平台1、悬臂梁2、轴承底座3、周向旋转模块4、第一中间连接件5、传感器6、第二中间连接件7、力可调模块8、电磁正转紧固件9、电磁反转紧固件10、半圆形连接件11、弯形执行器12、可换弹性连接件13、可换探针固定上盖件14、可换探针支撑底座15、第二支撑杆16、视觉检测模块17、可动滑轨件18、第二可伸缩连接件19、固定导轨20、底板21、第一支撑杆22、微马达底座23、微马达24、联轴器25、轴承26、力检测模块27、第一可伸缩连接件28。In the figure: basic platform 1, cantilever beam 2, bearing base 3, circumferential rotation module 4, first intermediate connector 5, sensor 6, second intermediate connector 7, force adjustable module 8, electromagnetic forward rotation fastener 9. Electromagnetic reversing fastener 10, semicircular connector 11, curved actuator 12, replaceable elastic connector 13, replaceable probe fixing upper cover 14, replaceable probe support base 15, second Support rod 16 , visual detection module 17 , movable slide rail member 18 , second retractable connecting member 19 , fixed guide rail 20 , bottom plate 21 , first support rod 22 , micro motor base 23 , micro motor 24 , coupling 25 , bearing 26 , force detection module 27 , first retractable connector 28 .

具体实施方式Detailed ways

以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。The present invention will be further described below with reference to the accompanying drawings and specific preferred embodiments, but the protection scope of the present invention is not limited thereby.

参见图2和3所示的力实时可调的微纳探针自动成型装置,包括底板21,底板21通过第一支撑杆22固定在与底板21平行的基础平台1上,底板21上固定有执行机构和可移动的探针支撑机构。Referring to Figures 2 and 3, the micro-nano probe automatic forming device with real-time adjustable force includes a base plate 21, the base plate 21 is fixed on the base platform 1 parallel to the base plate 21 through the first support rod 22, and the base plate 21 is fixed with Actuator and movable probe support mechanism.

所述探针支撑机构包括固定在底板21上的固定导轨20和在固定导轨20上滑动的两个可动滑轨件18,可动滑轨件18上通过第二支撑杆16支撑起可换探针支撑底座15,两个可动滑轨件18上设置的可换探针支撑底座15共同支撑起一根探针,可换探针支撑底座15上铰接有可换探针固定上盖件14,可换探针固定上盖件14与可换探针支撑底座15配合来对不同尺寸微纳探针进行装夹和固定;所述固定导轨20上方设置有力检测模块27,力检测模块27通过第一可伸缩连接件28设置在固定导轨20上,位于探针下方。The probe support mechanism includes a fixed guide rail 20 fixed on the bottom plate 21 and two movable slide rail pieces 18 slid on the fixed guide rail 20. The movable slide rail pieces 18 are supported by the second support rod 16 and can be replaced. The probe support base 15, the replaceable probe support base 15 provided on the two movable slide rail members 18 jointly supports a probe, and the replaceable probe support base 15 is hinged with a replaceable probe fixing upper cover 14. The replaceable probe fixing upper cover 14 cooperates with the replaceable probe support base 15 to clamp and fix the micro-nano probes of different sizes; a force detection module 27 is arranged above the fixed guide rail 20, and the force detection module 27 The first retractable connecting piece 28 is arranged on the fixed guide rail 20, below the probe.

所述执行机构包括圆盘状的周向旋转模块4和固定在周向旋转模块4圆周处的弯形执行器12,弯形执行器12通过第一中间连接件5固定在周向旋转模块4的圆周上,弯形执行器12为圆弧状,弯形执行器12的圆弧内侧设置有可换弹性连接件13和半圆形连接器11,可换弹性连接件13的一端连接在弯形执行器12的顶端,另一端与半圆形连接器11的一端相连接,所述半圆形连接器11的另一端铰接到弯形执行器12的中部;所述弯形执行器12的圆弧背侧设置有力可调模块8,力可调模块8的中部位置处对称安装电磁正转紧固件9和电磁反转紧固件10。The actuator includes a disk-shaped circumferential rotation module 4 and a curved actuator 12 fixed at the circumference of the circumferential rotation module 4 , and the curved actuator 12 is fixed on the circumferential rotation module 4 through a first intermediate connecting piece 5 . On the circumference of the curved actuator 12, the curved actuator 12 is in the shape of an arc, and the inner arc of the curved actuator 12 is provided with a replaceable elastic connector 13 and a semicircular connector 11, and one end of the replaceable elastic connector 13 is connected to the curved The top end of the curved actuator 12, the other end is connected to one end of the semicircular connector 11, and the other end of the semicircular connector 11 is hinged to the middle of the curved actuator 12; A force adjustable module 8 is arranged on the back side of the arc, and an electromagnetic forward rotation fastener 9 and an electromagnetic reverse rotation fastener 10 are symmetrically installed at the middle position of the force adjustable module 8 .

所述基础平台1上竖直固定有悬臂梁2,所述力可调模块8的一端固定在第一中间连接件5与弯形执行器12的连接处,另一端通过第二中间连接件7固定到悬臂梁2的顶部,悬臂梁2的顶部和底部均设置有传感器6,两个传感器6配合来实时检测悬臂梁2的形变量。A cantilever beam 2 is vertically fixed on the base platform 1 , one end of the adjustable force module 8 is fixed at the connection between the first intermediate connecting piece 5 and the curved actuator 12 , and the other end passes through the second intermediate connecting piece 7 . It is fixed to the top of the cantilever beam 2 , the top and bottom of the cantilever beam 2 are provided with sensors 6 , and the two sensors 6 cooperate to detect the deformation amount of the cantilever beam 2 in real time.

所述周向旋转模块4由设置在底板21上的微马达24带动,周向旋转模块4与微马达24同轴布置,通过轴承26和联轴器25进行连接,所述微马达24通过微马达底座23安装在底板21上,轴承26通过轴承底座3安装在底板21上,所述微马达24的转轴与探针平行布置。The circumferential rotation module 4 is driven by the micromotor 24 arranged on the bottom plate 21. The circumferential rotation module 4 is coaxially arranged with the micromotor 24, and is connected through the bearing 26 and the coupling 25. The micromotor 24 is connected by the micromotor 24. The motor base 23 is installed on the base plate 21 , the bearing 26 is installed on the base plate 21 through the bearing base 3 , and the rotating shaft of the micromotor 24 is arranged in parallel with the probe.

在本发明中,所述底板21上还设置有视觉检测模块17,视觉检测模块17通过第二可伸缩连接件19固定在底板21上,对探针的装夹固定位置和加工位置进行识别。In the present invention, the base plate 21 is further provided with a visual inspection module 17, which is fixed on the base plate 21 through the second retractable connector 19 to identify the clamping and fixing position and the processing position of the probe.

基于上述构造,一种力实时可调的微纳探针自动成型装置控制方法,如图1所示,具体操作步骤如下:Based on the above structure, a method for controlling a micro-nano probe automatic forming device with adjustable force in real time is shown in Figure 1, and the specific operation steps are as follows:

1) 利用计算机对微纳探针目标形状进行数据离散化处理,分析微纳探针目标形状的主要特征参数;1) Use computer to discretize the target shape of the micro-nano probe, and analyze the main characteristic parameters of the target shape of the micro-nano probe;

2) 通过分别调节第一可伸缩连接件28和第二可伸缩连接件19,精确控制力检测模块8和视觉检测模块17升降,从而确定它们的合适高度L1和L2;2) By adjusting the first retractable connector 28 and the second retractable connector 19 respectively, the force detection module 8 and the visual detection module 17 are precisely controlled to rise and fall, thereby determining their appropriate heights L1 and L2;

3) 根据微纳探针目标形状需要,自动调整两个可动滑轨件18的相对位置间距;3) According to the needs of the target shape of the micro-nano probe, automatically adjust the relative position spacing of the two movable slide rail members 18;

4) 将微纳探针放置在可换探针支撑底座15上,利用可换探针固定上盖件14对微纳探针进行装夹和固定;4) Place the micro-nano probe on the replaceable probe support base 15, and use the replaceable probe fixing upper cover 14 to clamp and fix the micro-nano probe;

5) 通过更换可换弹性连接件13施加不同夹紧力,并利用微马达24驱动周向旋转模块4运动;5) Apply different clamping forces by replacing the replaceable elastic connector 13, and use the micromotor 24 to drive the circumferential rotation module 4 to move;

6) 利用视觉检测模块17实时成像探针形状,计算探针形状实际偏差量,自动控制电磁正转紧固件9和电磁反转紧固件10联合动作,动态调节施加主动力大小,从而达到力可调模块8实时调节的目的;6) Use the visual inspection module 17 to image the probe shape in real time, calculate the actual deviation of the probe shape, automatically control the joint action of the electromagnetic forward rotation fastener 9 and the electromagnetic reverse rotation fastener 10, and dynamically adjust the applied active force to achieve The purpose of real-time adjustment of the force adjustable module 8;

7) 利用两个传感器6感知形变量,动态计算施加主动力大小;7) Use two sensors 6 to perceive the deformation variables, and dynamically calculate the magnitude of the applied active force;

8) 探针产生形变向下移动,与力检测模块27发生触碰,将感知信息传输至计算机系统;8) The probe is deformed and moves downward, touches the force detection module 27, and transmits the sensing information to the computer system;

9) 当计算机系统收到力检测模块27感知到探针的碰触信息时,应用视觉检测模块17实时获取探针的实际形状,利用模板匹配法自动判断探针实际形状与目标形状主要特征参数的匹配接近度,若满足主要特征参数的匹配接近度大于99.5%,则判定微纳探针实际形状达到成型目标,反之则重复上述力实时可调的微纳探针自动成型装置控制方法。9) When the computer system receives the touch information of the probe perceived by the force detection module 27, the visual detection module 17 is used to obtain the actual shape of the probe in real time, and the template matching method is used to automatically determine the actual shape of the probe and the main characteristic parameters of the target shape. If the matching proximity of the main characteristic parameters is greater than 99.5%, it is determined that the actual shape of the micro-nano probe reaches the forming target, otherwise, the above-mentioned control method of the micro-nano probe automatic forming device with real-time adjustable force is repeated.

因此,结合上述构造和步骤可以发现,本发明所述的力实时可调的微纳探针自动成型装置和控制方法利用电磁正转紧固件和电磁反转紧固件的自动联动控制,实现了对探针施加主动力的实时可调;装置悬臂梁上布置传感器感知形变量,以此动态计算主动力,达到实时有效控制弹性连接件刚度的目的;通过视觉检测模块对探针进行实时成像,耦合力检测模块感知碰触信息,从而实现多模式伺服反馈,以此实现微纳探针的自动成型制作;具有自动化成型、力实时可调、结构简单且易实现等优点。Therefore, in combination with the above structures and steps, it can be found that the real-time adjustable force micro-nano probe automatic forming device and control method of the present invention utilizes the automatic linkage control of the electromagnetic forward-rotating fastener and the electromagnetic reverse-rotating fastener to realize Real-time adjustment of the active force applied to the probe; sensors are arranged on the cantilever beam of the device to sense the deformation, so as to dynamically calculate the active force to achieve the purpose of effectively controlling the stiffness of the elastic connector in real time; real-time imaging of the probe through the visual inspection module , the coupling force detection module senses the touch information, so as to realize multi-mode servo feedback, so as to realize the automatic forming and production of micro-nano probes; it has the advantages of automatic forming, real-time adjustable force, simple structure and easy realization.

Claims (9)

1.一种力实时可调的微纳探针自动成型装置,其特征在于:包括底板,底板通过第一支撑杆固定在与底板平行的基础平台上,底板上固定有执行机构和可移动的探针支撑机构,所述探针支撑机构包括固定在底板上的固定导轨和在固定导轨上滑动的两个可动滑轨件,可动滑轨件上通过第二支撑杆支撑起可换探针支撑底座,两个可动滑轨件上设置的可换探针支撑底座共同支撑起一根探针;所述执行机构包括圆盘状的周向旋转模块和固定在周向旋转模块圆周处的弯形执行器,弯形执行器通过第一中间连接件固定在周向旋转模块的圆周上,弯形执行器为圆弧状,弯形执行器的圆弧内侧设置有可换弹性连接件,弯形执行器的圆弧背侧设置有力可调模块,所述弯形执行器的圆弧内侧设置有半圆形连接器,所述可换弹性连接件的一端连接在弯形执行器的顶端,另一端与半圆形连接器的一端相连接,所述半圆形连接器的另一端铰接到弯形执行器的中部;所述基础平台上竖直固定有悬臂梁,所述力可调模块的一端固定在第一中间连接件与弯形执行器的连接处,另一端通过第二中间连接件固定到悬臂梁的顶部;所述周向旋转模块由设置在底板上的微马达带动。1. A micro-nano probe automatic forming device with adjustable force in real time is characterized in that: comprising a base plate, the base plate is fixed on a basic platform parallel to the base plate through a first support rod, and an actuator and a movable A probe support mechanism, the probe support mechanism includes a fixed guide rail fixed on the bottom plate and two movable slide rail pieces slid on the fixed guide rail, the movable slide rail pieces are supported by a second support rod to support the exchangeable probe A needle support base, the exchangeable probe support bases provided on the two movable slide rails jointly support a probe; the actuator includes a disk-shaped circumferential rotation module and a circumferential rotation module fixed at the circumference The curved actuator is fixed on the circumference of the circumferential rotation module through the first intermediate connecting piece, the curved actuator is in the shape of an arc, and the inner arc of the curved actuator is provided with a replaceable elastic connecting piece , the back side of the arc of the curved actuator is provided with a force adjustable module, the inner side of the circular arc of the curved actuator is provided with a semi-circular connector, and one end of the replaceable elastic connector is connected to the curved actuator The top end and the other end are connected to one end of the semicircular connector, and the other end of the semicircular connector is hinged to the middle of the curved actuator; a cantilever beam is vertically fixed on the base platform, and the force can One end of the adjustment module is fixed at the connection between the first intermediate connecting piece and the curved actuator, and the other end is fixed to the top of the cantilever beam through the second intermediate connecting piece; the circumferential rotation module is driven by a micromotor arranged on the bottom plate . 2.根据权利要求1所述的力实时可调的微纳探针自动成型装置,其特征在于:所述固定导轨上方设置有力检测模块,力检测模块通过第一可伸缩连接件设置在固定导轨上,位于探针下方。2 . The micro-nano probe automatic forming device with adjustable force in real time according to claim 1 , wherein a force detection module is arranged above the fixed guide rail, and the force detection module is arranged on the fixed guide rail through the first retractable connecting piece. 3 . , below the probe. 3.根据权利要求1所述的力实时可调的微纳探针自动成型装置,其特征在于:所述力可调模块的中部位置处对称安装电磁正转紧固件和电磁反转紧固件。3 . The micro-nano probe automatic forming device with adjustable force in real time according to claim 1 , wherein the electromagnetic forward rotation fastener and the electromagnetic reverse rotation fastener are symmetrically installed at the middle position of the force adjustable module. 4 . pieces. 4.根据权利要求1所述的力实时可调的微纳探针自动成型装置,其特征在于:所述悬臂梁的顶部和底部均设置有传感器,两个传感器配合来实时检测悬臂梁的形变量。4. The micro-nano probe automatic forming device with adjustable force in real time according to claim 1, wherein the top and bottom of the cantilever beam are provided with sensors, and the two sensors cooperate to detect the shape of the cantilever beam in real time. variable. 5.根据权利要求1所述的力实时可调的微纳探针自动成型装置,其特征在于:所述周向旋转模块与微马达轴向布置,通过轴承和联轴器进行连接,所述微马达通过微马达底座安装在底板上,轴承通过轴承底座安装在底板上。5 . The micro-nano probe automatic forming device with adjustable force in real time according to claim 1 , wherein the circumferential rotation module and the micro-motor are axially arranged and connected through a bearing and a shaft coupling. 6 . The micromotor is mounted on the base plate through the micromotor base, and the bearing is mounted on the base plate through the bearing base. 6.根据权利要求5所述的力实时可调的微纳探针自动成型装置,其特征在于:所述微马达的转轴与探针平行布置。6 . The micro-nano probe automatic forming device with real-time adjustable force according to claim 5 , wherein the rotating shaft of the micro-motor is arranged in parallel with the probe. 7 . 7.根据权利要求1所述的力实时可调的微纳探针自动成型装置,其特征在于:所述可换探针支撑底座上铰接有可换探针固定上盖件。7 . The micro-nano probe automatic forming device with real-time adjustable force according to claim 1 , wherein the replaceable probe fixing upper cover is hinged on the replaceable probe support base. 8 . 8.根据权利要求1所述的力实时可调的微纳探针自动成型装置,其特征在于:所述底板上还设置有视觉检测模块,视觉检测模块通过第二可伸缩连接件固定在底板上。8 . The micro-nano probe automatic forming device with adjustable force in real time according to claim 1 , wherein a visual detection module is further provided on the base plate, and the visual detection module is fixed on the base plate through a second retractable connector. 9 . superior. 9.一种力实时可调的微纳探针自动成型装置控制方法,应用上述权利要求8所述的力实时可调的微纳探针自动成型装置,其特征在于,包括以下操作步骤:9. A method for controlling a micro-nano probe automatic forming device with adjustable force in real time, using the real-time adjustable micro-nano probe automatic forming device according to claim 8, characterized in that, comprising the following operation steps: 1) 利用计算机对微纳探针目标形状进行数据离散化处理,分析微纳探针目标形状的主要特征参数;1) Use computer to discretize the target shape of the micro-nano probe, and analyze the main characteristic parameters of the target shape of the micro-nano probe; 2) 通过分别调节第一可伸缩连接件和第二可伸缩连接件,精确控制力检测模块和视觉检测模块升降,从而确定它们的合适高度L1和L2;2) By adjusting the first retractable connector and the second retractable connector respectively, accurately control the lifting and lowering of the force detection module and the visual detection module, thereby determining their appropriate heights L1 and L2; 3) 根据微纳探针目标形状需要,自动调整两个可动滑轨件的相对位置间距;3) According to the needs of the target shape of the micro-nano probe, automatically adjust the relative position spacing of the two movable slide rails; 4) 将微纳探针放置在可换探针支撑底座上,利用可换探针固定上盖件对微纳探针进行装夹和固定;4) Place the micro-nano probe on the replaceable probe support base, and use the replaceable probe to fix the upper cover to clamp and fix the micro-nano probe; 5) 通过更换可换弹性连接件施加不同夹紧力,并利用微马达驱动周向旋转模块运动;5) Apply different clamping forces by replacing the replaceable elastic connectors, and use the micromotor to drive the movement of the circumferential rotation module; 6) 利用视觉检测模块实时成像探针形状,计算探针形状实际偏差量,自动控制电磁正转紧固件和电磁反转紧固件联合动作,动态调节施加主动力大小,从而达到力实时可调的目的;6) Use the visual inspection module to image the probe shape in real time, calculate the actual deviation of the probe shape, automatically control the joint action of the electromagnetic forward rotation fastener and the electromagnetic reverse fastener, and dynamically adjust the applied active force, so as to achieve real-time force control. the purpose of tuning; 7) 利用两个传感器感知悬臂梁的形变量,动态计算施加主动力大小;7) Use two sensors to sense the deformation of the cantilever beam, and dynamically calculate the magnitude of the applied active force; 8) 探针产生形变向下移动,与力检测模块发生触碰,将感知信息传输至计算机系统;8) The probe is deformed and moves downward, touches the force detection module, and transmits the sensing information to the computer system; 9) 当计算机系统收到力检测模块感知到探针的碰触信息时,应用视觉检测模块实时获取探针的实际形状,利用模板匹配法自动判断探针实际形状与目标形状主要特征参数的匹配接近度,若满足设定要求则判定微纳探针实际形状达到成型目标,反之则重复上述力实时可调的微纳探针自动成型装置控制方法。9) When the computer system receives the touch information of the probe perceived by the force detection module, the visual detection module is used to obtain the actual shape of the probe in real time, and the template matching method is used to automatically determine the match between the actual shape of the probe and the main characteristic parameters of the target shape. Proximity, if the set requirements are met, it is determined that the actual shape of the micro-nano probe reaches the forming target; otherwise, the above-mentioned control method of the micro-nano probe automatic forming device with adjustable force in real time is repeated.
CN201910791610.0A 2019-08-26 2019-08-26 Force real-time adjustable micro-nano probe automatic forming device and control method Active CN110441559B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910791610.0A CN110441559B (en) 2019-08-26 2019-08-26 Force real-time adjustable micro-nano probe automatic forming device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910791610.0A CN110441559B (en) 2019-08-26 2019-08-26 Force real-time adjustable micro-nano probe automatic forming device and control method

Publications (2)

Publication Number Publication Date
CN110441559A CN110441559A (en) 2019-11-12
CN110441559B true CN110441559B (en) 2020-07-28

Family

ID=68437668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910791610.0A Active CN110441559B (en) 2019-08-26 2019-08-26 Force real-time adjustable micro-nano probe automatic forming device and control method

Country Status (1)

Country Link
CN (1) CN110441559B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114966142B (en) * 2022-06-13 2023-01-31 法特迪精密科技(苏州)有限公司 Matching method of electromagnetic drive rotary probe and fixed socket

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513518A (en) * 1994-05-19 1996-05-07 Molecular Imaging Corporation Magnetic modulation of force sensor for AC detection in an atomic force microscope
CN2488061Y (en) * 2001-05-25 2002-04-24 中国科学院长春应用化学研究所 Adjustable multi-probe seat for stomic force microscope
KR100373762B1 (en) * 2002-09-25 2003-02-26 Uk Ki Lee Method for manufacturing cavity-type micro-probe using mems technology and micro-probe according to the same
CN1866407A (en) * 2006-05-31 2006-11-22 北京大学 MEMS microprobe and preparation method thereof
US8023393B2 (en) * 2007-05-10 2011-09-20 International Business Machines Corporation Method and apparatus for reducing tip-wear of a probe
CN101643195B (en) * 2008-08-06 2011-11-09 中国科学院生态环境研究中心 Method and device for preparing colloid probe
GB201217344D0 (en) * 2012-09-28 2012-11-14 Ibm Microfluidic surface processing systems with self- regulated distance-to surface control
CN104931741B (en) * 2014-03-19 2018-05-29 中国科学院苏州纳米技术与纳米仿生研究所 Microprobe and preparation method thereof
CN104155478A (en) * 2014-08-13 2014-11-19 中国科学院电工研究所 Probe self-damping method applied to fast scanning atomic force microscopy
CN104865408A (en) * 2015-04-28 2015-08-26 中山大学 Method and device for controlling resonance frequency of atomic force microscope cantilever beam
CN106239495B (en) * 2016-08-30 2018-08-07 上海大学 A kind of micro-nano operation parallel pose adjustment platform and method
CN107796958B (en) * 2017-09-18 2019-10-01 上海理工大学 A kind of preparation method of colloidal probe for atomic force microscope

Also Published As

Publication number Publication date
CN110441559A (en) 2019-11-12

Similar Documents

Publication Publication Date Title
CN101281073B (en) A mechanical sensor array calibration device and its working method
CN201493355U (en) Automatic thin-wall tube straightening machine
CN202033260U (en) Scratch tester for linear loading
CN104006964A (en) Harmonic drive gear mesh and flexible gear deformation dynamic characteristic testing system
CN110441559B (en) Force real-time adjustable micro-nano probe automatic forming device and control method
CN102589469A (en) Device for detecting profile of planar conjugate cam and control method thereof
CN101520321B (en) Precision testing device
CN104197856A (en) In-place surface topography detection workbench
CN112344862A (en) Corrugated pipe waveform testing device and testing method
CN215218316U (en) A hardness test fixture based on hardness tester
CN106216440B (en) A kind of aero-engine main shaft Intelligent Measurement corrector
CN203324001U (en) Computer-based real-time measuring apparatus for pushing force
CN204758421U (en) Full -automatic rockwell hardness meter
CN211361218U (en) Surface array micro-texture processing device
CN203464923U (en) Device for automatically detecting precision of size of bearing
CN217304669U (en) Universal testing machine for testing performance of plastic material
CN108535413B (en) High-stability plane air film parameter measuring device
CN108772438B (en) Automated intelligent linear slide calibration water line
CN220751584U (en) Accelerator pedal detection device
CN222318284U (en) Tension testing tool for miniature motor
CN119197354A (en) An inner diameter detection mechanism
CN103776494B (en) A kind of surveying instrument
CN203745005U (en) Measuring instrument
CN106695503A (en) Precision polish-grinding robot system for bathroom metal parts
CN201837344U (en) Valve shim selector for engine cylinder cover

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant