CN110438452B - 一种微纳光学保温材料、制作方法及应用 - Google Patents

一种微纳光学保温材料、制作方法及应用 Download PDF

Info

Publication number
CN110438452B
CN110438452B CN201910698028.XA CN201910698028A CN110438452B CN 110438452 B CN110438452 B CN 110438452B CN 201910698028 A CN201910698028 A CN 201910698028A CN 110438452 B CN110438452 B CN 110438452B
Authority
CN
China
Prior art keywords
heat
micro
substrate
nano
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910698028.XA
Other languages
English (en)
Other versions
CN110438452A (zh
Inventor
李强
罗皓
仇旻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910698028.XA priority Critical patent/CN110438452B/zh
Publication of CN110438452A publication Critical patent/CN110438452A/zh
Application granted granted Critical
Publication of CN110438452B publication Critical patent/CN110438452B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/06Thermally protective, e.g. insulating
    • A41D31/065Thermally protective, e.g. insulating using layered materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0015Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterized by the colour of the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种保温微纳光学材料,包括多孔材料为基底,以及敷设在该基底上的金属‑损耗电介质膜层;所述基底表面具有亲水性。本发明引入基于纳米孔聚乙烯薄膜与超薄光学膜层的微纳光子学保温材料,利用纳米孔聚乙烯优良透汽特性,结合表面改性手段如亲水性增强等实现微纳光子学保温材料的高可穿着性。利用超薄光学膜层实现对热辐射散射的抑制与颜色管理,同时吸收太阳光辅助人体保温。该保温材料可应用在人体热管理,建筑物节能等应用中。

Description

一种微纳光学保温材料、制作方法及应用
技术领域
本发明涉及保温材料设计技术领域,具体涉及一种微纳光学保温材料及、制作方法及应用。
背景技术
人体热耗散途径主要包含传导、对流、蒸发以及辐射散热,在环境温度为26℃时,辐射散热占据约65%的人体热耗散。传统的人体保温材料主要通过改变材料(如棉服、羽绒服)的几何厚度以及着色特性实现低传导/对流热损耗,增加厚度对应保温能力的提高,而传统保温材料的热辐射率较高,高辐射热损耗难以避免。
对于辐射热损耗的管理由NASA于20世纪60年代提出,研究成果为基于金属铝-塑料薄膜结构的太空毯,然而由于救生毯采用致密无孔的塑料基底,透水和透气性能较差,不适用于长期穿着。近期,Lili Cai等人基于纳米孔聚乙烯-聚多巴胺-银结构实现了高穿着性能的被动式(利用人体新陈代谢产热)辐射热管理材料。但这类材料在日常穿着时仍存在缺陷:1)色彩管理缺失,颜色单一;2)户外保温效率较低,由于纳米孔聚乙烯-聚多巴胺-银结构的高效太阳光反射,无法吸收太阳光进行主动式人体保温。
发明内容
本发明针对现有技术存在的缺点和不足,利用金属-损耗电介质膜层的微纳光学结构能够对太阳光高效吸收,同时呈现不同颜色的特性,提出了一种能够兼顾被动降低辐射热损耗保温与主动太阳光光热转换辅助保温的同时适用于户外与户内使用的人体热管理超薄微纳光学材料,并将人体舒适性管理与热管理结合,利用纳米多孔材料孔径远大于水分子的尺寸的特点,实现优良透汽性能。
一种彩色保温人体热管理微纳光学材料,包括多孔材料为基底,以及敷设在该基底上的金属-损耗电介质膜层;所述基底表面具有亲水性。
作为优选,所述基底为聚乙烯,其表面利用聚多巴胺进行亲水性能改性。本发明可以超薄纳米孔或微孔材料作为基底,该材料作为成熟的材料,安全性更高。本发明中选取纳米孔聚乙烯材料作为基底。本发明可以利用聚多巴胺改性方法增强聚乙烯表面的亲水性能。
作为优选,基底的平均孔径小于200纳米,厚度为10~100微米。作为进一步优选,所述基底的平均孔径为10~100纳米,厚度为10~100微米
用于彩色保温人体热管理微纳光学材料的超薄金属-电介质膜层须采用可见光谱段内有一定损耗的金属如金,铝等,作为优选,所述金属-损耗电介质膜层中:金属层为金或/和铝,厚度为40纳米以上,进一步优选为厚度约为50纳米以上(依赖于纳米孔材料的孔径,当纳米孔孔径较大时,需要沉积较厚的金属),同时,电介质需满足卡见光谱段内有较高损耗的条件,比较典型的电介质包括非晶态锗,硅等半导体材料,为实现不同色彩,选择的厚度在4-30纳米之间。
作为优选,所述金属-损耗电介质膜层中:金属层为金,厚度为50~100纳米;损耗电介质层为非晶态锗,厚度为4~20纳米。
本发明中,所述彩色保温人体热管理微纳光学材料基底的基本结构材料为超薄纳米孔聚乙烯(比如可以选择约16微米左右的厚度),随后沉积聚多巴胺进行表面改性,最后通过磁控建射沉积金-锗膜层实现不同色彩以及低热辐射率。
所述的彩色保温人体热管理微纳光学材料,其实现多种色彩的原理在于纳米金-锗薄膜在太阳光谱波段的强干涉现象:锗作为高损耗电介质层,其折射率虚部较大,从空气入射光在被反射时积累不同于π的相位变化(不再满足半波损失的情况),与此同时,金在该波段也具有高损耗的特点,高效吸收的条件为光波在空气-锗界面反射时的相位变化与历经空气-锗-金-锗-空气的传播路径后积累的相位变化为π(即干涉相消),在折射率虚部较大情况下,亚波长量级的金属-电介质体系即能达到这一条件,实现高效宽角度选择性吸收(即角度不敏感的不同色彩),最高吸收率能够达到约50%。而纳米级的锗薄膜对纳米金膜的中红外高反射特性没有影响,整体光学膜层在中红外仍表现为纳米金膜的特征,即极低的热辐射率(约0.1),确保了彩色保温人体热管理微纳光学材料的被动保温能力。
一种上述任一技术方案所述的彩色保温人体热管理微纳光学材料制作方法,可选择的对所述基底表面进行亲水性改性,然后通过磁控溅射的手段依次沉积金属(膜)层和损耗电介质(膜)层。
本发明可以通过改变损耗介质层的厚度实现不同色彩的调控。本发明的技术方案是以超薄纳米孔聚乙烯作为基底(比如,平均孔径小于200纳米,厚度约16微米),利用聚多巴胺改性方法增强聚乙烯表面的亲水性能,随后通过磁控溅射的手段沉积超薄金、锗膜层,不同厚度的锗层实现不同颜色的调控。其中金的厚度约为80纳米,色彩与锗膜厚度的对应关系如下:橙色:约8纳米;紫红色:约12纳米;紫色:约16纳米;蓝色:约20纳米。
本发明的保温材料有较好的可穿着特性,其透过水汽能起接近黑色卫衣,有较好的可润湿特性,并具备较强的防风能力。所述彩色保温人体热管理微纳光学材料能够在锗膜层厚度约20纳米的时候对太阳光呈现约50%的吸收率,与此同时,中红外热辐射率约为0.1(作为参考,棉的热辐射率约为0.89)。
本发明通过该光学膜层实现宽光谱高太阳光吸收率(约50%)与低热辐射率(约0.1),达到对太阳光的高效吸收与热辐射损失的抑制。其低热辐射率特性(辐射率约为0.1)保证其对人体新陈代谢产热的高效利用,在室内情况下,其保温效率接近6mm厚度的传统保温材料(如黑色卫衣),能够使模拟皮肤在同样输入功率的情况下,保持比2mm黑色卫衣覆盖的模拟皮肤高3.8℃的温度。与此同时,有较高的太阳光吸收率(最高约50%),在室外太阳照射情况下,模拟皮肤能够保持比2mm黑色卫衣覆盖的模拟皮肤高6.3℃的温度。
传统的人体热管理方法着重于减弱材料的热传导性能,但是对于热辐射散热的管控缺失,新型人体辐射热管理材料如救生毯虽然起到抑制热辐射散射的作用,但其透汽性能极差,同时对太阳光吸收极低,无法利用太阳能辅助保温。本发明引入基于纳米孔聚乙烯薄膜与超薄光学膜层的微纳光子学保温材料,利用纳米孔聚乙烯优良透汽特性,结合表面改性手段如亲水性增强等实现微纳光子学保温材料的高可穿着性。利用超薄光学膜层实现对热辐射散射的抑制与颜色管理,同时吸收太阳光辅助人体保温。该保温材料可应用在人体热管理,建筑物节能等应用中。
与现有技术相比,本发明的优点是:
(1)针对室外个人热管理,通过优化微纳光学材料和结构协同调控其在太阳光波段和人体红外辐射波段光学特性,实现具备主动的太阳光光热转换辅助保温与被动降低中红外热辐射的微纳光学材料;(2)将人体美学管理与热管理结合,基于微纳光学结构实现颜色管理,相比传统染色方法具有加工工艺简单、无废水污染等优势;(3)将人体舒适性管理与辐射热管理结合,利用纳米多孔材料尺寸可调特性实现优良透水透气性能。
附图说明
图1为本发明彩色保温人体热管理微纳光学材料原理图;
图2为本发明彩色保温人体热管理微纳光学材料制备流程;
图3为实施例所述彩色保温人体热管理微纳光学材料的扫描电子显微镜图与透气性测试结果;
图4为实施例所述彩色保温人体热管理微纳光学材料的保温性能测定装置与测试方法。
具体实施方式
下面结合附图对本发明的具体实施方式做详细说明:本实施方式案例以本发明提出的为前提,但本发明的保护范围并不限于下述实施方式与案例。
如图1所示,具有太阳光吸收能力的传统热管理材料如黑色卫衣能够对太阳光中可见光成分有很强吸收,但材料本身的高热辐射率特性使其并不具备被动保温(即降低辐射热损失)的能力,本发明的彩色保温人体热管理微纳光学材料在对太阳光谱有高达50%的宽谱有效吸收的同时,具有极低(约10%或10%以下)的热辐射率,吸收太阳光光热转换获得的热能能够充分用于辅助人体保温。
如图2所示,彩色保温人体热管理微纳光学材料的制备流程包括以下几部分:1)作为基底的纳米孔聚乙烯被广泛应用在锂离子电池中作为电池隔膜,为实现较好的吸湿性能,对纳米孔聚乙烯进行聚多巴胺的表面亲水性改善[1];2)在表面改性后的纳米孔聚乙烯上通过高真空磁控溅射先沉积约80纳米厚的金膜,随后沉积不同厚度(4纳米-20纳米)的锗膜层。色彩与锗膜厚度的对应关系如下:橙色:约8纳米;紫红色:约12纳米;紫色:约16纳米;蓝色:约20纳米。
如图3中(a)所示,彩色保温人体热管理微纳光学材料在制备后仍存在足够水蒸汽通过的纳米孔,保证了其透湿性能。由图3中(b)可知,本发明的材料用作人体保温材料时,透气性与普通的运动衫相当,远远高于现有的金属铝-塑料薄膜结构的太空毯的透气性。
对于室内保温性能的测试如图4中(a)所示,整个测试在一个由保鲜膜覆盖的高热辐射率的腔体内进行,通过一片加热片模拟人体的新陈代谢产热,在该加热片上覆盖辐射率接近人体热辐射率(约为0.95)黑色绝缘胶带。在覆盖不同的人体热管理材料的情况下,通过调整加热片的输入功率维持加热片的温度接近体表温度(约34摄氏度),记录下该功率作为模拟新陈代谢产热量。在该测试方法下,覆盖本发明中的彩色保温人体热管理材料(其中基底厚度为16微米;金膜厚度为80纳米;锗膜层厚度为20纳米)的模拟皮肤的输入功率接近覆盖6毫米厚度黑色卫衣的模拟皮肤的输入功率。
对于室外保温性能的测试如图4中(b)所示,用黑色绝缘胶带作为模拟皮肤贴在玻璃或铜片表面(玻璃或铜片用绝热性能较好的气凝胶支撑),在模拟皮肤上覆盖不同的人体热管理材料并将不同的人体热管理材料置于太阳光照射下的外部环境中,利用热电偶测试模拟皮肤的温度变化情况。在阳光照射情况下模拟皮肤的平均温度能够保持比2mm黑色卫衣覆盖的模拟皮肤高6.3℃。
[1]Zhang,C.,Ou,Y.,Lei,W.X.,Wan,L.S.,Ji,J.and Xu,Z.K.,CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity andenhanced stability.Angew.Chem.-Int.Edit 55(2016)3054-3057。

Claims (5)

1.一种微纳光学保温材料,其特征在于,包括多孔材料为基底,以及敷设在该基底上的金属-损耗电介质膜层;所述基底表面具有亲水性;基底的平均孔径小于200纳米,厚度10~100微米;所述金属-损耗电介质膜层中:金属层为金或/和铝,厚度为40纳米以上,损耗电介质层为非晶态锗或硅,厚度为4-30纳米。
2.根据权利要求1所述的微纳光学保温材料,其特征在于,所述基底为聚乙烯,其表面利用聚多巴胺进行亲水性能改性。
3.根据权利要求1所述的微纳光学保温材料,其特征在于,所述金属-损耗电介质膜层中:金属层为金,厚度为50~100纳米;厚度为4~20纳米。
4.一种权利要求1~3之一所述的微纳光学保温材料制作方法,其特征在于,对所述基底表面进行亲水性改性,然后通过磁控溅射的手段依次沉积金属膜层和损耗电介质膜层。
5.一种权利要求1~3之一所述的微纳光学保温材料作为人体或动物用保温材料的应用。
CN201910698028.XA 2019-07-31 2019-07-31 一种微纳光学保温材料、制作方法及应用 Active CN110438452B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910698028.XA CN110438452B (zh) 2019-07-31 2019-07-31 一种微纳光学保温材料、制作方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910698028.XA CN110438452B (zh) 2019-07-31 2019-07-31 一种微纳光学保温材料、制作方法及应用

Publications (2)

Publication Number Publication Date
CN110438452A CN110438452A (zh) 2019-11-12
CN110438452B true CN110438452B (zh) 2020-11-06

Family

ID=68432473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910698028.XA Active CN110438452B (zh) 2019-07-31 2019-07-31 一种微纳光学保温材料、制作方法及应用

Country Status (1)

Country Link
CN (1) CN110438452B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3640832A (en) * 1969-02-06 1972-02-08 Verolme Vacuumtechnik Ag Heat-insulating material
WO2002040267A1 (de) * 2000-11-20 2002-05-23 Siegfried Langhein Verbund in wasserdichter, winddichter, wärmeisolierender und -reflektierender ausführung
CN101725050A (zh) * 2008-10-10 2010-06-09 牌罗工业株式会社 用于高温抗热衣服的分层织物结构和使用其生产的一体高温抗热衣服
CN103660442A (zh) * 2012-09-24 2014-03-26 财团法人纺织产业综合研究所 机能性短纤维的制造方法与制造装置
CN107700021A (zh) * 2017-11-06 2018-02-16 福建凤竹纺织科技股份有限公司 一种多功能合金锗运动面料及其生产工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2694424A1 (en) * 2010-02-23 2011-08-23 Furio Orologio Thermally insulated personal articles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3640832A (en) * 1969-02-06 1972-02-08 Verolme Vacuumtechnik Ag Heat-insulating material
WO2002040267A1 (de) * 2000-11-20 2002-05-23 Siegfried Langhein Verbund in wasserdichter, winddichter, wärmeisolierender und -reflektierender ausführung
CN101725050A (zh) * 2008-10-10 2010-06-09 牌罗工业株式会社 用于高温抗热衣服的分层织物结构和使用其生产的一体高温抗热衣服
CN103660442A (zh) * 2012-09-24 2014-03-26 财团法人纺织产业综合研究所 机能性短纤维的制造方法与制造装置
CN107700021A (zh) * 2017-11-06 2018-02-16 福建凤竹纺织科技股份有限公司 一种多功能合金锗运动面料及其生产工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Warming up human body by nanoporous metallized polyethylene textile;Cai,LL et al.;《NATURE COMMUNICATIONS》;20170919;第8卷(第496期);1-8 *

Also Published As

Publication number Publication date
CN110438452A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
Zhang et al. Recent progress in daytime radiative cooling: Advanced material designs and applications
Bao et al. Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling
Luo et al. An ultra-thin colored textile with simultaneous solar and passive heating abilities
Yao et al. Near-perfect selective photonic crystal emitter with nanoscale layers for daytime radiative cooling
Farooq et al. Emerging radiative materials and prospective applications of radiative sky cooling-A review
Li et al. Spectrally selective absorbers/emitters for solar steam generation and radiative cooling‐enabled atmospheric water harvesting
Xia et al. Easy way to achieve self-adaptive cooling of passive radiative materials
Zhang et al. Cover shields for sub-ambient radiative cooling: A literature review
Zhu et al. Recent advances in textile materials for personal radiative thermal management in indoor and outdoor environments
Chan et al. Potential passive cooling methods based on radiation controls in buildings
Zhou et al. Radiative cooling for energy sustainability: Materials, systems, and applications
Wang et al. One‐Step Reactive Sputtering of Novel MoOx Nanogradient Absorber for Flexible and Wearable Personal Passive Heating
Ma et al. Developments of CPC solar evacuated glass tube collector with a novel selective coating
CN110438452B (zh) 一种微纳光学保温材料、制作方法及应用
CN113622204A (zh) 一种保温与散热双功能热管理织物及其制备方法
Guo et al. Dynamic thermal radiation regulation for thermal management
Feng et al. Dual-asymmetrically selective interfaces-enhanced poly (lactic acid)-based nanofabric with sweat management and switchable radiative cooling and thermal insulation
Li et al. Hierarchically structural TiO2-PVDF fiber film with particle-enhanced spectral performance for radiative sky cooling
Strauss et al. Absorber and self-cleaning surfaces on modified polymer plates for solar harvesting in the humid (sub) tropics
Banthuek et al. Application of Ni-Al2O3 cermet coating on aluminium fin as the solar absorber in evacuated tube collector (ETC)
Hu et al. Enhancement of solar absorption by a surface-roughened metal–dielectric film structure
Zhou et al. Recent advances in dynamic dual mode systems for daytime radiative cooling and solar heating
CN107217959B (zh) 一种智能动态颜色可调节Low-E玻璃
CN110093590A (zh) 一种柔性的Mo-MoOx基太阳能吸收涂层及其制备方法
Dan et al. Thermal stability of WAlN/WAlON/Al2O3-based solar selective absorber coating

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant