CN110438096A - 修饰脂肪氧合酶二级结构以降低其ɑ-螺旋和β-折叠含量的方法及其在食品行业的用途 - Google Patents

修饰脂肪氧合酶二级结构以降低其ɑ-螺旋和β-折叠含量的方法及其在食品行业的用途 Download PDF

Info

Publication number
CN110438096A
CN110438096A CN201910739206.9A CN201910739206A CN110438096A CN 110438096 A CN110438096 A CN 110438096A CN 201910739206 A CN201910739206 A CN 201910739206A CN 110438096 A CN110438096 A CN 110438096A
Authority
CN
China
Prior art keywords
lipoxygenase
curcumin
pork
spiral
beta sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910739206.9A
Other languages
English (en)
Inventor
李鹏鹏
王道营
孙冲
邹烨
张新笑
王晶晶
徐为民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Academy of Agricultural Sciences
Original Assignee
Jiangsu Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Academy of Agricultural Sciences filed Critical Jiangsu Academy of Agricultural Sciences
Priority to CN201910739206.9A priority Critical patent/CN110438096A/zh
Publication of CN110438096A publication Critical patent/CN110438096A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/14Preserving with chemicals not covered by groups A23B4/02 or A23B4/12
    • A23B4/18Preserving with chemicals not covered by groups A23B4/02 or A23B4/12 in the form of liquids or solids
    • A23B4/20Organic compounds; Microorganisms; Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

本发明公开了一种修饰脂肪氧合酶二级结构以降低其ɑ‑螺旋和β‑折叠含量的方法,设计或选取能够与脂肪氧合酶上的色氨酸残基相结合的化合物,常压、室温下,按照一定的摩尔比将所述化合物与脂肪氧合酶混合,以降低脂肪氧合酶蛋白质二级结构中ɑ‑螺旋和β‑折叠的含量。本发明通过化学结合及静态复合物的形成,实现快速降低脂肪氧合酶蛋白质二级结构中ɑ‑螺旋和β‑折叠的含量,通过修饰酶蛋白的结构从而快速准确调整酶活;本发明同时基于上述酶蛋白修饰的方法提供了其在食品行业的用途。

Description

修饰脂肪氧合酶二级结构以降低其ɑ-螺旋和β-折叠含量的方 法及其在食品行业的用途
技术领域
本发明涉及化学和食品相关技术领域,尤其是一种酶蛋白修饰方法及其在食品保险行业的用途。
背景技术
脂氧合酶(LOX)是一种氧合酶。脂氧合酶在自然界中广泛存在,不仅在植物、动物中存在脂氧合酶,在藻类、面包酵母、真菌以及氰细菌中均发现有脂氧合酶的存在。脂氧合酶是一种含非血红素铁的蛋白,酶蛋白由单肽链组成,它专门催化具有顺,顺21,4戊二烯结构的不饱和脂肪酸的加氧反应,在植物中其底物主要是亚油酸和亚麻酸,在动物体内其底物主要是花生四烯酸。在亚油酸和亚麻酸上的加氧位置是C9和C13,在花生四烯酸上的加氧位主要是C5、C12和C15, 也可在C8、C9和C11位上加氧。
动物体内脂氧合酶虽然发现较晚,但其生理功能现已基本确定,其代谢产物主要参与炎症反应重要调节分子如白三烯、Lipoxins和前列腺素的形成。脂氧合酶途径,简称脂氧合酶途径,是指多不饱和脂肪酸在有氧条件下经脂氧合酶催化生成氢过氧化物,再经一系列不同的酶的作用最终生成具有一定生理功能的化合物。在高等植物体内脂氧合酶途径多以十八碳酸为初始底物,因此又称十八碳酸途径,动物体内则以花生四烯酸为初始底物故称二十碳酸途径。
肉制品在加工过程中容易发生脂质氧化,影响肉制品的风味。脂类物质的氧化分为自动氧化和酶促氧化,脂肪氧合酶是酶促氧化最主要的内源酶。如上所述,脂氧合酶专一性作用于多不饱和脂肪酸(PUFA)的顺,顺-1,4-戊二烯基位置,通过分子内加氧,生成具有共轭双键的氢过氧化物。生成的氢过氧化物极不稳定,可以进一步反应生成多种挥发性化合物,这些物质一方面形成食品的主要风味物质,例如新鲜水果蔬菜的风味物质醛类即由脂氧合酶氧化多不饱和脂肪酸途径生成,干腌肉制品的主要风味物质己醛也是脂质氧化降解生成;另一方面,食品中脂质的过度氧化会产生不愉悦气味物质,不仅导致食品风味劣变,还造成食物多不饱和脂肪酸含量下降,导致食物营养品质的下降和增加食品储藏的困难。
本发明研究的相关参考文献包括:
[1]Fu X,Xu S,Wang Z.Kinetics of lipid oxidation and off-odorformation in silver carp mince:The effect oflipoxygenase and hemoglobin[J].Food Research International,2009,42(1):85-90.
[2]闫静芳,王红霞,郭玉鑫,等.脂肪氧合酶的研究及应用进展[J].食品安全质量检测学报,2013(3):799-805.
[3]Alberti J C,Mariani M,Gambotti C,et al.A functional roleidentified for conserved charged residues at the active site entrance oflipoxygenase with double specificity[J].Journal of Molecular Catalysis BEnzymatic,2016,123:167-173.
[4]郇延军.2005.金华火腿加工过程中脂类物质及风味成分变化的研究[D].南京农业大学.
[5]Roldan M,Antequera T,Armenteros M,et al.Effect of differenttemperature –time combinations on lipid and protein oxidation of sous-videcooked lamb loins[J]. Food Chemistry,2014,149(149):129-136.
[6]Cheng J H.Lipid oxidation in meat[J].Journal of Nutrition and FoodSciences, 2016,6(3):1-3.
[7]Navicha W B,Hua Y,Masamba K,et al.Optimization of soybean roastingparameters in developing nutritious and lipoxygenase free soymilk[J].Journalof Food Measurement&Characterization,2017,11(4):1899-1908.
[8]Mandal S,Dahuja A,Santha I M.Lipoxygenase activity in soybean ismodulated by enzyme-substrate ratio[J].Journal of Plant Biochemistry&Biotechnology, 2014,23(2):217-220.
[9]Mashima R,Okuyama T.The role of lipoxygenases in pathophysiology;new insights and future perspectives[J].Redox Biology,2015,6:297-310.
[10]Stephany M,Bader-Mittermaier S,Schweiggert-Weisz U,etal.Lipoxygenase activity in different species of sweet lupin(Lupinus L.)seedsand flakes[J].Food Chemistry,2015,174:400.
[11]Tsuda T.Curcumin as a functional food-derived factor:degradationproducts, metabolites,bioactivity,and future perspectives[J].Food&Function,2018, 9(2):705-714.
[12]Choi E S,Kang Y Y,Mok H.Evaluation of the enhanced antioxidantactivity of curcumin within exosomes by fluorescence monitoring[J].Biotechnology& Bioprocess Engineering,2018,23(2):150-157.
[13]Silva-BuzanelloRA D,Ferro A C,Bona E,et al.Validation of anUltraviolet –visible(UV–Vis)technique for the quantitative determination ofcurcumin in poly(l-lactic acid)nanoparticles[J].Food Chemistry,2015,172(172):99-104.
[14]Anand P,Nair H B,Sung B,et al.Design of curcumin-loaded PLGAnanoparticles formulation with enhanced cellular uptake,and increasedbioactivity in vitro and superior bioavailability in vivo[J].BiochemicalPharmacology,2010, 79(3):330-338.
[15]Naama J H,Alwan G H,Hasan R.Obayes.Curcuminoids as antioxidantsand theoretical study of stability of curcumin isomers in gaseous state[J].Research on Chemical Intermediates,2013,39(9):4047-4059.
[16]Anshoo M,Praveen N,Kumar D D,et al.Study to Evaluate MolecularMechanics behind SynergisticChemo-Preventive Effects of Curcumin andResveratrol during Lung Carcinogenesis[J].PLoS ONE,2014,9(4):e93820.
[18]何立超,马素敏,李成梁,等.温度、盐分以及pH值对鸭肉脂肪氧合酶活性的交互影响[J].江苏农业学报,2016,32(6):1404-1409.
[19]Kermasha S,Metche M.Characterization of seed lipoxygenase ofPhaseolus vulgaris cv.Haricot[J].Journal of Food Science,1986,51(5):1224–1227.
[20]Szymanowska U,Jakubczyk A,Baraniak B,et al.Characterisation oflipoxygenase from pea seeds(Pisum sativum,var.Telephone,L.)[J].FoodChemistry, 2009,116(4):906-910.
[21]Kouassi G K,Anantheswaran R C,Knabel S J,et al.Effect of high-pressure processing on activity and structure of alkaline phosphatase andlactate dehydrogenase in buffer and milk[J].Journal of Agricultural and FoodChemistry,2007, 55(23):9520-9529.
[22]Parker C A,Rees W T.Correction of fluorescence spectra andmeasurement of fluorescence quantum efficiency[J].Analyst,1960,85(1013):16-27.
[26]Qiu C,Wang Y,Teng Y,et al.Influence of glycosylation ofdeamidated wheat gliadin on its interaction mechanism with resveratrol[J].Food Chemistry,2016, 221:431-438.
[27]刘勤勤,朱科学,郭晓娜,等.茶多酚与大豆分离蛋白的相互作用[J].食品科学, 36(17):43-47.
[28]Xiaofang W,Hnizhou L.The interaction between triton X-100andbovine serum albumin[J].Chinese journal of analytieal chemistry,2000,28(6):699-701.
[29]Mehranfar F,Bordbar A K,Parastar H.A combined spectroscopic,molecular docking and molecular dynamic simulation study on the interactionof quercetin with β-casein nanoparticles[J].Journal of Photochemistry andPhotobiology B:Biology, 2013,127:100-107.
[30]Zhang H,Wu P,Wang Y,et al.Affinity of miriplatin to human serumalbumin and its effect on protein structure and stability[J].InternationalJournal of Biological Macromolecules,2016,92:593-599.
[31]姚惠芳,景浩.笃斯越橘花青素与牛血清白蛋白的相互作用[J].食品科学,2013, 34(23):6-10.
[32]吴雨杭,兰雪玲,陈楠,等.同步荧光光谱法结合分子对接研究染料木素与牛血清白蛋白之间的相互作用[J].分析试验室,2014,33(12):1365-1369.
[33]Yu X,Jiang B,Liao Z,et al.Study on the interaction betweenBesifloxacin and bovine serum albumin by spectroscopic techniques[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2015,149:116-121.
[34]吴雨杭,韩忠保,马嘉泽,等.同步荧光光谱法结合分子对接研究金雀花碱与牛血清白蛋白间相互作用[J].光谱学与光谱分析,2016,36(3):765-769.
[35]Tozzi S,Zanna N,Taddei P.Study on the interaction betweengliadins and a coumarin as molecular model system of the gliadins–anthocyanidins complexes[J]. Food Chemistry,2013,141(4):3586-3597.
[36]Tang L,Li S,Bi H,et al.Interaction of cyanidin-3-O-glucoside withthree proteins[J].Food Chemistry,2016,196:550-559.
[37]Greenfield N J.2006.Using Circular Dichroism Spectra to EstimateProtein Secondary Structure[J].Nature Protocols,1(6):2876-2890.
[38]Li yixuan,Wang jinpeng,et al.A study on the potential interactionbetween cyclodextrin and;lipoxygenase[J].Journal of Inclusion Phenomena&Macrocyclic Chemistry,2013,76(1-2):107-111.
发明内容
本发明要解决的技术问题是以分子范德华力为基础,以脂肪酶蛋白上的残基为结合位点,通过化学结合及静态复合物的形成,实现快速降低脂肪氧合酶蛋白质二级结构中ɑ-螺旋和β-折叠的含量,通过修饰酶蛋白的结构从而快速准确调整酶活;本发明同时基于上述酶蛋白修饰的方法提供其在食品行业的用途。
为解决上述技术问题,本发明所采取的技术方案如下。
修饰脂肪氧合酶二级结构以降低其ɑ-螺旋和β-折叠含量的方法及其在食品行业的用途,设计或选取能够与脂肪氧合酶上的色氨酸残基相结合的化合物,常压、室温下,按照一定的摩尔比将所述化合物与脂肪氧合酶混合,以降低脂肪氧合酶蛋白质二级结构中ɑ-螺旋和β-折叠的含量;
所述化合物为姜黄素,具有如下结构式:
所述姜黄素与脂肪氧合酶的摩尔比为=1:(0.1-10)。
作为本发明的一种优选技术方案,所述姜黄素与脂肪氧合酶的摩尔比为=1:(0.5-2)。
作为本发明的一种优选技术方案,所述姜黄素与脂肪氧合酶的摩尔比为=1:1。
作为本发明的一种优选技术方案,所述脂肪氧合酶为动物脂肪氧合酶。
作为本发明的一种优选技术方案,所述脂肪氧合酶为猪脂肪氧合酶。
一种保持生猪肉营养价值和提升猪肉运输储藏鲜度的方法,通过快速降低猪脂肪氧合酶蛋白质二级结构中ɑ-螺旋和β-折叠的含量,实现对猪脂肪氧合酶的有效抑制,从而减少猪肉中脂质的过度氧化,保持多不饱和脂肪酸含量的相对稳定,避免猪肉营养品质下降和风味劣变,提升生猪肉运输和储藏的新鲜度。
作为本发明的一种优选技术方案,首先制备姜黄素的无菌水溶液,并通过无菌灌装注入喷壶中;在生猪肉储藏、运输过程的起始时段,向生猪肉喷洒上述制备的姜黄素溶液,即可快速降低猪脂肪氧合酶蛋白质二级结构中ɑ-螺旋和β-折叠的含量,实现对猪脂肪氧合酶的有效抑制。
作为本发明的一种优选技术方案,所述姜黄素的无菌水溶液中姜黄素的浓度为1-100μg/mL。
作为本发明的一种优选技术方案,所述姜黄素的无菌水溶液中姜黄素的浓度为50μg/mL。
作为本发明的一种优选技术方案,所述姜黄素的无菌水溶液的用量以喷洒覆盖生猪肉的外表面积为准。
采用上述技术方案所产生的有益效果在于:本发明的方法以分子范德华力为基础,以脂肪酶蛋白上的残基为结合位点,通过化学结合及静态复合物的形成,实现快速降低脂肪氧合酶蛋白质二级结构中ɑ-螺旋和β-折叠的含量,通过修饰酶蛋白的结构从而快速准确调整酶活。
将上述方法应用到生猪肉的保鲜上,在生猪肉储藏、运输过程的起始时段,向生猪肉喷洒上述制备的姜黄素溶液,即可快速降低猪脂肪氧合酶蛋白质二级结构中ɑ-螺旋和β-折叠的含量,实现对猪脂肪氧合酶的有效抑制,从而减少猪肉中脂质的过度氧化,保持多不饱和脂肪酸含量的相对稳定,避免猪肉营养品质下降和风味劣变,提升生猪肉运输和储藏的新鲜度。
附图说明
图1为蛋白质二级结构中α螺旋和β折的示意图。
图2显示不同姜黄素浓度对猪12-LOX酶活力的影响。
图3显示姜黄素对猪12-LOX荧光光谱的影响。
图4为不同温度条件下姜黄素猝灭猪12-LOX的Stern-Volmer图。
图5为不同温度条件下姜黄素猝灭猪12-LOX的双对数图。
图6为姜黄素与猪12-LOX体系的同步荧光光谱图。
图7为姜黄素猝灭猪12-LOX相互作用的圆二色谱图。
具体实施方式
以下实施例详细说明了本发明。本发明所使用的各种原料及各项设备均为常规市售产品,均能够通过市场购买直接获得。
实施例1、主要材料、仪器及其来源。
猪12-LOX前期实验室制备(以亚油酸为底物的比酶活为2826.7U/mg,蛋白浓度为9.57mg/mL);亚油酸、姜黄素、二甲基亚砜(DMSO)Sigma公司;吐温-20南京中东化玻仪器有限公司;柠檬酸、柠檬酸三钠、磷酸氢二钾、磷酸二氢钾等均为国产分析纯。
BioTekSynergy2多功能酶标仪美国BioTek公司;M124A分析天平意大利BEL公司;HH-1数显恒温水浴锅常州国华电器有限公司;JASCO J-1500圆二色谱仪日本岛津有限公司;LS-55Fluorescence Spectrometer美国 PerkinElmer公司;OHAUSST20笔试pH计上海翼彩检测仪器有限公司。
主要试剂配制亚油酸底物溶液配制:将0.5mmol亚油酸溶于5mL(含 180μL Tween20)的脱氧重蒸水中,使其充分混匀;逐滴滴加1mol/L NaOH 充分混匀直至体系成为清澈透明的液体,再用1mol/L HC1调pH至9.0,直至亚油酸完全溶解,最后用脱氧重蒸水定容至50mL。准备数支4mL EP管,并将该亚油酸储备液分装保存在EP管中,并于-20℃下保存备用。
姜黄素溶液配置:用DMSO和吐温20以1:1的体积比配置成100μg/mL的姜黄素溶液,实验时稀释至所需浓度。
实施例2、数据处理方法。
每组实验做3个平行,采用Excel进行数据分析与处理,Origin 8.0和SPSS 进行数据处理与作图。
实施例3、姜黄素对猪12-LOX活力的影响。
猪12-LOX酶活测定猪12-LOX的酶活测定方法在Kermasha等的基础上进行改进。将20μL亚油酸底物储备液与160μL、50mmol/L的柠檬酸缓冲液(pH 5.5)充分混匀,加入20μL猪12-LOX酶液,迅速混匀,在234nm处测定其1.0min内吸光度值的增加量。以不加酶液即20μL亚油酸底物与180μ L柠檬酸缓冲液混合液为空白。LOX酶活为在一定的温度和pH条件下,反应体系在234nm波长处吸光度每分钟增加0.001表示为1个酶活力单位(U)。
猪12-LOX酶活抑制率的测定向酶活反应体系中加入姜黄素使其终浓度分别为0.1、0.5、1、2、4、8、10、20、30、40、50μg/mL;以不加姜黄素的反应体系作为对照组;以不加酶液和姜黄素的作为空白对照;体系混匀后在234 nm处测定1min内吸光值的变化,按以下公式计算抑制率(IR),并计算其IC50
不同浓度的姜黄素对猪12-LOX酶活力的影响如图2所示。结果表明,随着姜黄素浓度的增加,猪12-LOX酶活力逐渐下降,在姜黄素浓度为4μg/mL时,猪12-LOX以下降50%以下,姜黄素浓度为50μg/mL时,猪12-LOX以下降至初始酶活10倍左右。根据公式(1)分别计算不同姜黄素浓度下的抑制率,用SPSS 软件分析求得IC50=2.156μg/mL。
实施例4、姜黄素对猪12-LOX荧光光谱的影响。
荧光光谱测定向一定浓度的猪12-LOX蛋白溶液中加入不同量的姜黄素溶液,使最终蛋白浓度为20mg/L,姜黄素的浓度分别为0、10、20、30、40、50、 60μg/mL,准备3组样品,分别于288、298、308K的恒温水浴锅中水浴5min 后测定。常规内源性荧光光谱测定条件:激发波长为280nm,发射光谱扫描范围为250~450nm,激发及发射狭缝宽为5nm,速率1200nm/min;
如图3所示,姜黄素的加入,使得猪12-LOX的荧光强度减弱,姜黄素浓度越高,荧光强度越低,说明姜黄素对LOX蛋白的荧光有猝灭作用,且猝灭效果随着姜黄素浓度的增加而增大。猪12-LOX的λmax发生了一定的红移,这说明姜黄素能够与猪12-LOX相互作用,使猪12-LOX中色氨酸所处的微环境发生变化,从而使蛋白质的构象发生变化。
同步荧光光谱测定条件如下:25℃,分别固定Δλ=15nm和Δλ=60nm,进行同步荧光光谱扫描,扫描范围250-350nm,激发及发射狭缝宽为5nm,速率1200nm/min。
同步荧光分析被应用于研究蛋白质的构象,特别是荧光基团微环境的变化,具有选择性高、谱图简化、光散射干扰少等特点。通过设定激发波长与发射波长之间的固定波长差(Δλ),来获得荧光光谱。当Δλ=15nm时,只显示酪氨酸残基的特征荧光光谱;当Δλ=60nm时,只显示色氨酸残基的特征荧光光谱。通过氨基酸残基最大吸收波长的变化,判断氨基酸所处微环境的变化,若最大发射波长红移,表明微环境的亲水性增加,蓝移则表明疏水性增加。
由图6可知,随着姜黄素浓度的增加,猪12-LOX的酪氨酸和色氨酸残基的荧光强度均有猝灭作用,且浓度越高,猝灭作用越强。表明姜黄素与猪12-LOX 发生相互作用,并使得蛋白质构象发生一定的改变。色氨酸残基发生了红移现象,说明色氨酸附近的微环境亲水性增强,疏水性减弱;而酪氨酸残基无明显变化,这说明姜黄素与猪12-LOX的结合位点更接近于色氨酸残基。
实施例4、荧光猝灭机制的判定。
小分子结合蛋白的荧光猝灭机制分为静态猝灭与动态猝灭,静态猝灭由于猝灭剂与荧光基团形成复合物,其猝灭常数随着温度的上升呈下降的趋势。动态猝灭表现为温度的升高增加离子的扩散和碰撞,其猝灭常数随着温度的上升而增大。利用Stern-Volmer方程对猝灭类型进行判断:
F0/F=1+Ksv[Q]=1+Kqτ0[Q] (2)
式中:F0和F分别是不添加姜黄素与添加不同浓度姜黄素的荧光强度;[Q] 是姜黄素的浓度(mol/L),Ksv是动态猝灭常数(L/mol);Kq是生物大分子猝灭速率常数(L/(mol·s)),τ0是不存在猝灭剂时荧光分子的寿命,平均寿命约为10-8s。
表1猪12-LOX与姜黄素复合物的荧光猝灭常数及线性相关系数
根据Stern-Volmer方程(2),以F0/F为纵坐标,姜黄素浓度[Q]为横坐标进行线性拟合,经Origin 8.0绘图得到(图4),进一步得出姜黄素与猪12-LOX 相互作用的动态猝灭常数(Ksv)和生物大分子猝灭速率常数(Kq)(表1)。对于生物大分子,各类猝灭剂由扩散碰撞产生的最大动态猝灭常数为2× 1010L/(mol·s)。由表1可知,在288、298、308K温度下,姜黄素与猪12-LOX 相互作用的Kq值远大于2×1010L/(mol·s),表明姜黄素对猪12-LOX的猝灭机理是姜黄素与蛋白结合形成基态稳定复合物所引起的静态猝灭。
实施例5、结合常数和结合位点的计算。
静态猝灭中,荧光猝灭强度和猝灭剂浓度之间遵循公式(3),通过公式(3) 计算荧光分子和猝灭剂的结合常数和结合位点数确定其相互作用的强度。
lg[(F0-F/F]=lgKA+nlg[Q] (3)
其中:F0和F分别是不添加姜黄素与添加不同浓度姜黄素的荧光强度;[Q] 是姜黄素的浓度(mol/L);KA是结合常数;n为结合位点。
根据公式(3),以lg[(F0-F)/F]对lg[Q]作图(图5),计算出不同温度条件下姜黄素与猪12-LOX相互作用的表观结合常数(KA)和结合位点数(n)(表 2)。如表2所示,随着温度的升高,结合常数KA值降低,说明姜黄素与猪12-LOX 的反应是一个放热过程;结合常数较大,说明两者有较强结合作用;二者的结合位点数在各个温度下也都约为1,说明姜黄素与猪12-LOX蛋白之间形成了摩尔比约1:1的静态复合物。
表2姜黄素与猪12-LOX复合物的结合位点数、表观结合常数及线性相关系数
实施例6、热力学参数与相互作用类型。
根据Van’t Hoff范特霍夫方程及其推导的公式计算热力学参数。
ln(K2/K1)=-(1/T2-1/T1)ΔH/R,ΔG=-RTlnK,ΔG=ΔH-TΔS (4)
式中:ΔH、ΔG和ΔS分别表示焓变,自由能变化和熵变;R为气体常数8.314 J·mol-1·K-1,T是实验温度;K为相应温度下的结合常数。
小分子和蛋白结合的相互作用力主要有四种:(1)ΔH>0、ΔS>0时,疏水相互作用;(2)ΔH>0、ΔS<0时,静电和疏水相互作用;(3)ΔH<0、ΔS<0时,范德华力和氢键相互作用;(4)ΔH<0、ΔS>0时,静电相互作用[30]。由表3得出ΔH<0、ΔS<0,表明姜黄素与猪12-LOX的主要作用力为范德华力和氢键,ΔH<0,表明姜黄素与猪12-LOX之间的反应是放热的,与2.2.2.2结论一致。ΔG<0,表明两者之间的反应是自发的。
表3姜黄素与猪12-LOX结合的相关热力学参数
Table 3Thermodynamic parameters of curcumin and porcine 12-LOXsystems
实施例7、圆二色谱(CD)分析。
CD光谱能够有效分析蛋白质二级结构的变化,常用于蛋白质二级结构的测定。以磷酸盐缓冲液(50mmol/L,pH 7.6)作为空白对照,CD光谱的扫描波长范围为200-250nm,光源为氙灯,液池光径为1mmol/L,在范围内扫描累加3 次。扫描速度为50nm/min,LOX酶液浓度为0.1mg·mL-1。用平均椭圆率[θ] 来表示CD数据,单位为deg·cm2·dmol-1
蛋白质二级结构中主要的光活性基团是肽键,其吸收峰分布在蛋白质圆二色谱(Circular dichrosim spectra,CD)的远紫外区段(190~240nm),一般来说α-螺旋特征吸收峰在208nm和222nm左右,β-折叠在215nm左右有一特征吸收负峰。如图7所示,天然状态的LOX的远紫外圆二色谱在208和222nm 处显示负双峰曲线,在215nm处显示一个负肩峰。在加入姜黄素后,12-LOX在 208、222和215nm处的特征吸收峰强度下降,表明姜黄素的加入使猪12-LOX 内的二级结构ɑ-螺旋和β-折叠的含量降低。
综上实施例可见,将本发明的方法应用到生猪肉的保鲜上,在生猪肉储藏、运输过程的起始时段,向生猪肉喷洒上述制备的姜黄素溶液,即可快速降低猪脂肪氧合酶蛋白质二级结构中ɑ-螺旋和β-折叠的含量,实现对猪脂肪氧合酶的有效抑制,从而减少猪肉中脂质的过度氧化,保持多不饱和脂肪酸含量的相对稳定,避免猪肉营养品质下降和风味劣变,提升生猪肉运输和储藏的新鲜度。
上述描述仅作为本发明可实施的技术方案提出,不作为对其技术方案本身的单一限制条件。

Claims (10)

1.修饰脂肪氧合酶二级结构以降低其ɑ-螺旋和β-折叠含量的方法及其在食品行业的用途,其特征在于:设计或选取能够与脂肪氧合酶上的色氨酸残基相结合的化合物,常压、室温下,按照一定的摩尔比将所述化合物与脂肪氧合酶混合,以降低脂肪氧合酶蛋白质二级结构中ɑ-螺旋和β-折叠的含量;
所述化合物为姜黄素,具有如下结构式:
所述姜黄素与脂肪氧合酶的摩尔比为=1:(0.1-10)。
2.根据权利要求1所述的修饰脂肪氧合酶二级结构以降低其ɑ-螺旋和β-折叠含量的方法及其在食品行业的用途,其特征在于:所述姜黄素与脂肪氧合酶的摩尔比为=1:(0.5-2)。
3.根据权利要求1所述的修饰脂肪氧合酶二级结构以降低其ɑ-螺旋和β-折叠含量的方法及其在食品行业的用途,其特征在于:所述姜黄素与脂肪氧合酶的摩尔比为=1:1。
4.根据权利要求1所述的修饰脂肪氧合酶二级结构以降低其ɑ-螺旋和β-折叠含量的方法及其在食品行业的用途,其特征在于:所述脂肪氧合酶为动物脂肪氧合酶。
5.根据权利要求1所述的修饰脂肪氧合酶二级结构以降低其ɑ-螺旋和β-折叠含量的方法及其在食品行业的用途,其特征在于:所述脂肪氧合酶为猪脂肪氧合酶。
6.保持生猪肉营养价值和提升猪肉运输储藏鲜度的方法,其特征在于:通过快速降低猪脂肪氧合酶蛋白质二级结构中ɑ-螺旋和β-折叠的含量,实现对猪脂肪氧合酶的有效抑制,从而减少猪肉中脂质的过度氧化,保持多不饱和脂肪酸含量的相对稳定,避免猪肉营养品质下降和风味劣变,提升生猪肉运输和储藏的新鲜度。
7.根据权利要求6所述的保持生猪肉营养价值和提升猪肉运输储藏鲜度的方法,其特征在于:首先制备姜黄素的无菌水溶液,并通过无菌灌装注入喷壶中;在生猪肉储藏、运输过程的起始时段,向生猪肉喷洒上述制备的姜黄素溶液,即可快速降低猪脂肪氧合酶蛋白质二级结构中ɑ-螺旋和β-折叠的含量,实现对猪脂肪氧合酶的有效抑制。
8.根据权利要求7所述的保持生猪肉营养价值和提升猪肉运输储藏鲜度的方法,其特征在于:所述姜黄素的无菌水溶液中姜黄素的浓度为1-100μg/mL。
9.根据权利要求7所述的保持生猪肉营养价值和提升猪肉运输储藏鲜度的方法,其特征在于:所述姜黄素的无菌水溶液中姜黄素的浓度为50μg/mL。
10.根据权利要求7所述的保持生猪肉营养价值和提升猪肉运输储藏鲜度的方法,其特征在于:所述姜黄素的无菌水溶液的用量以喷洒覆盖生猪肉的外表面积为准。
CN201910739206.9A 2019-08-12 2019-08-12 修饰脂肪氧合酶二级结构以降低其ɑ-螺旋和β-折叠含量的方法及其在食品行业的用途 Pending CN110438096A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910739206.9A CN110438096A (zh) 2019-08-12 2019-08-12 修饰脂肪氧合酶二级结构以降低其ɑ-螺旋和β-折叠含量的方法及其在食品行业的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910739206.9A CN110438096A (zh) 2019-08-12 2019-08-12 修饰脂肪氧合酶二级结构以降低其ɑ-螺旋和β-折叠含量的方法及其在食品行业的用途

Publications (1)

Publication Number Publication Date
CN110438096A true CN110438096A (zh) 2019-11-12

Family

ID=68434590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910739206.9A Pending CN110438096A (zh) 2019-08-12 2019-08-12 修饰脂肪氧合酶二级结构以降低其ɑ-螺旋和β-折叠含量的方法及其在食品行业的用途

Country Status (1)

Country Link
CN (1) CN110438096A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040037902A1 (en) * 2002-08-15 2004-02-26 Pandol Stephen J. Methods for treating pancreatitis with curcumin compounds and inhibitors of reactive oxygen species
US20070042059A1 (en) * 2005-06-14 2007-02-22 Thomas Newmark Methods for modulating eicosanoid metabolism
CN101277614A (zh) * 2005-08-18 2008-10-01 阿塞莱洛克斯公司 通过调节花生四烯酸代谢或信号途径的骨治疗方法
CN107530391A (zh) * 2014-10-10 2018-01-02 莱拉营养食品有限公司 用于骨关节炎的协同组合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040037902A1 (en) * 2002-08-15 2004-02-26 Pandol Stephen J. Methods for treating pancreatitis with curcumin compounds and inhibitors of reactive oxygen species
US20070042059A1 (en) * 2005-06-14 2007-02-22 Thomas Newmark Methods for modulating eicosanoid metabolism
CN101277614A (zh) * 2005-08-18 2008-10-01 阿塞莱洛克斯公司 通过调节花生四烯酸代谢或信号途径的骨治疗方法
CN107530391A (zh) * 2014-10-10 2018-01-02 莱拉营养食品有限公司 用于骨关节炎的协同组合物

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
G.SYAHPUTRA ET AL.: "SIMULASI DOCKING KURKUMIN ENOL, BISDEMETOKSIKURKUMIN DAN ANALOGNYA SEBAGAI INHIBITOR ENZIM12-LIPOKSIGENASE", 《JURNAL BIOFISIKA》 *
LUCIA RACKOVA ET AL.: "Comparative study of two natural antioxidants, curcumin and Curcuma longa extract", 《JOURNAL OF FOOD AND NUTRITION RESEARCH》 *
SUBASH C. GUPTA ET AL.: "Multitargeting by curcumin as revealed by molecular interaction studies", 《NAT. PROD. REP.》 *
T. WANG ET AL.: "Lipoxygenase and lipid oxidation in foods", 《WOODHEAD PUBLISHING LIMITED》 *
张锐等: "姜黄素保护关节软骨抑制骨关节炎的作用和机制", 《中国组织工程研究》 *
王晶晶等: "姜黄素与猪脂肪氧合酶相互作用及对蛋白质结构的影响", 《食品工业科技》 *
王晶晶等: "猪肉12-脂肪氧合酶催化结构域的表达、纯化及其酶学性质分析", 《食品科学》 *
章林等: "天然抗氧化剂在肉制品中的应用研究进展", 《食品科学》 *

Similar Documents

Publication Publication Date Title
Cao et al. The mechanism of chlorogenic acid inhibits lipid oxidation: An investigation using multi-spectroscopic methods and molecular docking
Hellwig The chemistry of protein oxidation in food
Zhang et al. Production of cured meat color in nitrite-free Harbin red sausage by Lactobacillus fermentum fermentation
Deb-Choudhury et al. Effect of cooking on meat proteins: mapping hydrothermal protein modification as a potential indicator of bioavailability
Yust et al. Hypocholesterolaemic and antioxidant activities of chickpea (Cicer arietinum L.) protein hydrolysates
Chen et al. In vitro study on antioxidant activities of peanut protein hydrolysate
Weng et al. Assessment the flavor of soybean meal hydrolyzed with Alcalase enzyme under different hydrolysis conditions by E-nose, E-tongue and HS-SPME-GC–MS
Zhan et al. Characterization of flavor active non-volatile compounds in chicken broth and correlated contributing constituent compounds in muscle through sensory evaluation and partial least square regression analysis
Bueno et al. The germination of soybeans increases the water-soluble components and could generate innovations in soy-based foods
Aubourg Recent advances in assessment of marine lipid oxidation by using fluorescence
Yu et al. Potential of resveratrol in mitigating advanced glycation end-products formed in baked milk and baked yogurt
Huang et al. Enzymes-dependent antioxidant activity of sweet apricot kernel protein hydrolysates
Zhang et al. Evaluation of free radical‐scavenging activities of sweet potato protein and its hydrolysates as affected by single and combination of enzyme systems
Wang et al. Effect of the protease from Staphylococcus carnosus on the proteolysis, quality characteristics, and flavor development of Harbin dry sausage
Buta et al. Reduction of β-ODAP and IP6 contents in Lathyrus sativus L. seed by high hydrostatic pressure
Bi et al. Flavor formation and regulation of peas (Pisum sativum L.) seed milk via enzyme activity inhibition and off-flavor compounds control release
Qiu et al. Changes in flavor and biological activities of Lentinula edodes hydrolysates after Maillard reaction
Tang et al. Optimization of oat seed steeping and germination temperatures to maximize nutrient content and antioxidant activity
Zhuang et al. Effects of polyunsaturated free fatty acids and esterified linoleoyl derivatives on oxygen consumption and C6-aldehyde formation with soybean seed homogenates
Gao et al. The effect of Maillard reaction on flavour development of protein hydrolysates from cheese
Geng et al. The influence of proteases on the browning of dried squid products processed by air-drying
Giri et al. Bioactive properties of Japanese fermented fish paste, fish miso, using koji inoculated with Aspergillus oryzae
CN110438096A (zh) 修饰脂肪氧合酶二级结构以降低其ɑ-螺旋和β-折叠含量的方法及其在食品行业的用途
Promeyrat et al. Combined effect of meat composition and heating parameters on the physicochemical state of proteins
Gharehbeglou et al. Insights into enzymatic hydrolysis: exploring effects on antioxidant and functional properties of bioactive peptides from chlorella proteins

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination