CN110431765B - 发送设备、接收设备、光传输系统、光功率控制方法 - Google Patents

发送设备、接收设备、光传输系统、光功率控制方法 Download PDF

Info

Publication number
CN110431765B
CN110431765B CN201780088525.7A CN201780088525A CN110431765B CN 110431765 B CN110431765 B CN 110431765B CN 201780088525 A CN201780088525 A CN 201780088525A CN 110431765 B CN110431765 B CN 110431765B
Authority
CN
China
Prior art keywords
light waves
power
detection light
detection
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780088525.7A
Other languages
English (en)
Other versions
CN110431765A (zh
Inventor
邓彬林
李杨
严晖
王元武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN110431765A publication Critical patent/CN110431765A/zh
Application granted granted Critical
Publication of CN110431765B publication Critical patent/CN110431765B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2537Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to scattering processes, e.g. Raman or Brillouin scattering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供了一种发送设备、接收设备、光传输系统、光功率控制方法,涉及光通信技术领域,该发送设备包括:合波单元和光功率调整单元;合波单元,用于向光纤通道发送至少两个通信光波,还用于通过光纤通道发送或接收至少两个检测光波;光功率调整单元,用于获取功率控制指令,功率控制指令是根据至少两个检测光波之间的功率变化信息所生成的;根据功率控制指令对至少两个通信光波中的至少一个通信光波进行光功率放大和/或衰减。本申请通过至少两个检测光波之间的功率变化信息,能够快速检测出SRS效应对通信光波的光功率的影响,使得光功率调整单元根据功率控制指令动态调整通信光波的光功率,减少或消除SRS效应对光功率的影响。

Description

发送设备、接收设备、光传输系统、光功率控制方法
技术领域
本申请涉及光通信技术领域,特别涉及发送设备、接收设备、光传输系统、光功率控制方法。
背景技术
随着光传输通信容量需求的激增,波分复用技术成为光传输系统中的主要传输技术。波分复用技术是在一根光纤中同时传输多个不同波长的通信光波的技术,即同一根光纤可以有多个传输信道,每个传输信道用于传输一种预定波长的通信光波。
通常,一根光纤传输的各个通信光波均在C波段(波长范围为1530~1565nm)范围内,为了增加传输信道的带宽,也可以使得该根光纤中同时传输在L波段(波长范围为1570~1605nm)范围内的多个通信光波。如图1所示,该根光纤中同时传输在C波段和L波段范围内的多个通信光波,由于光传输系统中通常包括若干个跨段的基本结构,图1其示出了一个典型跨段的基本结构。该基本结构包括:C波段掺铒光纤放大器11(Erbium-doped FiberAmplifier of C band,C_EDFA)、L波段掺铒光纤放大器12(Erbium-doped FiberAmplifier of L band,L_EDFA)、第一可调光衰减器13(Variable Optical Attenuator,VOA)、第二VOA14、第一光纤接口单元15(Fiber Interface Unit,FIU)和第二FIU16。其中,C波段对应的通信光波通过C_EDFA11将光功率进行相应的放大,和/或,C波段对应的通信光波通过第一VOA13将光功率进行相应的衰减;L波段对应的通信光波通过L_EDFA12将光功率进行相应的放大,和/或,L波段对应的通信光波通过第二VOA14将光功率进行相应的衰减。然后在发送端将变化后的不同波长的通信光波通过第一FIU15组合起来(复用),并耦合到光缆线路上的同一根光纤中传输,在接收端通过第二FIU16将组合的通信光波分开(解复用),分离出各个波长的通信光波后送入不同的下一站点。
伴随着一根光纤中同时传输的通信光波的波长范围增大,光纤内的非线性效应成为影响多波长的光传输系统性能的重要因素。其中,非线性效应包括受激拉曼散射(Stimulated Raman Scattering,SRS)效应。其中,拉曼散射可以看成是介质中的分子对光子的调制,即分子间的相对运动导致分子电偶极矩随时间的周期性调制,从而对光子产生散射作用。在低强度的普通光照射下,介质的拉曼散射较小,散射光非常弱,但当激光作为入射源时,介质的拉曼散射过程具有了受激发射的性质,故称为SRS效应。受激拉曼散射的基本过程是入射光进入介质,光子被介质吸收,使得介质分子由基能级E1激发到高能级
Figure GPA0000273579160000031
其中,
Figure GPA0000273579160000032
wp是入射光角频率。高能级是一个不稳定状态,它很快跃迁到一个较低的亚稳态能级E2并发射一个散射光子,其角频率为ws<wp,然后回到基态,并产生一个能量为
Figure GPA0000273579160000033
的光学声子,该光学声子的角频率由分子的谐振频率决定。可见,受激拉曼散射只有在入射光强度超过一定阈值时才会出现,这种散射光具有高方向性、高强度和高相干性的特点。以多波长光传输系统同时支持C波段和L波段为例,若C波段和L波段的频率差在拉曼增益谱内,则SRS将会把C波段的能量转移到L波段上,产生C波段的通信光波的光功率变小,L波段的通信光波的光功率增大的非线性影响。
因此,基于图1可知,当C波段对应的通信光波与L波段对应的通信光波一起传输时,产生的SRS效应会导致这两种不同波段的通信光波的光功率发生变化,比如C波段对应的通信光波的光功率减小,L波段对应的通信光波的光功率增大。而目前的光传输系统无法减少或消除该SRS效应对光功率的影响。
发明内容
为了解决SRS效应会影响通信光波的光功率的问题,本申请提供了一种发送设备、接收设备、光传输系统、光功率控制方法。所述技术方案如下:
第一方面,本申请实施例提供了一种光传输系统中的发送设备,该发送设备包括:合波单元和光功率调整单元;
合波单元,用于向光纤通道发送至少两个通信光波,至少两个通信光波的波长属于工作波段;
合波单元,还用于通过光纤通道发送或接收至少两个检测光波,至少两个检测光波中存在至少一个第一检测光波的波长小于工作波段的最小波长,存在至少一个第二检测光波的波长大于工作波段的最大波长;
光功率调整单元,用于获取功率控制指令,该功率控制指令是根据至少两个检测光波之间的功率变化信息所生成的;根据功率控制指令对至少两个通信光波中的至少一个通信光波进行光功率放大和/或衰减。
在该实现方式中,通过合波单元向光纤通道发送至少两个通信光波,同时通过光纤通道传输至少两个带外的检测光波,使得光传输系统能够根据至少两个检测光波之间的功率变化信息生成功率控制指令,进而根据获取的功率控制指令对至少两个通信光波中的至少一个通信光波进行光功率放大和/或衰减。由于引起通信光波在传输后光功率变化的原因通常可分为两种,第一种可能的原因为当至少两个通信光波正常传输(在传输中不存在掉波或加波的情况)时SRS效应会影响光功率,第二种可能的原因为当至少两个通信光波中至少一个通信光波在传输中存在掉波或加波的情况时SRS效应会发生变化,变化的SRS效应会引起光功率的波动。针对这两种可能的原因引起的光功率变化,光传输系统均能够通过对至少两个检测光波之间的功率变化程度分析得到功率变化信息,该功率变化信息不仅可以表示至少两个检测光波在传输后的至少两个光功率的整体变化程度,也可以间接反映出至少两个通信光波在传输后的至少两个光功率的整体变化程度,光功率调整单元根据功率控制指令动态调整通信光波的光功率,从而减少或消除变化的SRS效应对光功率波动的影响,增大光系统的传输距离,提高整个光传输系统的稳定性。
在一种可能的实现方式中,该发送设备还包括:与合波单元相连的检测波发射端;
检测波发射端,用于向合波单元输入至少两个检测光波,该检测光波的传输方向与通信光波的传输方向相同;
光功率调整单元,具体用于接收来自接收设备的功率控制指令,该功率控制指令是接收设备根据至少两个检测光波之间的功率变化信息所生成的。
在该实现方式中,通过检测波发射端向合波单元输入至少两个检测光波,对应的,合波单元根据接收到的至少两个检测光波向分波单元发送至少两个检测光波,使得检测光波的传输方向与通信光波的传输方向相同,从而使得该光传输系统的“反馈→控制”机制是正向设置的。
在一种可能的实现方式中,该发送设备还包括:与合波单元相连的检测波接收端,以及与检测波接收端相连的控制单元;
检测波接收端,用于从合波单元接收至少两个检测光波,检测光波的传输方向与通信光波的传输方向相反;
控制单元,用于在检测波接收端接收到至少两个检测光波后,根据至少两个检测光波之间的功率变化信息生成功率控制指令;
光功率调整单元,具体用于接收来自控制单元的功率控制指令。
在该实现方式中,通过检测波接收端从合波单元接收至少两个检测光波,对应的,分波单元用于向合波单元发送至少两个检测光波,使得检测光波的传输方向与通信光波的传输方向相反,从而使得该光传输系统的“反馈→控制”机制是反向设置的。
在一种可能的实现方式中,至少两个检测光波包括m个检测光波,m为大于1的正整数,该控制单元,具体用于:
根据接收到的m个检测光波,确定m个检测光波的m个功率变化值,每个功率变化值用于表示单个检测光波在传输后的光功率变化程度;
根据m个功率变化值确定功率变化信息,功率变化信息用于表示m个检测光波在传输后的m个光功率的整体变化程度;
根据预设对应关系确定与功率变化信息对应的调节系数,预设对应关系包括功率变化信息与调节系数之间的对应关系,调节系数包括与至少一个通信光波对应的放大系数和/或衰减系数;
生成携带有调节系数的功率控制指令。
在该实现方式中,通过控制单元根据接收到的m个检测光波,确定m个检测光波的m个功率变化值,根据m个功率变化值确定功率变化信息,根据预设对应关系确定与功率变化信息对应的调节系数,生成携带有调节系数的功率控制指令;由于控制单元是根据预设对应关系确定与功率变化信息对应的调节系数的,即可以通过查表得到或者通过仿真公式计算得到调节系数,从而使得该光传输系统能够准确地通过“反馈→控制”机制,来动态调整光功率。
在一种可能的实现方式中,第一检测光波的数量等于第二检测光波的数量。
在该实现方式中,通过第一检测光波的数量等于第二检测光波的数量,使得确定出的至少两个检测光波之间的功率变化信息能够更加准确地反映出至少两个通信光波在传输后的至少两个光功率的整体变化程度。
第二方面,本申请实施例提供了一种接收设备,该接收设备包括:分波单元;
分波单元,用于接收光纤通道传输后的至少两个通信光波,至少两个通信光波的波长属于工作波段;
分波单元,还用于通过光纤通道接收或发送至少两个检测光波,至少两个检测光波中存在至少一个第一检测光波的波长小于工作波段的最小波长,存在至少一个第二检测光波的波长大于工作波段的最大波长;以使得发送设备获取功率控制指令,功率控制指令是根据至少两个检测光波之间的功率变化信息所生成的;根据功率控制指令对至少两个通信光波中的至少一个通信光波进行光功率放大和/或衰减。
在一种可能的实现方式中,该接收设备还包括:与分波单元相连的检测波接收端,以及与该检测波接收端相连的控制单元;
检测波接收端,用于从分波单元接收至少两个检测光波,检测光波的传输方向与通信光波的传输方向相同;
控制单元,用于在检测波接收端接收到至少两个检测光波后,根据至少两个检测光波之间的功率变化信息生成功率控制指令,向发送设备发送功率控制指令以使得发送设备接收来自控制单元的功率控制指令。
在一种可能的实现方式中,至少两个检测光波包括m个检测光波,m为大于1的正整数,该控制单元,具体用于:
根据接收到的m个检测光波,确定m个检测光波的m个功率变化值,每个功率变化值用于表示单个检测光波通过光纤通道传输后光功率的变化程度;
根据m个功率变化值确定功率变化信息,该功率变化信息用于表示m个检测光波通过光纤通道传输后m个光功率的整体变化程度;
根据预设对应关系确定与功率变化信息对应的调节系数,该预设对应关系包括功率变化信息与调节系数之间的对应关系,该调节系数包括与至少一个通信光波对应的放大系数和/或衰减系数;
生成携带有该调节系数的功率控制指令。
在一种可能的实现方式中,该接收设备还包括:与分波单元相连的检测波发射端;
检测波发射端,用于向分波单元输入至少两个检测光波,该检测光波的传输方向与通信光波的传输方向相反;以使得发送设备根据至少两个检测光波之间的功率变化信息生成功率控制指令。
在一种可能的实现方式中,第一检测光波的数量等于第二检测光波的数量。
第三方面,本申请实施例提供了一种光传输系统,该系统包括:光纤通道、与光纤通道相连的发送设备和接收设备;
该发送设备包括如第一方面及第一方面任一可能的实现方式中所提供的发送设备;
该接收设备包括如第二方面及第二方面任一可能的实现方式中所提供的接收设备。
第四方面,本申请实施例提供了一种光功率控制方法,该方法包括:
向光纤通道发送至少两个通信光波,至少两个通信光波的波长属于工作波段;
通过光纤通道发送或接收至少两个检测光波,至少两个检测光波中存在至少一个第一检测光波的波长小于工作波段的最小波长,存在至少一个第二检测光波的波长大于工作波段的最大波长;
获取功率控制指令,该功率控制指令是根据至少两个检测光波之间的功率变化信息所生成的;
根据功率控制指令对至少两个通信光波中的至少一个通信光波进行光功率放大和/或衰减。
在一种可能的实现方式中,当检测光波的传输方向与通信光波的传输方向相同时,获取功率控制指令包括:
在向接收设备发送至少两个检测光波后,接收来自接收设备的功率控制指令,该功率控制指令是接收设备根据至少两个检测光波之间的功率变化信息所生成的。
在一种可能的实现方式中,检测光波的传输方向与通信光波的传输方向相反,获取功率控制指令包括:
在接收到接收设备发送的至少两个检测光波后,根据至少两个检测光波之间的功率变化信息生成功率控制指令。
在一种可能的实现方式中,至少两个检测光波包括m个检测光波,m为大于1的正整数,根据至少两个检测光波之间的功率变化信息生成功率控制指令之前,还包括:
根据接收到的m个检测光波,确定m个检测光波的m个功率变化值,每个功率变化值用于表示单个检测光波通过光纤通道传输后光功率的变化程度;
根据m个功率变化值确定功率变化信息,该功率变化信息用于表示m个检测光波通过光纤通道传输后m个光功率的整体变化程度;
根据至少两个检测光波之间的功率变化信息生成功率控制指令,包括:
根据预设对应关系确定与功率变化信息对应的调节系数,预设对应关系包括功率变化信息与调节系数之间的对应关系,调节系数包括与至少一个通信光波对应的放大系数和/或衰减系数;
生成携带有调节系数的功率控制指令。
在一种可能的实现方式中,第一检测光波的数量等于第二检测光波的数量。
第五方面,本申请实施例提供了一种光功率控制方法,该方法包括:
接收光纤通道传输后的至少两个通信光波,至少两个通信光波的波长属于工作波段;
通过光纤通道接收或发送至少两个检测光波,至少两个检测光波中存在至少一个第一检测光波的波长小于工作波段的最小波长,存在至少一个第二检测光波的波长大于工作波段的最大波长;以使得发送设备获取功率控制指令,该功率控制指令是根据至少两个检测光波之间的功率变化信息所生成的;根据功率控制指令对至少两个通信光波中的至少一个通信光波进行光功率放大和/或衰减。
在一种可能的实现方式中,检测光波的传输方向与通信光波的传输方向相同,该方法还包括:
在接收到发送设备发送的至少两个检测光波后,根据至少两个检测光波之间的功率变化信息生成功率控制指令,并向发送设备发送功率控制指令;以使得发送设备接收来自控制单元的功率控制指令。
在一种可能的实现方式中,至少两个检测光波包括m个检测光波,m为大于1的正整数,根据至少两个检测光波之间的功率变化信息生成功率控制指令之前,还包括:
根据接收到的m个检测光波,确定m个检测光波的m个功率变化值,每个功率变化值用于表示单个检测光波通过光纤通道传输后光功率的变化程度;
根据m个功率变化值确定功率变化信息,该功率变化信息用于表示m个检测光波通过光纤通道传输后m个光功率的整体变化程度;
根据至少两个检测光波之间的功率变化信息生成功率控制指令,包括:
根据预设对应关系确定与功率变化信息对应的调节系数,该预设对应关系包括功率变化信息与调节系数之间的对应关系,该调节系数包括与至少一个通信光波对应的放大系数和/或衰减系数;
生成携带有调节系数的功率控制指令。
在一种可能的实现方式中,检测光波的传输方向与通信光波的传输方向相反,该方法还包括:
在向发送设备发送至少两个检测光波后,使得发送设备根据至少两个检测光波之间的功率变化信息生成功率控制指令。
在一种可能的实现方式中,第一检测光波的数量等于第二检测光波的数量。
附图说明
图1是相关技术中同时传输在C波段和L波段范围内的多个通信光波的光传输系统中一个典型跨段的基本结构的示意图;
图2是本申请一个示意性实施例提供的光传输系统的示意图;
图3是本申请另一个示意性实施例提供的光传输系统的示意图;
图4是本申请另一个示意性实施例提供的光传输系统的示意图;
图5是本申请另一个示意性实施例提供的光传输系统的示意图;
图6是本申请另一个示意性实施例提供的光传输系统的示意图;
图7是本申请另一个示意性实施例提供的光传输系统的示意图;
图8是本申请一个示意性实施例提供的光功率控制方法的流程图。
图9是本申请另一个示意性实施例提供的光功率控制方法的流程图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
由于光传输系统中通常包括若干个跨段的基本结构,图2至图7示意性地示出了其中一个跨段的基本结构。
请参考图2,其示出了本申请一个示意性实施例提供的光传输系统的示意图。该光传输系统20包括:光纤通道30、与光纤通道30相连的发送设备40和接收设备50、控制单元60;发送设备40包括:合波单元21和光功率调整单元22;接收设备50包括:分波单元23。
合波单元21向光纤通道30发送至少两个通信光波24,至少两个通信光波24的波长属于工作波段;对应的,分波单元23通过光纤通道30接收至少两个通信光波24。
可选的,发送设备40还包括:与合波单元21相连的至少两个通信波发射端26;接收设备50还包括:与分波单元23相连的至少两个通信波接收端27。当通信波发射端26向合波单元21发送至少两个通信光波时,合波单元21将至少两个通信光波组合起来(复用),并通过光纤通道30传输至分波单元23。分波单元23将接收到的至少两个通信光波进行解复用后输出至通信波接收端27,对应的,通信波接收端27接收至少两个通信光波。
可选的,合波单元21包括n个第一接口和1个第二接口,分波单元23包括n个第一接口和1个第二接口,n为正整数。
比如,当至少两个通信光波24为80个不同波长的通信光波24时,80个不同波长的通信光波24通过80个对应的第一接口输入到合波单元21中,即一个波长的通信光波24对应于合波单元21中的一个第一接口;相应的,合波单元21将80个通信光波24进行复用,并通过1个第二接口向分波单元23发送,分波单元23通过1个第二接口接收到这80个通信光波24并进行解复用,并通过80个第一接口输出这80个通信光波24,即分波单元23中的一个第一接口对应于一个波长的通信光波24。
又比如,当至少两个通信光波24为80个不同波长的通信光波24,其中40个不同波长的通信光波24属于C波段,另外的40个不同波长的通信光波24属于L波段时,则C波段的通信光波24和L波段的通信光波24通过2个对应的第一接口输入到合波单元21中,即属于同一个波段的通信光波24对应于合波单元21中的一个第一接口;相应的,合波单元21将C波段的通信光波24和L波段的通信光波24组合起来(复用),并通过1个第二接口向分波单元23发送,分波单元23通过1个第二接口接收到C波段的通信光波24和L波段的通信光波24并进行解复用,并通过2个第一接口输出C波段的通信光波24和L波段的通信光波24,即分波单元23中的一个第一接口对应于属于同一个波段的通信光波24。
需要说明的是,合波单元和分波单元本质上是相同的器件,均包括n个第一接口和1个第二接口。当合波单元的n个第一接口为输入端和1个第二接口为输出端时,合波单元用于将通过该合波单元的光波进行复用;当合波单元的n个第一接口为输出端和1个第二接口为输入端时,合波单元用于将通过该合波单元的光波进行解复用。同样的,当分波单元的n个第一接口为输入端和1个第二接口为输出端时,分波单元用于将通过该分波单元的光波进行复用;当分波单元的n个第一接口为输出端和1个第二接口为输入端时,分波单元用于将通过该分波单元的光波进行解复用。
合波单元(或分波单元)能够根据具体情况对通过的光波进行复用或解复用,“合波单元”和“分波单元”并不表示功能限定。
可选的,合波单元为第一FIU,分波单元为第二FIU。
可选的,工作波段包括两个不同的工作波段;示意性的,工作波段包括:C波段和L波段、增强型C波段、增强型L波段中的任意一种。其中,增强型C波段包括:C波段和位于C波段之外的C扩展波段,增强型L波段包括:L波段和位于L波段之外的L扩展波段。可选地,至少两个通信光波24是同一个工作波段中的两个不同波长的通信光波24,也可以是不同工作波段中的两个不同波长的通信光波24。
比如,合波单元21向光纤通道30发送160个不同波长的通信光波24,其中80个通信光波24属于C波段(简称C80波),80个通信光波24属于L波段(简称L80波);又比如,合波单元21向光纤通道30发送90个通信光波24,其中80个通信光波24属于C波段,10个通信光波24属于位于C波段之外的C扩展波段。
可选的,至少两个通信光波24之间存在SRS效应,SRS效应使得至少两个通信光波24的光功率相互影响。
合波单元21还通过光纤通道30发送或接收至少两个检测光波25,光纤通道30用于传输至少两个检测光波25。
可选的,当合波单元21通过光纤通道30发送至少两个检测光波25时,分波单元23通过光纤通道30接收至少两个检测光波25;或,当分波单元23通过光纤通道30发送至少两个检测光波25时,合波单元21通过光纤通道30接收至少两个检测光波25。
其中,至少两个检测光波25中存在至少一个第一检测光波的波长小于工作波段的最小波长,存在至少一个第二检测光波的波长大于工作波段的最大波长。
可选的,第一检测光波也可称为第一类检测光波,第一类检测光波为波长均小于工作波段的最小波长的一类检测光波;第二检测光波也可称为第二类检测光波,第二类检测光波为波长均大于工作波段的最大波长的一类检测光波。
比如,工作波段为C波段和L波段,由于C波段的波长范围为1530~1565nm,L波段的波长范围为1570~1605nm,因此存在至少一个第一检测光波的波长小于1530nm,存在至少一个第二检测光波的波长大于1605nm。
可选的,第一检测光波的数量等于或者不等于第二检测光波的数量。
比如,当检测光波25的数量为2时,存在1个第一检测光波和1个第二检测光波;当检测光波25的数量为3时,存在1个第一检测光波和2个第二检测光波,或者存在2个第一检测光波和1个第二检测光波;当检测光波25的数量为4时,存在2个第一检测光波和2个第二检测光波。
控制单元60根据至少两个检测光波25之间的功率变化信息生成功率控制指令,向光功率调整单元22发送功率控制指令。对应的,光功率调整单元22获取该功率控制指令。
可选的,控制单元60设置在发送设备40或接收设备50中。当检测光波25的传输方向与通信光波24的传输方向相同时,控制单元60设置在接收设备50中;当检测光波25的传输方向与通信光波24的传输方向相反时,控制单元60设置在发送设备40中。可选地,控制单元60还可以设置在发送设备40和接收设备50的外部。
可选地,当检测光波25的传输方向与通信光波24的传输方向相同时,发送设备40中还设置有检测波发送端(图2中未示出),接收设备50中还设置有检测波接收端(图2中未示出),控制单元60从接收设备50获得至少两个检测光波25之间的功率变化信息;当检测光波25的传输方向与通信光波24的传输方向相反时,发送设备40中还设置有检测波接收端(图2中未示出),接收设备50中还设置有检测波发送端(图2中未示出),控制单元60从发送设备40获得至少两个检测光波25之间的功率变化信息。
光功率调整单元22根据功率控制指令对至少两个通信光波24中的至少一个通信光波24进行光功率放大和/或衰减。
可选的,功率变化信息用于表示至少两个检测光波25在传输后的至少两个光功率的整体变化程度。其中,第一检测光波的功率变化信息可以代表属于短波段的通信光波24的功率变化情况,第二检测光波的功率变化信息可以代表属于长波段的通信光波24的功率变化情况。
可选的,该功率控制指令携带有调节系数,该调节系数包括与至少一个通信光波24对应的放大系数和/或衰减系数。
综上所述,本实施例通过合波单元向光纤通道发送至少两个通信光波,同时通过光纤通道传输至少两个带外的检测光波,使得光传输系统能够根据至少两个检测光波之间的功率变化信息生成功率控制指令,进而根据获取的功率控制指令对至少两个通信光波中的至少一个通信光波进行光功率放大和/或衰减。由于引起通信光波在传输后光功率变化的原因通常可分为两种,第一种可能的原因为当至少两个通信光波正常传输(在传输中不存在掉波或加波的情况)时SRS效应会影响光功率,第二种可能的原因为当至少两个通信光波中至少一个通信光波在传输中存在掉波或加波的情况时SRS效应会发生变化,变化的SRS效应会引起光功率的波动。针对这两种可能的原因引起的光功率变化,光传输系统均能够通过对至少两个检测光波之间的功率变化程度分析得到功率变化信息,该功率变化信息不仅可以表示至少两个检测光波在传输后的至少两个光功率的整体变化程度,也可以间接反映出至少两个通信光波在传输后的至少两个光功率的整体变化程度,光功率调整单元根据功率控制指令动态调整通信光波的光功率,从而减少或消除变化的SRS效应对光功率波动的影响,增大光系统的传输距离,提高整个光传输系统的稳定性。
需要说明的是,检测光波的传输方向存在两种可能的实现方式:
第一种可能的实现方式:当检测光波的传输方向与通信光波的传输方向是相同的时,合波单元21将来自通信波发射端26的至少两个通信光波进行复用,并传输至分波单元23;对应的,分波单元23将接收到的至少两个通信光波进行解复用后输出至通信波接收端27,通信波接收端27接收至少两个通信光波。合波单元21还将来自检测波发射端的至少两个检测光波进行复用,并传输至分波单元23;对应的,分波单元23还将接收到的至少两个检测光波进行解复用后输出至检测波接收端,检测波接收端接收至少两个检测光波。
第二种可能的实现方式:检测光波的传输方向与通信光波的传输方向是相反的。合波单元21将来自通信波发射端26的至少两个通信光波进行复用,并传输至分波单元23;对应的,分波单元23将接收到的至少两个通信光波进行解复用后输出至通信波接收端27,通信波接收端27接收至少两个通信光波。分波单元23还将来自检测波发射端的至少两个检测光波进行复用,并传输至合波单元21;对应的,合波单元21将接收到的至少两个检测光波进行解复用后输出至检测波接收端,检测波接收端接收至少两个检测光波。
下面采用图3至图6所示出的实施例,对第一种可能的实现方式进行说明;并采用图7所示出的实施例,对第二种可能的实现方式进行说明。
请参考图3,其示出了本申请另一个示意性实施例提供的光传输系统的示意图。基于图2提供的光传输系统20,该发送设备40还包括:与合波单元21相连的至少两个检测波发射端31;接收设备50还包括:与分波单元23相连的至少两个检测波接收端32,以及与检测波接收端相连的控制单元33,该控制单元33还与光功率调整单元22相连。
当检测波发射端31向合波单元21发送至少两个检测光波时,合波单元21将至少两个检测光波进行复用后传输至分波单元23。对应的,分波单元23将接收到的至少两个检测光波进行解复用后,输出至检测波接收端32,检测波接收端32接收到至少两个检测光波。此时,检测光波的传输方向与通信光波的传输方向相同。
可选的,合波单元21包括n个第一接口和1个第二接口,分波单元23包括n个第一接口和1个第二接口,n为正整数。
比如,检测波发射端31包括发射端R1和发射端R2,对应的,检测波接收端32包括接收端T1和接收端T2,发射端R1与合波单元21中的第一接口1相连,发射端R2与合波单元21中的第一接口2相连,分波单元23中的第一接口1与接收端T1相连,分波单元23中的第一接口2与接收端T1相连。发射端R1通过合波单元21中的第一接口1向合波单元21输入检测光波X1,发射端R2通过合波单元21中的第一接口2向合波单元21输入检测光波X2,合波单元21将检测光波X1和检测光波X2组合起来(复用),并通过1个第二接口向分波单元23发送,分波单元23通过1个第二接口接收到这2个检测光波并进行解复用,接收端T1通过分波单元23的第一接口1接收到检测光波Y1(即检测光波X1在传输后形成的光波),接收端T2通过分波单元23的第一接口2接收到检测光波Y2(即检测光波X1在传输后形成的光波)。
可选的,合波单元21向分波单元23持续发送至少两个检测光波,或者每隔预定时间段向分波单元23发送至少两个检测光波。
在检测波接收端32从分波单元23接收到至少两个检测光波后,控制单元33根据至少两个检测光波之间的功率变化信息生成功率控制指令,向光功率调整单元22发送功率控制指令。
可选的,控制单元33每隔预定时间段生成一个功率控制指令;或者,控制单元33判断至少两个检测光波之间的功率变化信息的绝对值是否大于预设阈值,若大于则生成功率控制指令。
可选的,当至少两个通信光波在传输中可能存在掉波或加波时,SRS效应会发生变化,导致光功率的波动,因此控制单元33每次接收到至少两个检测光波时确定该次对应的功率变化信息,计算连续两次的功率变化信息的差值,并判断该差值绝对值是否大于预设波动值,若大于则生成功率控制指令。
至少两个检测光波包括m个检测光波,m为大于1的正整数。
比如,合波单元21发送的160个通信光波包括属于C波段的80个不同波长的通信光波和属于L波段的80个不同波长的通信光波,当C波段中的80个通信光波正常传输(即C波段的任意一个通信光波在传输中不存在掉波或加波的情况),且L波段中的80个通信光波正常传输(即L波段的任意一个通信光波在传输中不存在掉波或加波的情况)时,控制单元33确定出此时的功率变化信息为“-0.4dB”。
又比如,当C波段中的80个通信光波正常传输,且L波段中的80个通信光波在传输中掉波掉了10个通信光波(即L波段在传输后中剩余70个通信光波)时,控制单元33确定出此时的功率变化信息为“0.9dB”;又比如,当C波段中的80个通信光波在传输中掉波掉了10个通信光波(即C波段在传输后中剩余70个通信光波),且L波段中的80个通信光波正常传输时,控制单元33确定出此时的功率变化信息为“-1dB”。
可选的,控制单元33根据至少两个检测光波之间的功率变化信息生成功率控制指令包括但不限于以下几个步骤:
1、控制单元33根据接收到的m个检测光波,确定m个检测光波的m个功率变化值,每个功率变化值用于表示单个检测光波通过光纤通道30的传输后的光功率变化程度。
可选的,m个检测光波的m个发送功率为预先设置的,控制单元33预先存储有m个检测光波的m个发送功率。针对每个检测光波,当控制单元33接收到的该检测光波时,确定该检测光波的接收功率,并将该检测光波的接收功率与发送功率相减得到该检测光波的功率变化值,从而确定出m个检测光波的m个功率变化值。
比如,m的取值为2,两个检测光波包括第一检测光波A1和第二检测光波B1,当控制单元33接收到第一检测光波A1和第二检测光波B1时,控制单元33确定第一检测光波A1的接收功率“2dB”和预存的第一检测光波A1的发送功率“1dB”,将第一检测光波A1的接收功率“2dB”减去发送功率“1dB”得到第一检测光波A1的功率变化值“1dB”;控制单元33确定第二检测光波B1的接收功率“1dB”和预存的第二检测光波B1的发送功率“3dB”,将第二检测光波B1的接收功率“1dB”减去发送功率“3dB”得到第二检测光波B1的功率变化值“-2dB”。
2、控制单元33根据m个功率变化值确定功率变化信息,功率变化信息用于表示m个检测光波通过光纤通道30传输后m个光功率的整体变化程度。
可选的,控制单元33对m个功率变化值采用预定算法进行计算,得到功率变化信息。功率变化信息是m个功率变化值的直接求和或者加权求和。其中,预定算法中的运算符包括但不限于加、减、乘、除等运算。
比如,m的取值为2,第一检测光波的功率变化值为“1dB”和第二检测光波的功率变化值为“-2dB”,则控制单元33将这2个功率变化值进行直接求和,得到功率变化信息“-1dB”。
又比如,m的取值为3,第一检测光波A1的功率变化值为“1dB”、第一检测光波A2的功率变化值为“1.6dB”和第二检测光波B1的功率变化值为“-2dB”,则控制单元33根据预先设置的每个功率变化值的权重(比如:第一检测光波A1的功率变化值对应的权重为0.4,第一检测光波A2的功率变化值对应的权重为0.6,第二检测光波的功率变化值对应的权重为1),将这3个功率变化值进行加权求和,即“0.4*1+0.6*1.6+1*(-2)”,得到功率变化信息“-0.64dB”。
又比如,m的取值为3,一个第一检测光波的功率变化值为“1dB”、另一个第一检测光波的功率变化值为“1.6dB”和第二检测光波的功率变化值为“-2dB”,则控制单元33先对两个第一检测光波的功率变化值“1dB”和“1.6dB”求取平均值“1.3dB”,再将该平均值“1.3dB”和第二检测光波的功率变化值“-2dB”进行求和,得到功率变化信息“-0.7dB”。本实施例对预定算法的算法公式不加以限定。
3、控制单元33根据预设对应关系确定与功率变化信息对应的调节系数,预设对应关系包括功率变化信息与调节系数之间的对应关系。
可选的,控制单元33中预先存储有功率变化信息与调节系数之间的对应关系,其中,功率变化信息与调节系数一一对应。当控制单元33确定出功率变化信息时,控制单元33在预设对应关系中查询与功率变化信息对应的调节系数。
可选的,调节系数包括与至少一个通信光波对应的放大系数和/或衰减系数;示意性的,放大系数通常为大于1的系数,比如,通信光波对应的放大系数为“1.22”用于表示将该通信光波的光功率放大至1.22倍;衰减系数通常为大于0且小于1的系数,比如,通信光波对应的衰减系数为“0.85”用于表示将该通信光波的光功率衰减至0.85倍。
可选的,合波单元21发送的6个通信光波属于两个不同工作波段(C波段和L波段),控制单元33在预设对应关系中查询与功率变化信息对应的调节系数,调节系数包括1个调节系数(与所有通信光波对应的1个调节系数)、或者2个调节系数(与C波段对应的1个调节系数和与L波段对应的1个调节系数)、或者6个调节系数(与6个通信光波分别对应的6个调节系数)。
比如,如表一所示,合波单元21发送的160个通信光波包括属于C波段的80个不同波长的通信光波和属于L波段的80个不同波长的通信光波,控制单元33中预先存储有功率变化信息与C波段的调节系数和L波段的调节系数之间的对应关系当控制单元33确定出功率变化信息“-1dB”时,控制单元33在该表中查询到与“-1dB”对应的C波段的调节系数为“S61”,L波段的调节系数为“S62”。
表一
功率变化信息 C波段的调节系数 L波段的调节系数
0.2dB S11 S12
0.3dB S21 S22
0.9dB S31 S32
-0.2dB S41 S42
-0.4dB S51 S52
-1dB S61 S62
可选的,控制单元33将功率增益信息输入预设的仿真函数,将仿真函数的输出值确定为调节系数;其中,仿真函数是用于仿真功率变化信息和调节系数之间的对应关系的函数。
比如,调节系数包括1个调节系数,控制单元33将功率增益信息“-1dB”输入预设的仿真函数,得到仿真函数的一个输出值“S62”,则将调节系数确定为“S62”。
又比如,调节系数包括2个调节系数,控制单元33将功率增益信息“-1dB”输入预设的仿真函数,得到仿真函数的两个输出值,分别为“S61”和“S62”,则将调节系数确定为“S61”和“S62”。。
又比如,调节系数包括2个调节系数,控制单元33将功率增益信息“-1dB”输入预设的两个仿真函数(与C波段对应的仿真函数H1和与L波段对应的仿真函数H2),得到仿真函数H1的输出值为“S61”和仿真函数H2的输出值为“S62”,则确定C波段的调节系数为“S61”,L波段的调节系数为“S62”。本实施例对调节系数的确定方式不加以限定
4、控制单元33生成携带有调节系数的功率控制指令。
当控制单元33并向光功率调整单元22发送携带有调节系数的控制指令时,光功率调整单元22接收该功率控制指令,并根据功率控制指令对至少两个通信光波中的至少一个通信光波进行光功率放大和/或衰减。
可选的,光功率调整单元22包括:至少两组级联的功率放大器和功率衰减器。其中,功率放大器用于根据功率控制指令至少两个通信光波中的至少一个通信光波进行光功率放大,功率衰减器用于根据功率控制指令至少两个通信光波中的至少一个通信光波进行光功率衰减。
可选的,每组功率放大器和功率衰减器的连接关系包括但不限于以下三种,下面采用图4所示出的光传输系统20a,对第一种可能的连接关系进行说明;并采用图5所示出的光传输系统20b,对第二种可能的连接关系进行说明;并采用图6所示出的光传输系统20c,对第三种可能的连接关系进行说明。
如图4所示,存在一组功率放大器41的输入端用于输入至少一个第一通信光波,功率放大器41的输出端与功率衰减器42的输入端相连,功率衰减器42的输出端与合波单元21的输入端相连。
可选的,若第一通信光波属于C波段,则该功率放大器41为C_EDFA,功率衰减器42为第一VOA;若第一通信光波属于L波段,则该功率放大器41为L_EDFA,功率衰减器42为第二VOA。可选的,功率控制指令包括一个或多个功率控制指令,每个功率放大器或功率衰减器对应有各自的功率控制指令。当功率控制指令包括x个时,控制单元33将每个功率控制指令发送至与该功率控制指令对应的功率放大器或功率衰减器,x为正整数;对应的,每个功率放大器或功率衰减器接收根据发送给各自的功率控制指令对光功率进行调整。
比如,功率控制指令包括一个功率控制指令,第一通信光波属于C波段,控制单元33向C_EDFA发送携带有调节系数“1.35”的功率控制指令,C_EDFA接收到根据接收到的功率控制指令将第一通信光波的光功率放大至1.35倍。
又比如,功率控制指令包括两个功率控制指令(功率控制指令1和功率控制指令2),第一通信光波属于C波段,控制单元33向C_EDFA发送携带有调节系数“1.35”的功率控制指令1和向第一VOA发送携带有调节系数“0.86”的功率控制指令2,光功率调整单元22先通过C_EDFA将第一通信光波的光功率放大至1.35倍,再通过第一VOA将第一通信光波的光功率衰减至0.86倍。
如图5所示,存在一组功率衰减器51的输入端用于输入至少一个第二通信光波,功率衰减器51的输出端与功率放大器52的输入端相连,功率放大器52的输出端与合波单元21的输入端相连。
可选的,若第二通信光波属于C波段,则该功率衰减器51为第一VOA,功率放大器52为C_EDFA;若第二通信光波属于L波段,则该功率衰减器51为第二VOA,功率放大器52为L_EDFA。
相关细节可参考图4所提供的实施例,在此不再赘述。
如图6所示,存在一组级联的功率放大器和功率衰减器包括:第一功率衰减器61和第二功率衰减器62,第一功率衰减器61的输入端用于输入至少一个第三通信光波,功率衰减器61的输出端与功率放大器63的输入端相连,功率放大器63的输出端与第二功率衰减器62的输入端相连,第二功率衰减器62的输出端与合波单元21的输入端相连。
可选的,若第三通信光波属于C波段,则第一功率衰减器61为第一VOA,功率放大器62为C_EDFA,第二功率衰减器63为第二VOA;若第三通信光波属于L波段,则第一功率衰减器61为第三VOA,功率放大器62为L_EDFA,第二功率衰减器63为第四VOA。
相关细节可参考图4所提供的实施例,在此不再赘述。
综上所述,本实施例通过至少两个通信光波的波长属于工作波段,至少两个检测光波中存在至少一个第一检测光波的波长小于工作波段的最小波长,存在至少一个第二检测光波的波长大于工作波段的最大波长;使得检测波属于工作波段之外(带外),不影响通信光波的正常传输。
本实施例还通过控制单元根据接收到的m个检测光波,确定m个检测光波的m个功率变化值,根据m个功率变化值确定功率变化信息,根据预设对应关系确定与功率变化信息对应的调节系数,生成携带有调节系数的功率控制指令;由于控制单元是根据预设对应关系确定与功率变化信息对应的调节系数的,即可以通过查表得到或者通过仿真公式计算得到调节系数,从而使得该光传输系统能够准确地通过“反馈→控制”机制,来动态调整光功率。
请参考图7,其示出了本申请另一个示意性实施例提供的光传输系统的示意图。基于图2提供的光传输系统20,该发送设备40还包括:与合波单元21相连的检测波接收端71,以及与检测波接收端71相连的控制单元73;接收设备50还包括:与分波单元23相连的检测波发射端72。
当检测波发射端72向分波单元23发送至少两个检测光波时,分波单元23将至少两个检测光波进行复用后传输至合波单元21。对应的,合波单元21将接收到的至少两个检测光波进行解复用后,输出至检测波接收端71,检测波接收端71接收至少两个检测光波。此时,检测光波的传输方向与通信光波的传输方向相反。控制单元73在检测波接收端71接收到至少两个检测光波后,根据至少两个检测光波之间的功率变化信息生成功率控制指令。
光功率调整单元22接收来自控制单元73的功率控制指令,并根据功率控制指令对至少两个通信光波中的至少一个通信光波进行光功率放大和/或衰减。
可选的,第一检测光波的数量等于第二检测光波的数量。
相关细节可参考图2或3提供的实施例,在此不再赘述。
可选的,光功率调整单元22包括:至少两组级联的功率放大器和功率衰减器。每组功率放大器和功率衰减器的连接关系包括但三种可能的连接关系,相关细节可参考图4至图6提供的实施例,在此不再赘述。
请参考图8,其示出了本申请一个示意性实施例提供的光功率控制方法的流程图。该光功率控制方法用于如图2至图6任意一个实施例所提供的光传输系统中。该方法包括:
步骤801,发送设备向光纤通道发送至少两个通信光波,至少两个通信光波的波长属于工作波段。
步骤802,接收设备接收光纤通道传输后的至少两个通信光波。
步骤803,发送设备通过光纤通道发送至少两个检测光波,至少两个检测光波中存在至少一个第一检测光波的波长小于工作波段的最小波长,存在至少一个第二检测光波的波长大于工作波段的最大波长。
可选的,第一检测光波的数量等于第二检测光波的数量。
步骤804,接收设备通过光纤通道接收至少两个检测光波。
可选的,当检测光波的传输方向与通信光波的传输方向相同时,接收设备在接收到发送设备发送的至少两个检测光波后,根据至少两个检测光波之间的功率变化信息生成功率控制指令,并向发送设备发送功率控制指令。
可选的,至少两个检测光波包括m个检测光波,m为大于1的正整数,接收设备根据接收到的m个检测光波,确定m个检测光波的m个功率变化值,每个功率变化值用于表示单个检测光波通过光纤通道传输后光功率的变化程度;接收设备根据m个功率变化值确定功率变化信息,功率变化信息用于表示m个检测光波通过光纤通道传输后m个光功率的整体变化程度。接收设备根据预设对应关系确定与功率变化信息对应的调节系数,预设对应关系包括功率变化信息与调节系数之间的对应关系,调节系数包括与至少一个通信光波对应的放大系数和/或衰减系数;接收设备生成携带有调节系数的功率控制指令。
步骤805,接收设备根据至少两个检测光波之间的功率变化信息生成功率控制指令。
步骤806,接收设备向发送设备发送功率控制指令。
步骤807,发送设备获取功率控制指令。
步骤808,发送设备根据功率控制指令对至少两个通信光波中的至少一个通信光波进行光功率放大和/或衰减。
相关细节可参考图2至图6提供的实施例,在此不再赘述。
请参考图9,其示出了本申请一个示意性实施例提供的光功率控制方法的流程图。该光功率控制方法用于如图7所提供的光传输系统中。该方法包括:
步骤901,发送设备向光纤通道发送至少两个通信光波,至少两个通信光波的波长属于工作波段。
步骤902,接收设备接收光纤通道传输后的至少两个通信光波。
步骤903,接收设备通过光纤通道发送至少两个检测光波,至少两个检测光波中存在至少一个第一检测光波的波长小于工作波段的最小波长,存在至少一个第二检测光波的波长大于工作波段的最大波长。
可选的,第一检测光波的数量等于第二检测光波的数量。
步骤904,发送设备通过光纤通道接收至少两个检测光波。
步骤905,发送设备获取功率控制指令,功率控制指令是根据至少两个检测光波之间的功率变化信息所生成的。
步骤906,发送设备根据功率控制指令对至少两个通信光波中的至少一个通信光波进行光功率放大和/或衰减。
可选的,当检测光波的传输方向与通信光波的传输方向相反时,接收设备在向发送设备发送至少两个检测光波后,使得发送设备根据至少两个检测光波之间的功率变化信息生成功率控制指令;根据功率控制指令对至少两个通信光波中的至少一个通信光波进行光功率放大和/或衰减。
相关细节可参考图7提供的实施例,在此不再赘述。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本发明实施例中,术语“第一”、“第二”、“第三”等(如果存在)是用于区别类型的对象,而不必用于描述特定的顺序或先后次序,应该理解这样使用的对象在适当情况下可以互换,以便本发明实施例能够在除了本文图示或描述的实施例之外的其它实施例中以其它顺序实施。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

1.一种发送设备,其特征在于,所述发送设备包括:合波单元和光功率调整单元;
所述合波单元,用于向光纤通道发送至少两个通信光波,所述至少两个通信光波的波长属于工作波段;
所述合波单元,还用于通过所述光纤通道发送或接收至少两个检测光波,所述至少两个检测光波中存在至少一个第一检测光波的波长小于所述工作波段的最小波长,存在至少一个第二检测光波的波长大于所述工作波段的最大波长;
所述光功率调整单元,用于获取功率控制指令,所述功率控制指令是根据所述至少两个检测光波之间的功率变化信息所生成的;根据所述功率控制指令对所述至少两个通信光波中的至少一个通信光波进行光功率放大和/或衰减。
2.根据权利要求1所述的发送设备,其特征在于,所述发送设备还包括:与所述合波单元相连的检测波发射端;
所述检测波发射端,用于向所述合波单元输入所述至少两个检测光波,所述检测光波的传输方向与所述通信光波的传输方向相同;
所述光功率调整单元,具体用于接收来自接收设备的功率控制指令,所述功率控制指令是所述接收设备根据所述至少两个检测光波之间的功率变化信息所生成的。
3.根据权利要求1所述的发送设备,其特征在于,所述发送设备还包括:与所述合波单元相连的检测波接收端,以及与所述检测波接收端相连的控制单元;
所述检测波接收端,用于从所述合波单元接收所述至少两个检测光波,所述检测光波的传输方向与所述通信光波的传输方向相反;
所述控制单元,用于在所述检测波接收端接收到所述至少两个检测光波后,根据所述至少两个检测光波之间的功率变化信息生成所述功率控制指令;
所述光功率调整单元,具体用于接收来自所述控制单元的所述功率控制指令。
4.根据权利要求3所述的发送设备,其特征在于,至少两个检测光波包括m个检测光波,m为大于1的正整数,所述控制单元,具体用于:
根据接收到的m个所述检测光波,确定m个所述检测光波的m个功率变化值,每个所述功率变化值用于表示单个所述检测光波在传输后的光功率变化程度;
根据m个所述功率变化值确定所述功率变化信息,所述功率变化信息用于表示m个所述检测光波在传输后的m个光功率的整体变化程度;
根据预设对应关系确定与所述功率变化信息对应的调节系数,所述预设对应关系包括所述功率变化信息与所述调节系数之间的对应关系,所述调节系数包括与至少一个所述通信光波对应的放大系数和/或衰减系数;
生成携带有所述调节系数的所述功率控制指令。
5.根据权利要求1或4任一所述的发送设备,其特征在于,所述第一检测光波的数量等于所述第二检测光波的数量。
6.一种接收设备,其特征在于,所述接收设备包括:分波单元;
所述分波单元,用于接收光纤通道传输后的至少两个通信光波,所述至少两个通信光波的波长属于工作波段;
所述分波单元,还用于通过所述光纤通道接收或发送至少两个检测光波,所述至少两个检测光波中存在至少一个第一检测光波的波长小于所述工作波段的最小波长,存在至少一个第二检测光波的波长大于所述工作波段的最大波长;以使得发送设备获取功率控制指令,所述功率控制指令是根据所述至少两个检测光波之间的功率变化信息所生成的;根据所述功率控制指令对所述至少两个通信光波中的至少一个通信光波进行光功率放大和/或衰减。
7.根据权利要求6所述的接收设备,其特征在于,所述接收设备还包括:与所述分波单元相连的检测波接收端,以及与所述检测波接收端相连的控制单元;
所述检测波接收端,用于从所述分波单元接收所述至少两个检测光波,所述检测光波的传输方向与所述通信光波的传输方向相同;
所述控制单元,用于在所述检测波接收端接收到所述至少两个检测光波后,根据所述至少两个检测光波之间的功率变化信息生成所述功率控制指令,向所述发送设备发送所述功率控制指令以使得所述发送设备接收来自所述控制单元的所述功率控制指令。
8.根据权利要求7所述的接收设备,其特征在于,至少两个检测光波包括m个检测光波,m为大于1的正整数,所述控制单元,具体用于:
根据接收到的m个所述检测光波,确定m个所述检测光波的m个功率变化值,每个所述功率变化值用于表示单个所述检测光波通过所述光纤通道传输后光功率的变化程度;
根据m个所述功率变化值确定所述功率变化信息,所述功率变化信息用于表示m个所述检测光波通过所述光纤通道传输后m个光功率的整体变化程度;
根据预设对应关系确定与所述功率变化信息对应的调节系数,所述预设对应关系包括所述功率变化信息与所述调节系数之间的对应关系,所述调节系数包括与至少一个通信光波对应的放大系数和/或衰减系数;
生成携带有所述调节系数的所述功率控制指令。
9.根据权利要求6所述的接收设备,其特征在于,所述接收设备还包括:与所述分波单元相连的所述检测波发射端;
所述检测波发射端,用于向所述分波单元输入所述至少两个检测光波,所述检测光波的传输方向与所述通信光波的传输方向相反。
10.根据权利要求6至9任一所述的接收设备,其特征在于,所述第一检测光波的数量等于所述第二检测光波的数量。
11.一种光传输系统,其特征在于,所述系统包括:光纤通道、与所述光纤通道相连的发送设备和接收设备;
所述发送设备包括如权利要求1至5任一所述的发送设备;
所述接收设备包括如权利要求6至10任一所述的接收设备。
12.一种光功率控制方法,其特征在于,所述方法包括:
向光纤通道发送至少两个通信光波,所述至少两个通信光波的波长属于工作波段;
通过所述光纤通道发送或接收至少两个检测光波,所述至少两个检测光波中存在至少一个第一检测光波的波长小于所述工作波段的最小波长,存在至少一个第二检测光波的波长大于所述工作波段的最大波长;
获取功率控制指令,所述功率控制指令是根据所述至少两个检测光波之间的功率变化信息所生成的;
根据所述功率控制指令对所述至少两个通信光波中的至少一个通信光波进行光功率放大和/或衰减。
13.根据权利要求12所述的方法,其特征在于,所述检测光波的传输方向与所述通信光波的传输方向相同,所述获取功率控制指令包括:
在向接收设备发送所述至少两个检测光波后,接收来自所述接收设备的功率控制指令,所述功率控制指令是所述接收设备根据所述至少两个检测光波之间的功率变化信息所生成的。
14.根据权利要求12所述的方法,其特征在于,所述检测光波的传输方向与所述通信光波的传输方向相反,所述获取功率控制指令包括:
在接收到接收设备发送的所述至少两个检测光波后,根据所述至少两个检测光波之间的功率变化信息生成所述功率控制指令。
15.根据权利要求14所述的方法,其特征在于,至少两个检测光波包括m个检测光波,m为大于1的正整数,所述根据所述至少两个检测光波之间的功率变化信息生成所述功率控制指令之前,还包括:
根据接收到的m个所述检测光波,确定m个所述检测光波的m个功率变化值,每个所述功率变化值用于表示单个所述检测光波通过所述光纤通道传输后光功率的变化程度;
根据m个所述功率变化值确定所述功率变化信息,所述功率变化信息用于表示m个所述检测光波通过所述光纤通道传输后m个光功率的整体变化程度;
所述根据所述至少两个检测光波之间的功率变化信息生成所述功率控制指令,包括:
根据预设对应关系确定与所述功率变化信息对应的调节系数,所述预设对应关系包括所述功率变化信息与所述调节系数之间的对应关系,所述调节系数包括与至少一个通信光波对应的放大系数和/或衰减系数;
生成携带有所述调节系数的所述功率控制指令。
16.根据权利要求12或15任一所述的方法,其特征在于,所述第一检测光波的数量等于所述第二检测光波的数量。
17.一种光功率控制方法,其特征在于,所述方法包括:
接收光纤通道传输后的至少两个通信光波,所述至少两个通信光波的波长属于工作波段;
通过所述光纤通道接收或发送至少两个检测光波,所述至少两个检测光波中存在至少一个第一检测光波的波长小于所述工作波段的最小波长,存在至少一个第二检测光波的波长大于所述工作波段的最大波长;以使得发送设备获取功率控制指令,所述功率控制指令是根据所述至少两个检测光波之间的功率变化信息所生成的;根据所述功率控制指令对所述至少两个通信光波中的至少一个通信光波进行光功率放大和/或衰减。
18.根据权利要求17所述的方法,其特征在于,所述检测光波的传输方向与所述通信光波的传输方向相同,所述方法还包括:
在接收到所述发送设备发送的所述至少两个检测光波后,根据所述至少两个检测光波之间的功率变化信息生成所述功率控制指令,并向所述发送设备发送所述功率控制指令;以使得所述发送设备接收来自所述控制单元的所述功率控制指令。
19.根据权利要求18所述的方法,其特征在于,至少两个检测光波包括m个检测光波,m为大于1的正整数,所述根据所述至少两个检测光波之间的功率变化信息生成所述功率控制指令之前,还包括:
根据接收到的m个所述检测光波,确定m个所述检测光波的m个功率变化值,每个所述功率变化值用于表示单个所述检测光波通过所述光纤通道传输后光功率的变化程度;
根据m个所述功率变化值确定所述功率变化信息,所述功率变化信息用于表示m个所述检测光波通过所述光纤通道传输后m个光功率的整体变化程度;
所述根据所述至少两个检测光波之间的功率变化信息生成所述功率控制指令,包括:
根据预设对应关系确定与所述功率变化信息对应的调节系数,所述预设对应关系包括所述功率变化信息与所述调节系数之间的对应关系,所述调节系数包括与至少一个通信光波对应的放大系数和/或衰减系数;
生成携带有所述调节系数的所述功率控制指令。
20.根据权利要求17或19任一所述的方法,其特征在于,所述第一检测光波的数量等于所述第二检测光波的数量。
CN201780088525.7A 2017-04-11 2017-04-11 发送设备、接收设备、光传输系统、光功率控制方法 Active CN110431765B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/080027 WO2018187930A1 (zh) 2017-04-11 2017-04-11 发送设备、接收设备、光传输系统、光功率控制方法

Publications (2)

Publication Number Publication Date
CN110431765A CN110431765A (zh) 2019-11-08
CN110431765B true CN110431765B (zh) 2020-12-25

Family

ID=63793052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780088525.7A Active CN110431765B (zh) 2017-04-11 2017-04-11 发送设备、接收设备、光传输系统、光功率控制方法

Country Status (4)

Country Link
US (1) US11323199B2 (zh)
EP (1) EP3591862B1 (zh)
CN (1) CN110431765B (zh)
WO (1) WO2018187930A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021081931A1 (zh) * 2019-10-31 2021-05-06 华为技术有限公司 一种确定光信号功率变化的方法及功率计算装置
CN114124287A (zh) * 2020-08-31 2022-03-01 华为技术有限公司 光信号控制方法及装置、光传输节点和光传输系统
CN114355514A (zh) * 2020-10-13 2022-04-15 华为技术有限公司 光交换的方法和装置、硅基液晶和波长选择开关
CN115133981A (zh) * 2021-03-26 2022-09-30 华为技术有限公司 校正系数确定方法、装置及光通信系统
US11536916B1 (en) * 2021-05-10 2022-12-27 Amazon Technologies, Inc. Pathloss optimization for optical systems
WO2024064300A1 (en) * 2022-09-23 2024-03-28 Ip Infusion, Inc. Systems and methods for coupling optical networks
CN116488730A (zh) * 2023-06-25 2023-07-25 广东电网有限责任公司广州供电局 光信号功率控制的光纤传输系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0994583A1 (en) * 1998-10-13 2000-04-19 Lucent Technologies Inc. Method and apparatus for controlling the optical power of an optical transmission signal
EP1137129A2 (en) * 2000-03-15 2001-09-26 Nec Corporation Optical gain equalizer and optical gain equalizing method
CN1482757A (zh) * 2002-09-12 2004-03-17 深圳市中兴通讯股份有限公司 多泵浦拉曼放大器增益谱平均斜率的调节装置和方法
CN1506740A (zh) * 2002-12-07 2004-06-23 三星电子株式会社 具有自动功率控制功能的光纤放大器及自动功率控制方法
US6885499B1 (en) * 1999-08-12 2005-04-26 Fujitsu Limited Optical amplifying apparatus for amplifying wide-wavelength-band light, optical sending apparatus, optical transmission system, and optical amplifying method
CN1741325A (zh) * 2004-08-26 2006-03-01 富士通株式会社 光放大装置、拉曼放大器、光波分复用传输系统及方法
CN102571213A (zh) * 2012-02-02 2012-07-11 中兴通讯股份有限公司 一种实现光放大器增益控制的装置和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101273557A (zh) * 2005-09-21 2008-09-24 富士通株式会社 波分复用传输系统中的监控光传输方法和波分复用传输装置
JP4774381B2 (ja) * 2007-03-16 2011-09-14 富士通株式会社 光受信装置およびその光レベル調整量設定方法
US8406637B2 (en) * 2008-05-27 2013-03-26 Xtera Communications, Inc. Automatic pre-emphasis
JP5541004B2 (ja) * 2010-08-27 2014-07-09 沖電気工業株式会社 量子鍵配送方法及び量子鍵配送システム
JP5564692B2 (ja) * 2011-02-25 2014-07-30 株式会社日立製作所 光伝送システム、及び、光ノード
JP6051994B2 (ja) * 2013-03-25 2016-12-27 富士通株式会社 光伝送装置及びダミー光挿入方法
JP7000984B2 (ja) * 2018-05-10 2022-01-19 富士通株式会社 波長分割多重光信号のパワーを調整する装置および方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0994583A1 (en) * 1998-10-13 2000-04-19 Lucent Technologies Inc. Method and apparatus for controlling the optical power of an optical transmission signal
US6885499B1 (en) * 1999-08-12 2005-04-26 Fujitsu Limited Optical amplifying apparatus for amplifying wide-wavelength-band light, optical sending apparatus, optical transmission system, and optical amplifying method
EP1137129A2 (en) * 2000-03-15 2001-09-26 Nec Corporation Optical gain equalizer and optical gain equalizing method
CN1482757A (zh) * 2002-09-12 2004-03-17 深圳市中兴通讯股份有限公司 多泵浦拉曼放大器增益谱平均斜率的调节装置和方法
CN1506740A (zh) * 2002-12-07 2004-06-23 三星电子株式会社 具有自动功率控制功能的光纤放大器及自动功率控制方法
CN1741325A (zh) * 2004-08-26 2006-03-01 富士通株式会社 光放大装置、拉曼放大器、光波分复用传输系统及方法
CN102571213A (zh) * 2012-02-02 2012-07-11 中兴通讯股份有限公司 一种实现光放大器增益控制的装置和方法

Also Published As

Publication number Publication date
CN110431765A (zh) 2019-11-08
EP3591862B1 (en) 2024-04-17
US11323199B2 (en) 2022-05-03
EP3591862A1 (en) 2020-01-08
US20200044766A1 (en) 2020-02-06
EP3591862A4 (en) 2020-03-25
WO2018187930A1 (zh) 2018-10-18

Similar Documents

Publication Publication Date Title
CN110431765B (zh) 发送设备、接收设备、光传输系统、光功率控制方法
US6885499B1 (en) Optical amplifying apparatus for amplifying wide-wavelength-band light, optical sending apparatus, optical transmission system, and optical amplifying method
EP1054489A2 (en) An optical amplifier
US7554718B2 (en) Fast dynamic gain control in an optical fiber amplifier
CA2414951A1 (en) Cascaded pumping system and method for producing distributed raman amplification in optical fiber telecommunication systems
US20070109626A1 (en) Fast Dynamic Gain Control in a Bidirectionally-Pumped Raman Fiber Amplifier
US7554719B2 (en) Fast dynamic gain control in an optical fiber amplifier
KR100810859B1 (ko) 엘밴드 광신호의 효율적 광증폭 이득향상 장치
Mishra et al. Performance analysis and implementation of different pumping techniques on an EDFA amplifier
JP4768549B2 (ja) 光通信用の信号光を増幅するためのラマン光増幅器,ラマン光増幅器を備えた光通信システム,およびラマン光増幅器の制御方法
EP1696524A1 (en) Fast dynamic gain control in an optical fiber amplifier
US7280762B1 (en) Optical communication system having dynamic gain equalization
US6798945B1 (en) Lumped raman amplifier for adaptive dispersion compensation
US6950232B1 (en) Gain clamped thulium-doped fiber amplification
Curri et al. HFA optimization for Nyquist WDM transmission
Olonkins et al. Investigation of in-line distributed Raman amplifiers with co and counter-propagating pumping schemes
Putrina et al. Investigation of EDFA positioning impact on the quality of the amplified signal in DWDM transmission systems
US7042632B2 (en) Raman amplifier
Putrina et al. Investigation of EDFA performance in DWDM transmission systems under different operating conditions
CN217848617U (zh) 一种用于超弱光栅的平坦型脉冲edfa模块
Hui et al. Investigation of forward and backward pumped distributed Raman amplification schemes for a single-span 600Gb/s coherent fiber system
US20240121022A1 (en) Optical transmission system, wavelength converter, and optical transmission device
Honde et al. Performance analysis of WDM network based on EDFA amplifier with different pumping techniques
Ismail et al. Gain performance of cascaded and hybrid semiconductor optical amplifier in CWDM system
Putrina et al. Investigation of amplification span length impact on the quality of the signal in WDM transmission systems with erbium-doped fiber amplifiers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant