CN110428010B - 知识追踪方法 - Google Patents
知识追踪方法 Download PDFInfo
- Publication number
- CN110428010B CN110428010B CN201910717085.8A CN201910717085A CN110428010B CN 110428010 B CN110428010 B CN 110428010B CN 201910717085 A CN201910717085 A CN 201910717085A CN 110428010 B CN110428010 B CN 110428010B
- Authority
- CN
- China
- Prior art keywords
- matrix
- knowledge
- learning
- sequence
- student
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 239000013598 vector Substances 0.000 claims abstract description 43
- 238000013528 artificial neural network Methods 0.000 claims abstract description 27
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims abstract description 21
- 230000007246 mechanism Effects 0.000 claims abstract description 11
- 230000004927 fusion Effects 0.000 claims abstract description 5
- 239000011159 matrix material Substances 0.000 claims description 83
- 239000010410 layer Substances 0.000 claims description 24
- 230000006870 function Effects 0.000 claims description 15
- 239000002356 single layer Substances 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 3
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 2
- 230000017105 transposition Effects 0.000 claims description 2
- 230000000873 masking effect Effects 0.000 claims 1
- 230000001131 transforming effect Effects 0.000 claims 1
- 230000000306 recurrent effect Effects 0.000 description 3
- 238000013136 deep learning model Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/20—Education
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Business, Economics & Management (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Tourism & Hospitality (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Image Analysis (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910717085.8A CN110428010B (zh) | 2019-08-05 | 2019-08-05 | 知识追踪方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910717085.8A CN110428010B (zh) | 2019-08-05 | 2019-08-05 | 知识追踪方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110428010A CN110428010A (zh) | 2019-11-08 |
CN110428010B true CN110428010B (zh) | 2022-09-06 |
Family
ID=68414202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910717085.8A Active CN110428010B (zh) | 2019-08-05 | 2019-08-05 | 知识追踪方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110428010B (zh) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111159419B (zh) * | 2019-12-09 | 2021-05-25 | 浙江师范大学 | 基于图卷积的知识追踪数据处理方法、系统和存储介质 |
CN111444432A (zh) * | 2020-04-01 | 2020-07-24 | 中国科学技术大学 | 领域自适应的深度知识追踪及个性化习题推荐方法 |
CN111461442B (zh) * | 2020-04-07 | 2023-08-29 | 中国科学技术大学 | 基于联邦学习的知识追踪的方法及系统 |
CN111538868B (zh) * | 2020-04-28 | 2023-06-16 | 中国科学技术大学 | 知识追踪方法及习题推荐方法 |
CN111553821B (zh) * | 2020-05-13 | 2021-04-27 | 电子科技大学 | 基于教师学生网络和多头解码器的应用题自动解题方法 |
CN111695779B (zh) * | 2020-05-14 | 2023-03-28 | 华南师范大学 | 一种知识追踪方法、装置及存储介质 |
CN112116092B (zh) * | 2020-08-11 | 2022-03-25 | 浙江师范大学 | 可解释性知识水平追踪方法、系统和存储介质 |
CN112182308B (zh) * | 2020-09-29 | 2023-03-24 | 华中师范大学 | 基于多热编码的多特征融合深度知识追踪方法及系统 |
CN111930901B (zh) * | 2020-10-09 | 2021-01-08 | 北京世纪好未来教育科技有限公司 | 知识点向量获取、推荐题目确定方法及相关装置 |
CN113033808B (zh) * | 2021-03-08 | 2024-01-19 | 西北大学 | 一种基于习题难度和学生能力的深度嵌入知识追踪方法 |
CN113626572B (zh) * | 2021-08-11 | 2024-05-24 | 中国科学技术大学 | 一种学习过程一致性的预测方法和相关设备 |
CN113793239B (zh) * | 2021-08-13 | 2023-12-19 | 华南理工大学 | 融合学习行为特征的个性化知识追踪方法与系统 |
CN113989075A (zh) * | 2021-10-12 | 2022-01-28 | 中国科学技术大学 | 预测未来技术知识流动的方法 |
CN114385801A (zh) * | 2021-12-27 | 2022-04-22 | 河北工业大学 | 一种基于分层细化lstm网络的知识追踪方法及系统 |
CN114723590B (zh) * | 2022-03-30 | 2023-04-28 | 华南师范大学 | 面向群体的知识追踪方法、系统、装置及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108171358A (zh) * | 2017-11-27 | 2018-06-15 | 科大讯飞股份有限公司 | 成绩预测方法及装置、存储介质、电子设备 |
CN108228674A (zh) * | 2016-12-22 | 2018-06-29 | 上海谦问万答吧云计算科技有限公司 | 一种基于dkt的信息处理方法及装置 |
CN108694501A (zh) * | 2018-05-04 | 2018-10-23 | 北京航空航天大学 | 一种面向xAPI的个性化学习效果分析系统及方法 |
CN109598995A (zh) * | 2019-01-08 | 2019-04-09 | 上海健坤教育科技有限公司 | 基于贝叶斯知识跟踪模型的智能教学系统 |
CN109840595A (zh) * | 2019-02-26 | 2019-06-04 | 武汉大学 | 一种基于群体学习行为特征的知识追踪方法 |
CN109948473A (zh) * | 2019-03-04 | 2019-06-28 | 中国计量大学 | 一种基于神经网络的提升学生应用题解题能力的方法 |
-
2019
- 2019-08-05 CN CN201910717085.8A patent/CN110428010B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108228674A (zh) * | 2016-12-22 | 2018-06-29 | 上海谦问万答吧云计算科技有限公司 | 一种基于dkt的信息处理方法及装置 |
CN108171358A (zh) * | 2017-11-27 | 2018-06-15 | 科大讯飞股份有限公司 | 成绩预测方法及装置、存储介质、电子设备 |
CN108694501A (zh) * | 2018-05-04 | 2018-10-23 | 北京航空航天大学 | 一种面向xAPI的个性化学习效果分析系统及方法 |
CN109598995A (zh) * | 2019-01-08 | 2019-04-09 | 上海健坤教育科技有限公司 | 基于贝叶斯知识跟踪模型的智能教学系统 |
CN109840595A (zh) * | 2019-02-26 | 2019-06-04 | 武汉大学 | 一种基于群体学习行为特征的知识追踪方法 |
CN109948473A (zh) * | 2019-03-04 | 2019-06-28 | 中国计量大学 | 一种基于神经网络的提升学生应用题解题能力的方法 |
Non-Patent Citations (2)
Title |
---|
《Deep Knowledge Tracing and Dynamic Student Classification for Knowledge Tracing》;Sein Minn等;《2018 IEEE International Conference on Data Mining (ICDM)》;20181231;第1182-1187页 * |
《多知识点知识追踪模型与可视化研究》;徐墨客等;《学习环境与资源》;20181031(第10期);第53-59页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110428010A (zh) | 2019-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110428010B (zh) | 知识追踪方法 | |
CN113033808B (zh) | 一种基于习题难度和学生能力的深度嵌入知识追踪方法 | |
US20210256354A1 (en) | Artificial intelligence learning-based user knowledge tracing system and operating method thereof | |
CN108734276B (zh) | 一种基于对抗生成网络的模仿学习对话生成方法 | |
CN110163299B (zh) | 一种基于自底向上注意力机制和记忆网络的视觉问答方法 | |
CN112116092B (zh) | 可解释性知识水平追踪方法、系统和存储介质 | |
CN111008293A (zh) | 基于结构化语义表示的视觉问答方法 | |
CN111291940B (zh) | 一种基于Attention深度学习模型的学生辍课预测方法 | |
CN110807469A (zh) | 融合长短时记忆与贝叶斯网络的知识追踪方法及系统 | |
CN113344053A (zh) | 一种基于试题异构图表征与学习者嵌入的知识追踪方法 | |
CN112115246A (zh) | 基于对话的内容推荐方法、装置、计算机设备及存储介质 | |
CN114299349B (zh) | 一种基于多专家系统和知识蒸馏的众包图像学习方法 | |
CN114021722A (zh) | 一种融合认知刻画的注意力知识追踪方法 | |
CN113361791A (zh) | 一种基于图卷积的学生成绩预测方法 | |
CN115329959A (zh) | 一种基于双流知识嵌入网络的学习目标推荐方法 | |
CN114429212A (zh) | 智能学习知识能力跟踪方法、电子设备及存储介质 | |
CN115545160A (zh) | 一种多学习行为协同的知识追踪方法及系统 | |
CN115544158A (zh) | 应用于智能教育系统的多知识点动态知识追踪方法 | |
CN114971066A (zh) | 融合遗忘因素和学习能力的知识追踪方法及系统 | |
CN114676903A (zh) | 一种基于时间感知和认知诊断的在线预测方法及系统 | |
CN113704235A (zh) | 一种基于自注意力机制的深度知识追踪模型 | |
CN116402134A (zh) | 基于行为感知的知识追踪方法及系统 | |
CN114117033B (zh) | 知识追踪方法及系统 | |
CN115795015A (zh) | 一种试题难度增强的综合知识追踪方法 | |
CN112766513B (zh) | 一种记忆协同的知识追踪方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240517 Address after: 230026 Jinzhai Road, Baohe District, Hefei, Anhui Province, No. 96 Patentee after: University of Science and Technology of China Country or region after: China Patentee after: Liu Qi Patentee after: Chen Enhong Patentee after: Huang Zhenya Address before: 230026 Jinzhai Road, Baohe District, Hefei, Anhui Province, No. 96 Patentee before: University of Science and Technology of China Country or region before: China |