CN110426409A - 一种生物样品中重金属测定方法 - Google Patents

一种生物样品中重金属测定方法 Download PDF

Info

Publication number
CN110426409A
CN110426409A CN201910785691.3A CN201910785691A CN110426409A CN 110426409 A CN110426409 A CN 110426409A CN 201910785691 A CN201910785691 A CN 201910785691A CN 110426409 A CN110426409 A CN 110426409A
Authority
CN
China
Prior art keywords
biological sample
burning
heavy metals
sample
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910785691.3A
Other languages
English (en)
Inventor
王德文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910785691.3A priority Critical patent/CN110426409A/zh
Publication of CN110426409A publication Critical patent/CN110426409A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2206Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Molecular Biology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明提供一种生物样品中重金属测定方法,属于化学分析技术领域,先将生物样品燃烧富集后得到样品灰烬,再将得到的样品灰烬通过X射线荧光光谱仪测定。本发明采用燃烧法‑XRF结合的方法测定生物样品中重金属的含量,不需要通过酸液进行消解,测试方法简单高效且对实验人员的健康不会造成影响;另外,生物样品通过燃烧处理,样品重量体积缩小,重金属元素含量成几何倍数增长,可以达到对金属元素浓缩富集的效果,从而提升XRF仪对重金属元素检出效果达2‑20倍。

Description

一种生物样品中重金属测定方法
技术领域
本发明属于化学分析技术领域,具体涉及一种生物样品各种重金属测定方法。
背景技术
生物样品因为蛋白质、糖类、酚类、油脂类物质的存在,导致容易出现样品有机质含量过高、脂乳化等问题,从而影响重金属含量的测定。
为此,现有技术(CN102854238A)提供了一种环境介质或生物样品中多种重金属的测定分析方法,通过微波消解-电感耦合等离子质谱法测定环境介质或生物样品中Cd、Pb、As、Sb、Cu、Zn、Ni、Cr等多种重金属的含量,在微波消解时采用逆王水或氢氟酸等对样品进行消解,虽然能够消除其他质谱干扰项,但是由于消解过程中需要消耗大量酸液,不符合绿色化学的发展,且容易对实验人员的健康造成影响。
发明内容
基于上述背景问题,本发明旨在提供一种生物样品中重金属测定方法,采用燃烧法-XRF结合的方法测定生物样品中重金属的含量,解决了现有技术中采用酸液消解存在的问题,提高了低含量重金属元素的测定精度。
为达到上述目的,本发明提供的技术方案是:
一种生物样品中重金属测定方法,将生物样品燃烧富集后得到样品灰烬,再将得到的样品灰烬通过X射线荧光光谱仪测定。
在一个实施例中,所述生物样品中重金属测定方法包括以下步骤:
S1、取一定量的生物样品称重,记为W0,然后对其加热燃烧,燃烧完全后得到样品灰烬,自然冷却后称重记为W1
S2、将S1步骤得到的样品灰烬放入X射线荧光光谱仪中进行重金属含量测定。
优选地,在生物样品燃烧之前,先对生物样品进行粉碎研磨。
更优选地,研磨后的生物样品的粒径为20目以上。
其中,生物样品的加热燃烧方式为电热丝加热燃烧、电磁加热燃烧、微波加热燃烧或明火直接燃烧。
优选地,加热燃烧温度低于300℃。
其中,所述重金属包括Cd、Pb、As、Ni、Cu、Zn、Se、Mn、Cr、Ba。
与现有技术相比,本发明具有以下效果:
1、本发明采用燃烧法-XRF结合的方法测定生物样品中重金属的含量,不需要通过酸液进行消解,测试方法简单高效且对实验人员的健康不会造成影响。
2、本发明通过对生物样品进行燃烧处理,样品重量体积缩小,重金属元素含量成几何倍数增长,可以达到对金属元素浓缩富集的效果,从而提升XRF仪对重金属元素检出效果达2-20倍。
具体实施方式
为了解决现有技术中采用酸液对生物样品消解存在的问题,本发明提供一种生物样品中重金属测定方法,采用燃烧法-XRF结合的方法测定生物样品中重金属的含量,不需要通过酸液进行消解,测试方法简单高效;在采用XRF测定之前,先将生物样品燃烧,消除了生物样品中有机质等的影响,可以达到对金属元素浓缩富集的效果,从而提升XRF仪对重金属元素的检出效果。
X射线荧光光谱仪(XRF)测定元素含量的原理是:不同元素具有波长不同的特征X射线谱,而各谱线的荧光强度又与元素的浓度呈一定关系,测定待测元素特征X射线谱线的波长和强度就可以进行定性和定量分析,采用X射线荧光光谱仪测定具有谱线简单、分析速度快、测量元素多、能进行多元素同时分析等优点。
需要说明的是,本发明中测定的重金属包括Cd、Pb、As、Ni、Cu、Zn、Se、Mn、Cr、Ba。
下面结合具体实施例对本发明作进一步详细的说明,实施例中所使用的配方工艺只是本发明中一些优选配方和工艺,但是本发明的保护范围并不限制于此。
实施例1
大米中重金属测定方法,包括以下步骤:
S1、将大米粉碎研磨至粒径为20目,然后取W0=2.5g研磨后的生物样品置于石英燃烧池中,尽量使生物样品平铺在石英燃烧池内;加热燃烧时,先通过电磁炉对生物样品进行加热烘干处理120s,然后再明火点燃样品进行燃烧,控制加热温度低于300℃;燃烧完全后得到样品灰烬,自然冷却至室温后称重记为W1
S2、将S1步骤得到的样品灰烬放入X射线荧光光谱仪中进行重金属含量测定,测定结果如表1所示。
表1 大米中各重金属含量测定表
本实施例选用的生物样品为生物成分分析标准物质湖南大米(GBW10045),其各种重金属含量值如第四列中标准值所示,通过本实施例方法处理后测定大米中的重金属含量值如第五列中富集值所示,可以看出各个金属含量测定值均较标准值有了显著的提高,提高倍数在2.82-11.57之间,主要是因为生物样品充分燃烧后,整个重量体积缩小,重金属元素含量成几何倍数增长,从而提升检测效果。
实施例2
小麦中重金属测定方法,包括以下步骤:
S1、将小麦粉碎研磨至粒径为40目,然后取W0=5g研磨后的生物样品置于石英燃烧池中,尽量使生物样品平铺在石英燃烧池内;加热燃烧时,先通过电磁炉对生物样品进行加热烘干处理120s,然后再明火点燃样品进行燃烧,控制加热温度低于300℃;燃烧完全后得到样品灰烬,自然冷却至室温后称重记为W1
S2、将S1步骤得到的样品灰烬放入X射线荧光光谱仪中进行重金属含量测定,测定结果如表2所示。
表2 小麦中各重金属含量测定表
本实施例选用的生物样品为生物成分分析标准物质河南小麦(GBW10046),同样可以得到,通过本实施例方法燃烧处理以后,各个重金属含量测定值相较于标准值有了明显的提高,说明本发明的方法可以解决X射线荧光光谱仪对低含量重金属元素检出效果不佳的缺陷,即相当于降低了X射线荧光光谱仪的检出限。
实施例3
胡萝卜中重金属测定方法,包括以下步骤:
S1、将胡萝卜粉碎研磨至粒径为100目,然后取W0=5g研磨后的生物样品置于石英燃烧池中,尽量使生物样品平铺在石英燃烧池内;加热燃烧时,先通过电磁炉对生物样品进行加热烘干处理120s,然后再明火点燃样品进行燃烧,控制加热温度低于300℃;燃烧完全后得到样品灰烬,自然冷却至室温后称重记为W1
S2、将S1步骤得到的样品灰烬放入X射线荧光光谱仪中进行重金属含量测定,测定结果如表3所示。
表3 胡萝卜中各重金属含量测定表
本实施例选用的胡萝卜为生物成分分析标准物质(GBW10047),同样可以得到,通过本实施例方法燃烧处理以后,各个重金属含量测定值相较于标准值有了明显的提高,说明本发明的方法可以解决X射线荧光光谱仪对低含量重金属元素检出效果不佳的缺陷,即相当于降低了X射线荧光光谱仪的检出限。
实施例4
猪肝中重金属测定方法,包括以下步骤:
S1、将猪肝粉末研磨至200目,然后取W0=5g研磨后的猪肝置于石英燃烧池中,尽量使生物样品平铺在石英燃烧池内;加热燃烧时,先通过电磁炉对生物样品进行加热烘干处理120s,然后再明火点燃样品进行燃烧,控制加热温度低于300℃;燃烧完全后得到样品灰烬,自然冷却至室温后称重记为W1
S2、将S1步骤得到的样品灰烬放入X射线荧光光谱仪中进行重金属含量测定,测定结果如表4所示。
表4 猪肝中各重金属含量测定表
本实施例选用的猪肝为生物成分分析标准物质(GBW10051),同样可以得到,通过本实施例方法燃烧处理以后,各个重金属含量测定值相较于标准值有了明显的提高,说明本发方法不仅适用于粮食作物,而且可以用于肉类产品中重金属的检测。
对比上述表1-4,对同一重金属元素在不同生物样品中质量富集比和富集倍数的关系进行分析,得到下表5。
表5 同一重金属元素在不同生物样品中质量富集比与富集倍数的关系表
从表5中可以看出,同一种重金属元素在不同的生物样品中其质量富集比和富集倍数的比值基本为一定值,这样就可以根据这一定值预估未知样品中的重金属含量,即对于未知样品只要燃烧前后称重,根据质量富集比和定值的关系即可预估重金属含量。
需要说明的是,所述生物样品并不局限于上述实施例给出的大米、小麦、胡萝卜和猪肝,任何植物根、茎、叶或花和果实等均可,另外,所述生物样品也可以是其他动物的肌肉、肝脏、肾脏等不同器官组织。
应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (7)

1.一种生物样品中重金属测定方法,其特征在于,将生物样品燃烧富集后得到样品灰烬,再将得到的样品灰烬通过X射线荧光光谱仪测定。
2.根据权利要求1所述的生物样品中重金属测定方法,其特征在于,包括以下步骤:
S1、取一定量的生物样品称重,记为W0,然后对其加热燃烧,燃烧完全后得到样品灰烬,自然冷却后称重记为W1
S2、将S1步骤得到的样品灰烬放入X射线荧光光谱仪中进行重金属含量测定。
3.根据权利要求2所述的生物样品中重金属测定方法,其特征在于,在生物样品燃烧之前,先对生物样品进行粉碎研磨。
4.根据权利要求3所述的生物样品中重金属测定方法,其特征在于,研磨后的生物样品的粒径为20目以上。
5.根据权利要求2所述的生物样品中重金属测定方法,其特征在于,生物样品的加热燃烧方式为电热丝加热燃烧、电磁加热燃烧、微波加热燃烧或明火直接燃烧。
6.根据权利要求5所述的生物样品中重金属测定方法,其特征在于,加热燃烧温度低于300℃。
7.根据权利要求2所述的生物样品中重金属测定方法,其特征在于,所述重金属包括Cd、Pb、As、Ni、Cu、Zn、Se、Mn、Cr、Ba。
CN201910785691.3A 2019-08-23 2019-08-23 一种生物样品中重金属测定方法 Pending CN110426409A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910785691.3A CN110426409A (zh) 2019-08-23 2019-08-23 一种生物样品中重金属测定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910785691.3A CN110426409A (zh) 2019-08-23 2019-08-23 一种生物样品中重金属测定方法

Publications (1)

Publication Number Publication Date
CN110426409A true CN110426409A (zh) 2019-11-08

Family

ID=68415781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910785691.3A Pending CN110426409A (zh) 2019-08-23 2019-08-23 一种生物样品中重金属测定方法

Country Status (1)

Country Link
CN (1) CN110426409A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645201A (zh) * 2013-12-13 2014-03-19 彭新凯 基于x射线荧光快速检测大米中重金属镉的方法
CN103674985A (zh) * 2013-12-19 2014-03-26 武钢集团昆明钢铁股份有限公司 一种准确可靠、简便快速的炼钢发热剂中硅、硫、磷元素的检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645201A (zh) * 2013-12-13 2014-03-19 彭新凯 基于x射线荧光快速检测大米中重金属镉的方法
CN103674985A (zh) * 2013-12-19 2014-03-26 武钢集团昆明钢铁股份有限公司 一种准确可靠、简便快速的炼钢发热剂中硅、硫、磷元素的检测方法

Similar Documents

Publication Publication Date Title
Golob et al. Determination of trace and minor elements in Slovenian honey by total reflection X-ray fluorescence spectroscopy
Batista et al. Simultaneous determination of Cd, Cu, Mn, Ni, Pb and Zn in nail samples by inductively coupled plasma mass spectrometry (ICP-MS) after tetramethylammonium hydroxide solubilization at room temperature: comparison with ETAAS
Bahammou et al. Water sorption isotherms and drying characteristics of rupturewort (Herniaria hirsuta) during a convective solar drying for a better conservation
Tian et al. Quantitative determination of phosphorus in seafood using laser-induced breakdown spectroscopy combined with machine learning
Raut et al. Influence of pre‐drying storage time on essential oil components in dried hops (Humulus lupulus L.)
Tinggi et al. Determination of selenium in foodstuffs using spectrofluorometry and hydride generation atomic absorption spectrometry
de Almeida et al. EDXRF for elemental determination of nanoparticle‐related agricultural samples
CN111398198A (zh) 一种小麦籽粒微量元素快速无损检测方法
Masson et al. Application of direct solid analysis of plant samples by electrothermal vaporization-inductively coupled plasma atomic emission spectrometry: Determination of Cd and Si for environmental purposes
Yang et al. A tutorial review on methods of agricultural product sample pretreatment and target analysis by laser-induced breakdown spectroscopy
Liu et al. Recognition of genetically modified product based on affinity propagation clustering and terahertz spectroscopy
Andersson et al. Identifying metabolic alterations associated with coral growth anomalies using 1H NMR metabolomics
CN104568803A (zh) 一种利用紫外分光光度计检测煎炸食用油品质的方法
Chen et al. Correction of moisture interference in laser-induced breakdown spectroscopy detection of coal by combining neural networks and random spectral attenuation
CN110426409A (zh) 一种生物样品中重金属测定方法
Damin et al. Feasibility of using direct determination of cadmium and lead in fresh meat by electrothermal atomic absorption spectrometry for screening purposes
Liu et al. Mineral composition of fresh and cured jellyfish
Hashem et al. Prediction of chevon quality through near infrared spectroscopy and multivariate analyses
Barbeş et al. Mineral analysis of different bee products by Flame Atomic Absorption spectrometry
CN111398199A (zh) 一种基于高光谱成像的小麦面粉微量元素快速检测方法
Blake et al. Determination of lead and cadmium in food products by graphite furnace atomic absorption spectroscopy
Hillman et al. The use of electron spin resonance spectroscopy to determine the thermal histories of cereal grains
Miranda et al. Determination of Ca, Cd, Cu, Fe, K, Mg, Mn, Mo, Na, Se, and Zn in foodstuffs by atomic spectrometry after sample preparation using a low-cost closed-vessel conductively heated digestion system
RU2695662C1 (ru) Способ определения влажности воздушно-сухого лекарственного растительного сырья плодов расторопши пятнистой
Saavedra et al. A simple optimized microwave digestion method for multielement monitoring in mussel samples

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191108