CN110422074A - 一种电动汽车充电负荷估算及充电方式优化方法 - Google Patents

一种电动汽车充电负荷估算及充电方式优化方法 Download PDF

Info

Publication number
CN110422074A
CN110422074A CN201910735190.4A CN201910735190A CN110422074A CN 110422074 A CN110422074 A CN 110422074A CN 201910735190 A CN201910735190 A CN 201910735190A CN 110422074 A CN110422074 A CN 110422074A
Authority
CN
China
Prior art keywords
charging
electric car
particle populations
equipment
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910735190.4A
Other languages
English (en)
Other versions
CN110422074B (zh
Inventor
张志艳
庞啸尘
董开朗
刘岩
申永鹏
杨存祥
邱洪波
丁艺伟
李伟韬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Light Industry
Original Assignee
Zhengzhou University of Light Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Light Industry filed Critical Zhengzhou University of Light Industry
Priority to CN201910735190.4A priority Critical patent/CN110422074B/zh
Publication of CN110422074A publication Critical patent/CN110422074A/zh
Application granted granted Critical
Publication of CN110422074B publication Critical patent/CN110422074B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Transportation (AREA)
  • Data Mining & Analysis (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提出了一种电动汽车充电负荷估算及充电方式优化方法,其步骤为:S1、分析电动汽车的充电开始时间和充电时长的分布,建立充电开始时间和充电时长的概率密度函数;S2、利用拉丁超立方‑蒙特卡洛统计法对电动汽车的充电负荷进行估算,得到电动汽车的充电负荷曲线;S3、建立充电站充电设备的多目标函数;S4、将电动汽车的当日最大充电负荷作为约束条件,利用遗传粒子群算法对多目标函数进行优化,输出充电站充电设备的最优配置。本发明利用拉丁超立方‑蒙特卡洛统计法估算电动汽车充电负荷曲线,提高了收敛速度,并通过遗传粒子群算法对电动汽车的无序充电行为进行优化,得到充电站充电设备的占比,可用于多种类型充电设备的优化配置问题。

Description

一种电动汽车充电负荷估算及充电方式优化方法
技术领域
本发明涉及新能源汽车技术领域,特别是指一种电动汽车充电负荷估算及充电方式优化方法。
背景技术
电动汽车充电站不仅为电动汽车的规模化推广提供了重要的能源保障,还可以提高电力系统运行调度的灵活性,对于电力系统而言,充电站可被视为一种充电负荷。由于电动汽车的充电规律具有较强的随机性,建立能够正确反映随机性且有效实用的电动汽车充电站概率负荷模型是研究中一个亟待解决的问题。电动汽车的大规模普及必须依托于电网供电,而电动汽车的充电行为存在无序性强、同时率高的特点,大规模的电动汽车充电行为将对电网的安全经济运行带来较大影响。
目前,在电动汽车充电行为特征研究成果的基础上,对电动汽车负荷的估算采用蒙特卡洛方法,所使用样本量非常大,其收敛性较差;电动汽车充电设备的配置目前多采用遗传智能优化算法,降低充电电费,实现了变电站的经济运行,但遗传算法本身不能很好的利用反馈信息,同时也存在收敛速度较慢的问题。
发明内容
针对现有技术存在收敛速度较慢的技术问题,本发明提供了一种电动汽车充电负荷估算及充电方式优化方法,利用拉丁超立方-蒙特卡洛统计法估算的电动汽车充电负荷更准确,并基于遗传粒子群算法优化充电方式以提高收敛速度,可用于多种类型充电设备的优化配置问题。
本发明的技术方案是这样实现的:
一种电动汽车充电负荷估算及充电方式优化方法,其步骤如下:
S1、分析电动汽车的充电开始时间和充电时长的分布,建立充电开始时间和充电时长的概率密度函数;
S2、根据步骤S1中的概率密度函数利用拉丁超立方-蒙特卡洛统计法对电动汽车充电负荷进行估算,得到电动汽车充电负荷曲线;
S3、将交流1级、交流2级和直流三种充电设备作为决策变量,建立充电站充电设备的多目标函数;
S4、将步骤S2中的电动汽车最大充电负荷作为约束条件,利用遗传粒子群算法对步骤S3中的多目标函数进行优化,输出充电设备在充电站的最优配置。
所述步骤S1中建立充电开始时间和充电时长的概率密度函数的步骤为:
S11、利用偏度系数和峰度系数分析验证电动汽车的充电开始时间和充电时长的分布为对数偏正态分布,其中,偏度系数P为:峰度系数F为:n为样本个数,xi'为第i个样本的数值,i=1,2,…,n,为样本平均值,s为样本标准差;偏度系数P和峰度系数F均为0,表示数据集服从标准的正态分布;偏度系数P为正时,数据集左侧分散,偏度系数P为负时,数据集右侧分散;峰度系数F为负时,数据集中数据较集中,两侧数据较少,峰度系数F为正时,则相反;
S12、根据步骤S11中充电开始时间和充电时长的偏度系数P和峰度系数F的值,可判断充电开始时间和充电时长的分布均为偏正态分布,则充电开始时间的概率密度函数f1(x)为:充电时长的概率密度函数f2(y)为:其中,x为充电开始时间的变量,y为充电时长的变量,μs1为充电开始时间的均值,σs1为充电开始时间的标准差,μs2为充电时长的均值,σs2为充电时长的标准差。
所述步骤S2中利用拉丁超立方-蒙特卡洛统计法估算电动汽车充电负荷曲线的方法为:利用蒙特卡洛估算出每个时刻的充电电动汽车的数量和每个时刻每辆电动汽车所使用的的功率,并经拉丁超立方方法抽样,计算N辆电动汽车充电负荷曲线。
所述步骤S3中建立充电站充电设备的多目标函数的方法为:充电设备分别为交流1级、交流2级和直流,交流1级、交流2级和直流在充电站中所占的比例分别为x1、x2和x3,目标函数为充电设备的总投资和电动汽车无序充电负荷的峰谷差,约束条件为在连接时长内满足用户的预期充电电量;
所述充电设备的总投资为Y1(x1,x2,x3),电动汽车无序充电负荷的峰谷差为Y2(x1,x2,x3),则多目标函数为:
Y1(x1,x2,x3)=3000x1+15000x2+50000x3
Y2(x1,x2,x3)=1.9x1+25.6x2+100x3-1.4x1-7.7x2-40x3
所述步骤S4中的约束条件为电动汽车最大充电负荷:1.4x1+7.7x2+40x3≥39.06,
其中,3000表示每台交流1级充电设备的成本,1.9表示交流1级充电设备的最大功率,1.4表示交流1级充电设备的最小功率,15000表示每台交流2级充电设备的成本,25.6表示交流2级充电设备的最大功率,7.7表示交流2级充电设备的最小功率,50000表示每台直流充电设备的成本,100表示直流充电设备的最大功率,40表示直流充电设备的最小功率。
所述步骤S4中利用遗传粒子群算法对步骤S3中的多目标函数进行优化,输出充电设备在充电站的最优配置的方法为:
S41、初始化运行参数,包括粒子种群M、变异率、交叉率、迭代次数为t=0,最大迭代次数为tmax,每个种群包括三个变量;随机产生粒子种群的位置和速度;
S42、计算每个粒子种群的适应度,并根据适应度大小对粒子种群进行排序,根据最大的适应度对应的粒子种群计算充电设备的总投资Y1的值设为历史最优值Y1_min
S43、根据交叉率随机选择粒子种群的个数进行两两交叉运算得到中间的新粒子种群,再根据变异率随机选择中间的新粒子种群的个数进行两两变异运算得到新的粒子种群;
S44、判断交叉运算和变异运算是否运行完毕,若是,执行步骤S45,否则,执行步骤S43;
S45、迭代次数t+1,计算新的粒子种群的适应度并排序,计算所有新的粒子种群对应的充电设备的总投资Y1
S46、比较步骤S45中的Y1是否小于历史最优值Y1_min,若是,执行步骤S47,否则,执行步骤S48;
S47、更新新的粒子种群的位置和速度,执行步骤S48;
S48、判断新的粒子种群是否满足约束条件或达到最大迭代次数tmax,若是,执行步骤S49,否则,执行步骤S43;
S49、输出新的粒子种群的最大适应度对应的三个变量的值,即为充电站充电设备的最优配置。
所述步骤S47中新的粒子种群的位置和速度的更新方法为:
其中,i=1,2,…,M,t=1,2,…,tmax,Xi(t)为第t次迭代时第i个粒子种群的位置,Vi(t)为第t次迭代时第i个粒子种群的速度:Vi(t+1)为第t+1次迭代时第i个粒子种群的速度,Xi(t+1)为第t+1次迭代时第i个粒子种群的位置,c1和c2为正的学习因子,r1和r2为0到1之间均匀分布的随机数,pi为第i个粒子种群的最优位置。
本技术方案能产生的有益效果:本发明通过计算电动汽车行为特征的偏度系数和峰度系数建立电动汽车充电特征量的概率统计模型,再利用拉丁超立方-蒙特卡洛统计法建立电动汽车充电负荷曲线,提高了收敛速度;通过遗传粒子群算法对电动汽车的无序充电行为进行优化,得到交流1级、交流2级和直流充电设备的占比,达到削峰填谷和电网安全运行的目的。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的流程图。
图2为本发明的遗传粒子群的充电方式优化流程图。
图3为本发明的电动汽车充电特征Q-Q散点图。
图4为本发明的充电开始时间直方图。
图5为本发明的电动汽车充电开始时间概率分布图。
图6为本发明的电动汽车充电开始时间概率统计图。
图7为本发明的10000辆电动汽车充电负荷曲线。
图8为本发明的交流1级在充电站中所占比例x1与迭代次数的关系曲线。
图9为本发明的交流1级、交流2级和直流在充电站中的最优占比直方图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种电动汽车充电负荷估算及充电方式优化方法,其步骤如下:
S1、分析电动汽车的充电开始时间和充电时长的分布,建立充电开始时间和充电时长的概率密度函数。
如图3所示,所述建立充电开始时间和充电时长的概率密度函数的步骤为:
S11、利用偏度系数和峰度系数分析验证电动汽车的充电开始时间和充电时长的分布为对数偏正态分布,其中,偏度系数P为:峰度系数F为:n为样本数据的数量,x′i为第i个样本的数值,i=1,2,…,n,为样本平均值,s为样本标准差。偏度系数和峰度系数的计算结果可以用来衡量数据的分布形状,偏度系数P的取值范围为-3~3,用于衡量数据的对称程度;当偏度系数P为0时,数据集对称;偏度系数P为负数时,左侧分散;偏度系数P为正数时,右侧分散。峰度系数F用于衡量数据的分散度,峰度系数F为负值说明数据较集中,两侧数据集较少,峰度系数F为正值则相反。当偏度系数P和峰度系数F都为0,则说明该数据服从标准的正态分布,利用峰度系数F的计算公式对始数据进行计算,其偏度系数P和峰度系数F的计算结果如表1所示。由表1可以看出,充电开始时间和充电时长计算结果均满足偏正态分布。
表1偏度系数和峰度系数的计算结果
如图3所示,Q-Q散点图可以用来判断两组数据是否满足同一种偏正态分布。由图3可以看出充电时间和充电时长这两组数据都在一条直线的附近,据此可以判断这两种数据满足同一种偏正态分布。利用文献[第十一届“中国电机工程学会杯”全国大学生电工数学建模竞赛.电动汽车充放电优化管理[EB/OL].[2018-5-25].]原始数据做出充电时间的直方图,如图4所示。
从图4可以看出分布高峰向左偏移,长尾向右侧延伸。结合峰度系数和偏度系数的计算结果,推测该分布符合对数偏正态分布。根据求出的偏度系数P和峰度系数F,采用Jarque-Bera正态分布检验方法,假设其为对数偏正态分布,检验结果如表2所示。
表2正态分布检验结果
输出结果h是指假设统计样本满足某种正态分布,当输出h=1时,表示原假设错误;输出h=0时,表示原假设正确。返回的检验p值是指当p值小于给定的显著性水平(一般取0.05)时,否定原假设。从表2可以看出,电动汽车的充电开始时间和充电时长均满足对数偏正态分布。
S12、根据表2中充电开始时间和充电时长的偏度系数P和峰度系数F的值,可判断充电开始时间和充电时长的分布均为偏正态分布,则充电开始时间的概率密度函数f1(x)为:充电时长的概率密度函数f2(y)为:其中,x为充电开始时间的变量,y为充电时长的变量,μs1为充电开始时间的均值,σs1为充电开始时间的标准差,μs2为充电时长的均值,σs2为充电时长的标准差。
所述充电开始时间和充电时长的概率密度直方图及拟合曲线如图5和6所示。
从图5可以看出充电开始时间的高峰集中在7点到10点,10点之后充电的人数逐渐减少。从图6可以看出在电动汽车充电时,充电时长多保持在0:00~10:00,在充电时长超过10小时后,大部分电动汽车将停止充电,少部分电动汽车继续充电,充电时长最长达40小时。这种集中式的充电行为对电网的稳定运行将会造成较大冲击。
图5和图6对电动汽车充电特征量进行了对数偏正态分布拟合,其拟合的结果可采用三种方法来进行判断,分别是均方误差(MSE)、平均绝对误差(MAD)、最大绝对误差(MaxAE),误差分析结果如表3所示。
表3充电特征量拟合曲线误差分析结果
两个充电特征量的均方误差和平均绝对误差都接近于0,表示拟合效果良好,因此采用对数偏正态分布拟合方法结果是可行的。
S2、根据步骤S1中的概率密度函数利用拉丁超立方-蒙特卡洛统计法对电动汽车充电负荷进行估算,得到电动汽车充电负荷曲线。利用蒙特卡洛估算出每个时刻的充电电动汽车的数量和每个时刻每辆电动汽车所使用的的功率,并经拉丁超立方方法抽样,计算N辆电动汽车的充电负荷曲线。
蒙特卡洛是一种通过产生伪随机数来解决计算问题的方法,普通的蒙特卡洛模拟法是随机取样,而拉丁超立方-蒙特卡洛统计法是一种多维分层抽样法,两者的标准误差公式分别如式(1)和式(2)所示。
式中:σy为标准差,n为样本数据的数量,E1和E2分别为普通蒙特卡洛模拟法和拉丁超立方-蒙特卡洛统计法标准误差。两种方法的标准误差公式比较分析,如式(3)所示。
由式(3)可以看出,拉丁超立方抽样对样本数据的数量n的节省非常显著,所以用拉丁超立方抽样来改进蒙特卡洛的抽样方法可以使其有更好的收敛性。
在建立充电开始时间与充电时长的概率密度函数之后,根据蒙特卡洛估算出每个时刻有多少车充电并且在这一时刻每辆车所使用的功率,经拉丁超立方法抽样,计算10000辆电动汽车的充电日负荷曲线,其结果如图7所示。从图7可以看出0到8点充电功率在逐渐增加,9点达到最大值,9点之后充电功率开始逐渐下降。图7显示充电负荷曲线的走势与充电开始时间概率密度曲线的走势基本一致,但受充电时长影响,电动汽车充电负荷曲线相对充电开始时间的概率密度曲线有一定滞后性。
S3、将交流1级、交流2级和直流三种充电设备作为决策变量,建立充电站充电设备的多目标函数。
表4电动汽车充电功率等级
所述建立充电站充电设备的多目标函数的方法为:三种不同功率等级的充电装置如表4所示,通过对设备购置台数的合理优化,在充电设备能满足大规模电动汽车充电需求的同时,也能减少充电站建设方面的资金投入,降低电动汽车无序充电负荷的峰谷差,削峰填谷。充电设备分别为交流1级、交流2级和直流,交流1级、交流2级和直流在充电站中所占的比例分别为x1、x2和x3,目标函数为充电设备的总投资和电动汽车无序充电负荷的峰谷差,约束条件为在连接时长内满足用户的预期充电电量。设Y1(x1,x2,x3)为充电设备的总投资,由各设备在充电站所占比例与每台设备成本的乘积之和组成。Y2(x1,x2,x3)为电动汽车无序充电负荷的峰谷差,由各设备在充电站所占比例与各充电设备的最大功率乘积之和减去各设备在充电站所占比例与各充电设备的最小功率乘积之和组成。则多目标函数为:
Y1(x1,x2,x3)=3000x1+15000x2+500000x3
Y2(x1,x2,x3)=1.9x1+25.6x2+100x3-1.4x1-7.7x2-40x3
其中,3000表示每台交流1级充电设备的成本,1.9表示交流1级充电设备的最大功率,1.4表示交流1级充电设备的最小功率,15000表示每台交流2级充电设备的成本,25.6表示交流2级充电设备的最大功率,7.7表示交流2级充电设备的最小功率,50000表示每台直流充电设备的成本,100表示直流充电设备的最大功率,40表示直流充电设备的最小功率。
S4、将步骤S2中的电动汽车最大充电负荷作为约束条件,利用遗传粒子群算法对步骤S3中的多目标函数进行优化,输出充电设备在充电站的最优配置。
所述步骤S4中的约束条件为电动汽车最大充电负荷:1.4x1+7.7x2+40x3≥39.06。
如图2所示,利用遗传粒子群算法对步骤S3中的多目标函数进行优化,输出充电设备在充电站的最优配置的方法为:首先设定运行参数和初始种群,划分种群开始计算适应度,若不是最优解,则选择算子进行交叉、变异并带入更新的位置和速度进行运算,算出新子群的适应度,判断是否优于之前的局部最优解,若是则替换;重复进行上述运算过程直至的出全局最优解输出结果,便是充电站充电设备的最优规划方案。
S41、初始化运行参数,包括粒子种群M=100、变异率为0.9、交叉率为0.9、迭代次数为t=0,最大迭代次数为tmax=200,每个种群包括三个变量;随机产生粒子种群的位置和速度,粒子种群的位置取值范围为[0.4,0.8],粒子种群的速度取值范围为[-1,1]。
S42、计算每个粒子种群的适应度,并根据适应度大小对粒子种群进行排序,根据最大的适应度对应的粒子种群计算充电设备的总投资Y1的值设为历史最优值Y1_min;适应度的值越大,表示充电设备的总投资Y1的值越小。
S43、根据交叉率随机选择90个粒子种群进行两两交叉运算得到中间的新粒子种群,再根据变异率随机选择90个中间的新粒子种群进行两两变异运算得到新的粒子种群。
所述交叉运算是指将一个粒子种群中的任意两个变量与另一个粒子种群中的对应位置的变量的值进行交换。
所述变异运算是指将一个粒子种群中的任意一个变量与另一个粒子种群中的对应位置的变量的值进行交换。
S44、判断交叉运算和变异运算是否运行完毕,若是,执行步骤S45,否则,执行步骤S43。
S45、迭代次数t+1,计算新的粒子种群的适应度并排序,计算所有新的粒子种群对应的充电设备的总投资Y1
S46、比较步骤S45中的Y1是否小于历史最优值Y1_min,若是,执行步骤S47,否则,执行步骤S48。
S47、更新新的粒子种群的位置和速度,执行步骤S48;
新的粒子种群的位置和速度的更新方法为:
其中,i=1,2,…,M,t=1,2,…,tmax,Xi(t)为第t次迭代时第i个粒子种群的位置,Vi(t)为第t次迭代时第i个粒子种群的速度:Vi(t+1)为第t+1次迭代时第i个粒子种群的速度,Xi(t+1)为第t+1次迭代时第i个粒子种群的位置,c1和c2为正的学习因子,r1和r2为0到1之间均匀分布的随机数,pi为第i个粒子种群的最优位置。
S48、判断新的粒子种群是否满足约束条件或达到最大迭代次数tmax,若是,执行步骤S49,否则,执行步骤S43。
S49、输出新的粒子种群的最大适应度对应的三个变量的值,即为充电站充电设备的最优配置。
电动汽车的总数为10000辆,采用的最大迭代为200代,种群大小为100个,每个种群即为一个个体,对应一组变量的确定解。在用遗传粒子群求出最优解之前,先根据能满足用户的需求,减少设备投资,降低电动汽车无序充电负荷的峰谷差的要求,确定适应度函数minY1(x1,x2,x3)、minY2(x1,x2,x3),决策变量三种充电功率设备所占比例x1、x2、x3,依据约束条件判断其是否满足要求。根据遗传粒子群算法的特征设定惯性权重、交叉系数、学习因子等相关参数值,经运算输出符合条件的最优解。取出交流1级充电设备x1数据,迭代情况如图8所示,交流2级充电设备x2和直流充电设备x3的求解方法与交流1级充电设备x1的求解方法相同。
遗传粒子群算法优化输出最优解时充电设备的占比如图9所示。从图9可以看出,充电站处于最佳运行状态的条件为各充电设备中交流1级占24.27%,交流2级占51.79%,直流占23.94%,交流功率最大的交流2级设备占比最大,而功率最大的直流设备占比相对较小。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种电动汽车充电负荷估算及充电方式优化方法,其特征在于,其步骤如下:
S1、分析电动汽车的充电开始时间和充电时长的分布,建立充电开始时间和充电时长的概率密度函数;
S2、根据步骤S1中的概率密度函数利用拉丁超立方-蒙特卡洛统计法对电动汽车的充电负荷进行估算,得到电动汽车充电负荷曲线;
S3、将交流1级、交流2级和直流三种充电设备作为决策变量,建立充电站充电设备的多目标函数;
S4、将步骤S2中的电动汽车最大充电负荷作为约束条件,利用遗传粒子群算法对步骤S3中的多目标函数进行优化,输出充电设备在充电站的最优配置。
2.根据权利要求1所述的电动汽车充电负荷估算及充电方式优化方法,其特征在于,所述步骤S1中建立充电开始时间和充电时长的概率密度函数的步骤为:
S11、利用偏度系数和峰度系数分析验证电动汽车的充电开始时间和充电时长的分布为对数偏正态分布,其中,偏度系数P为:峰度系数F为:n为样本个数,xi'为第i个样本的数值,i=1,2,…,n,为样本平均值,s为样本标准差;偏度系数P和峰度系数F均为0,表示数据集服从标准的正态分布;偏度系数P为正时,数据集左侧分散,偏度系数P为负时,数据集右侧分散;峰度系数F为负时,数据集中数据较集中,两侧数据较少,峰度系数F为正时,则相反;
S12、根据步骤S11中充电开始时间和充电时长的偏度系数P和峰度系数F的值,可判断充电开始时间和充电时长的分布均为偏正态分布,则充电开始时间的概率密度函数f1(x)为:充电时长的概率密度函数f2(y)为:其中,x为充电开始时间的变量,y为充电时长的变量,μs1为充电开始时间的均值,σs1为充电开始时间的标准差,μs2为充电时长的均值,σs2为充电时长的标准差。
3.根据权利要求1所述的电动汽车充电负荷估算及充电方式优化方法,其特征在于,所述步骤S2中利用拉丁超立方-蒙特卡洛统计法估算电动汽车充电负荷曲线的方法为:利用蒙特卡洛估算出每个时刻的充电电动汽车的数量和每个时刻每辆电动汽车所使用的的功率,并经拉丁超立方方法抽样,计算N辆电动汽车充电负荷曲线。
4.根据权利要求1所述的电动汽车充电负荷估算及充电方式优化方法,其特征在于,所述步骤S3中建立充电站充电设备的多目标函数的方法为:充电设备分别为交流1级、交流2级和直流,交流1级、交流2级和直流在充电站中所占的比例分别为x1、x2和x3,目标函数为充电设备的总投资和电动汽车无序充电负荷的峰谷差,约束条件为在连接时长内满足用户的预期充电电量;
所述充电设备的总投资为Y1(x1,x2,x3),电动汽车无序充电负荷的峰谷差为Y2(x1,x2,x3),则多目标函数为:
Y1(x1,x2,x3)=3000x1+15000x2+50000x3
Y2(x1,x2,x3)=1.9x1+25.6x2+100x3-1.4x1-7.7x2-40x3
所述步骤S4中的约束条件为电动汽车最大充电负荷:1.4x1+7.7x2+40x3≥39.06,
其中,3000表示每台交流1级充电设备的成本,1.9表示交流1级充电设备的最大功率,1.4表示交流1级充电设备的最小功率,15000表示每台交流2级充电设备的成本,25.6表示交流2级充电设备的最大功率,7.7表示交流2级充电设备的最小功率,50000表示每台直流充电设备的成本,100表示直流充电设备的最大功率,40表示直流充电设备的最小功率。
5.根据权利要求1所述的电动汽车充电负荷估算及充电方式优化方法,其特征在于,所述步骤S4中利用遗传粒子群算法对步骤S3中的多目标函数进行优化,输出充电设备在充电站的最优配置的方法为:
S41、初始化运行参数,包括粒子种群M、变异率、交叉率、迭代次数为t=0,最大迭代次数为tmax,每个种群包括三个变量;随机产生粒子种群的位置和速度;
S42、计算每个粒子种群的适应度,并根据适应度大小对粒子种群进行排序,根据最大的适应度对应的粒子种群计算充电设备的总投资Y1的值设为历史最优值Y1_min
S43、根据交叉率随机选择粒子种群的个数进行两两交叉运算得到中间的新粒子种群,再根据变异率随机选择中间的新粒子种群的个数进行两两变异运算得到新的粒子种群;
S44、判断交叉运算和变异运算是否运行完毕,若是,执行步骤S45,否则,执行步骤S43;
S45、迭代次数t+1,计算新的粒子种群的适应度并排序,计算所有新的粒子种群对应的充电设备的总投资Y1
S46、比较步骤S45中的Y1是否小于历史最优值Y1_min,若是,执行步骤S47,否则,执行步骤S48;
S47、更新新的粒子种群的位置和速度,执行步骤S48;
S48、判断新的粒子种群是否满足约束条件或达到最大迭代次数tmax,若是,执行步骤S49,否则,执行步骤S43;
S49、输出新的粒子种群的最大适应度对应的三个变量的值,即为充电站充电设备的最优配置。
6.根据权利要求1或5所述的电动汽车充电负荷估算及充电方式优化方法,其特征在于,所述步骤S47中新的粒子种群的位置和速度的更新方法为:
其中,i=1,2,…,M,t=1,2,…,tmax,Xi(t)为第t次迭代时第i个粒子种群的位置,Vi(t)为第t次迭代时第i个粒子种群的速度:Vi(t+1)为第t+1次迭代时第i个粒子种群的速度,Xi(t+1)为第t+1次迭代时第i个粒子种群的位置,c1和c2为正的学习因子,r1和r2为0到1之间均匀分布的随机数,pi为第i个粒子种群的最优位置。
CN201910735190.4A 2019-08-09 2019-08-09 一种电动汽车充电负荷估算及充电方式优化方法 Active CN110422074B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910735190.4A CN110422074B (zh) 2019-08-09 2019-08-09 一种电动汽车充电负荷估算及充电方式优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910735190.4A CN110422074B (zh) 2019-08-09 2019-08-09 一种电动汽车充电负荷估算及充电方式优化方法

Publications (2)

Publication Number Publication Date
CN110422074A true CN110422074A (zh) 2019-11-08
CN110422074B CN110422074B (zh) 2020-11-24

Family

ID=68415312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910735190.4A Active CN110422074B (zh) 2019-08-09 2019-08-09 一种电动汽车充电负荷估算及充电方式优化方法

Country Status (1)

Country Link
CN (1) CN110422074B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112238781A (zh) * 2020-09-30 2021-01-19 国网河南省电力公司经济技术研究院 一种基于分层架构的电动汽车有序充电控制方法
DE102022126777A1 (de) 2022-10-13 2024-04-18 E.On Se Verfahren zum Steuern einer Vielzahl von Ladestationen in einem Ladesystem, Zentraleinheit und Ladesystem

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106887841A (zh) * 2017-03-23 2017-06-23 东北大学 一种含电动汽车微电网容量配置的多种群遗传粒子群优化方法
US20190086983A1 (en) * 2017-09-19 2019-03-21 Nec Laboratories America, Inc. Energy storage-aware demand charge minimization
CN109918798A (zh) * 2019-03-11 2019-06-21 三峡大学 基于充电功率等级的电动汽车充电方式优化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106887841A (zh) * 2017-03-23 2017-06-23 东北大学 一种含电动汽车微电网容量配置的多种群遗传粒子群优化方法
US20190086983A1 (en) * 2017-09-19 2019-03-21 Nec Laboratories America, Inc. Energy storage-aware demand charge minimization
CN109918798A (zh) * 2019-03-11 2019-06-21 三峡大学 基于充电功率等级的电动汽车充电方式优化方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
包广清等: "电动汽车充放电行为对电网负荷特性的影响", 《兰州理工大学学报》 *
张志宇等: "基于遗传交叉改进粒子群算法的充电站布局", 《计算机应用与软件》 *
熊致知,冯馨以: "考虑电动汽车用户充电行为对配电网负荷波动影响分析", 《科技风》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112238781A (zh) * 2020-09-30 2021-01-19 国网河南省电力公司经济技术研究院 一种基于分层架构的电动汽车有序充电控制方法
DE102022126777A1 (de) 2022-10-13 2024-04-18 E.On Se Verfahren zum Steuern einer Vielzahl von Ladestationen in einem Ladesystem, Zentraleinheit und Ladesystem

Also Published As

Publication number Publication date
CN110422074B (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
Wei et al. Planning integrated energy systems coupling V2G as a flexible storage
Jiang et al. A real-time EV charging scheduling for parking lots with PV system and energy store system
Liu et al. Optimal sizing of a wind-energy storage system considering battery life
CN105160451B (zh) 一种含电动汽车的微电网多目标优化调度方法
Roslan et al. Scheduling controller for microgrids energy management system using optimization algorithm in achieving cost saving and emission reduction
CN103840457B (zh) 考虑电动汽车充放电影响的配电网内dg优化配置方法
CN109103912A (zh) 考虑电网调峰需求的工业园区主动配电系统调度优化方法
CN109754112A (zh) 一种考虑配电网削峰填谷的光储充电塔随机优化调度方法
CN106877339B (zh) 一种考虑电动汽车接入配电网后随机模糊潮流的分析方法
James et al. Optimal V2G scheduling of electric vehicles and unit commitment using chemical reaction optimization
CN112131733A (zh) 计及电动汽车充电负荷影响的分布式电源规划方法
CN113326467B (zh) 基于多重不确定性的多站融合综合能源系统多目标优化方法、存储介质及优化系统
CN110994694A (zh) 计及差异化需求响应的微电网源荷储协调优化调度方法
CN114004450A (zh) 一种电动汽车充电负荷交互式实时定价策略引导的有序充电模型
CN110422074A (zh) 一种电动汽车充电负荷估算及充电方式优化方法
Rana et al. Heuristic enhanced evolutionary algorithm for community microgrid scheduling
CN116307087A (zh) 考虑电动汽车充放电的微电网系统储能优化配置方法
CN108512238A (zh) 基于需求侧响应的智能家居两阶段优化调度方法
CN113988471A (zh) 一种微电网运行多目标优化方法
Zou et al. A NSGA-II variant for the dynamic economic emission dispatch considering plug-in electric vehicles
Zhu et al. Dynamic multi-objective dispatch considering wind power and electric vehicles with probabilistic characteristics
CN115940284B (zh) 一种考虑分时电价的新能源制氢系统的运行控制策略
CN116316752A (zh) 一种计及配电网承载力约束的电动汽车有序充电策略优化方法
CN116054286A (zh) 一种考虑多元弹性资源的居民台区容量优化配置方法
CN115330062A (zh) 一种社区场景下的新能源汽车有序充电服务调度优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant