CN110411458A - 航线规划方法及无人飞行器 - Google Patents
航线规划方法及无人飞行器 Download PDFInfo
- Publication number
- CN110411458A CN110411458A CN201910817147.2A CN201910817147A CN110411458A CN 110411458 A CN110411458 A CN 110411458A CN 201910817147 A CN201910817147 A CN 201910817147A CN 110411458 A CN110411458 A CN 110411458A
- Authority
- CN
- China
- Prior art keywords
- route
- distance
- sub
- general
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000009825 accumulation Methods 0.000 claims description 56
- 230000015654 memory Effects 0.000 claims description 16
- 238000013507 mapping Methods 0.000 claims description 14
- 230000002085 persistent effect Effects 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 12
- 230000011218 segmentation Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000004590 computer program Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Navigation (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明实施例涉及一种航线规划方法及无人飞行器。所述方法包括:获取无人飞行器的预设飞行距离,无人飞行器配置有总航线;确定总航线的总航线类型及总航线中各条子航线的航线距离;根据总航线类型、航线距离及预设飞行距离,分割总航线。通过在确定总航线类型及总航线中的各个子航线的航线距离后,根据预设飞行距离与各个子航线的航线距离之间的关系,对总航线进行分割,从而避免用户对总航线进行多次规划,提高了航线规划操作的简便性和连贯性。
Description
【技术领域】
本发明涉及无人飞行器技术领域,尤其涉及一种航线规划方法及无人飞行器。
【背景技术】
随着无人飞行器及其相关技术的发展和逐渐成熟,无人飞行器日益广泛地被运用到国防军事、国土资源勘查、林业安全、交通指挥调度等各个领域。无人飞行器作为一种无人驾驶、可飞行的设备,飞行过程中没有人直接参与到其飞行路线、飞行航迹以及飞行控制等飞行相关决策中,需要利用无人飞行器系统机载计算机、地面站计算机的计算能力、以及检测传感、图像视觉、实时无线通信等相关技术,研制面向特定问题的目标规划、决策和控制算法,解决无人飞行器应用中的飞行规划和飞行控制问题。
但是对于一次规划很长的航线飞机很可能一次执行不完,或者原来的航线可以一次执行完,但是需求改变后再次进行编辑后就会一次执行不完,当航线很长时需要用户随时关注飞机电量等状态,及时停止航线并手动控制飞机飞回。为了简便此时就需要用于用户每次新建一段任务保存后再规划下一段,操作繁琐而且不能保证很好的连贯性。
【发明内容】
为了解决上述技术问题,本发明实施例提供了一种提高航线规划简便性和连贯性的航线规划方法及无人飞行器。
为解决上述技术问题,本发明实施例提供以下技术方案:一种航线规划方法。所述航线规划方法包括:
获取所述无人飞行器的预设飞行距离,所述无人飞行器配置有总航线;
确定所述总航线的总航线类型及所述总航线中各条子航线的航线距离,其中,所述子航线为由所述总航线中每相邻两个航点构成的航线;
根据所述总航线类型、所述航线距离及所述预设飞行距离,分割所述总航线。
可选地,所述总航线的总航线类型包括单一航线类型与混合航线类型;
所述确定所述总航线的总航线类型,包括:
判断任意两条所述子航线的子航线类型是否相同;
若是,确定所述总航线的总航线类型为所述单一航线类型;
若否,确定所述总航线的总航线类型为所述混合航线类型。
可选地,所述根据所述总航线类型、所述航线距离及所述预设飞行距离,分割所述总航线,包括:
当所述总航线类型为所述单一航线类型时,根据所述航线距离及所述预设飞行距离,分割所述总航线;
当所述总航线类型为所述混合航线类型时,根据每条所述子航线的子航线类型及所述预设飞行距离,分割所述总航线。
可选地,所述当所述总航线类型为所述单一航线类型时,根据所述航线距离及所述预设飞行距离,分割所述总航线,包括:
以起始航点为累加起始点,按照飞行顺序,依序累加每条所述子航线的航线距离,得到每次累加后的航线累加距离;
根据所述每次累加后的航线累加距离及所述预设飞行距离,分割所述总航线。
可选地,所述根据所述每次累加后的航线累加距离及所述预设飞行距离,分割所述总航线,包括:
判断所述每次累加后的航线累加距离是否大于所述预设飞行距离;
若是,确定当次累加的前一次累加的航线累加距离包含的全部所述子航线,并将所述全部所述子航线组合成独立航线;
将当次的航线累加距离重置为初始值;
将所述独立航线的最后一个航点设为所述起始航点;
若否,按照飞行顺序,继续累加每条所述子航线的航线距离。
可选地,所述子航线的子航线类型包括可中断航线类型和/或持续航线类型。
可选地,所述持续航线类型为测绘航线类型。
可选地,所述根据每条所述子航线的子航线类型及所述预设飞行距离,分割所述总航线,包括:
从所述总航线遍历出属于所述持续航线类型的子航线;
判断属于所述持续航线类型的子航线的航线距离是否大于或等于所述预设飞行距离;
若是,将属于所述持续航线类型的子航线作为独立航线。
可选地,所述根据每条所述子航线的子航线类型及所述预设飞行距离,分割所述总航线,包括:
以起始航点为累加起始点,按照飞行顺序,依序累加每条所述子航线的航线距离,得到每次累加后的航线累加距离;
根据所述每次累加后的航线累加距离及所述预设飞行距离,分割所述总航线。
可选地,所述根据每条所述子航线的子航线类型及所述预设飞行距离,分割所述总航线,包括:
判断所述每次累加后的航线累加距离是否大于所述预设飞行距离;
若是,确定当次累加的前一次累加的航线累加距离包含的全部所述子航线,并将所述全部所述子航线组合成独立航线;
将当次的航线累加距离重置为初始值;
将所述独立航线的最后一个航点设为所述起始航点;
若否,按照飞行顺序,继续累加每条所述子航线的航线距离。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种无人飞行器。所述无人飞行器包括:无人飞行器主体;
传感器,其设置于所述无人飞行器主体上,所述传感器用于获取所述无人飞行器的总航线;
处理器,其设置于所述无人飞行器主体内,并且分别与所述传感器通信连接;以及,
与所述处理器通信连接的存储器;其中,
所述存储器存储有可被所述处理器执行的指令,所述指令被所述处理器执行,以使所述处理器能够执行上述方法。
与现有技术相比较,本发明实施例的提供航线规划方法可以通过在确定总航线类型及总航线中的各个子航线的航线距离后,根据预设飞行距离与各个子航线的航线距离之间的关系,对总航线进行分割,从而避免用户对总航线进行多次规划,提高了航线规划操作的简便性和连贯性。
【附图说明】
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明实施例的应用环境示意图;
图2为本发明实施例提供的航线规划方法的流程示意图;
图3为本发明其中一实施例提供的单一总航线类型结构示意图;
图4是图1中S20的流程示意图;
图5为本发明另一实施例提供的单一总航线类型结构示意图;
图6是图1中S30的流程示意图;
图7是图6中S31的流程示意图;
图8是图7中S312的流程示意图;
图9是图6中S32的流程示意图;
图10为本发明其中一实施例提供的混合总航线类型结构示意图;
图11是图6中S32的流程示意图;
图12是图11中S325的流程示意图;
图13为本发明实施例提供的无人飞行器航线规划装置的结构框图;
图14为本发明实施例提供的无人飞行器的结构框图。
【具体实施方式】
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本发明实施例提供了一种航线规划方法和装置,所述方法和装置通过在确定总航线类型及总航线中的各个子航线的航线距离后,根据预设飞行距离与各个子航线的航线距离之间的关系,对总航线进行分割,从而避免用户对总航线进行多次规划,提高了航线规划操作的简便性和连贯性。
以下举例说明所述航线规划方法和装置的应用环境。
图1是本发明实施例提供的应用于无人飞行器的航线规划方法的应用环境的示意图;如图1所示,所述应用场景包括无人飞行器10、无线网络20、智能终端30以及用户40。用户40可操作智能终端30通过无线网络20操控所述无人飞行器10。
无人飞行器10可以是以任何类型的动力驱动的无人飞行载具,包括但不限于旋翼无人飞行器、固定翼无人飞行器、伞翼无人飞行器、扑翼无人飞行器以及直升机模型等。在本实施例中以多旋翼无人飞行器为例进行陈述。
该无人飞行器10可以根据实际情况的需要,具备相应的体积或者动力,从而提供能够满足使用需要的载重能力、飞行速度以及飞行续航里程等。无人飞行器10上还可以添加有一种或者多种功能模块,令无人飞行器10能够实现相应的功能。
例如,在本实施例中,该无人飞行器10设置有加速度计、陀螺仪、磁力计、GPS导航仪和视觉传感器中的至少一种传感器。相对应地,该无人飞行器10设置有信息接收装置,接收并处理上述至少一种传感器采集的信息。
无人飞行器10上包含至少一个主控芯片,作为无人飞行器飞行和数据传输等的控制核心,整合一个或者多个模块,以执行相应的逻辑控制程序。
例如,在一些实施例中,所述主控芯片上可以包括用于对航线规划的航线规划装置50。
智能终端30可以是任何类型,用以与无人飞行器10建立通信连接的智能装置,例如手机、平板电脑或者智能遥控器等。该智能终端30可以装配有一种或者多种不同的用户40交互装置,用以采集用户40指令或者向用户40展示和反馈信息。
这些交互装置包括但不限于:按键、显示屏、触摸屏、扬声器以及遥控操作杆。例如,智能终端30可以装配有触控显示屏,通过该触控显示屏接收用户40对无人飞行器10的遥控指令并通过触控显示屏向用户40展示航拍获得的图像信息,用户40还可以通过遥控触摸屏切换显示屏当前显示的图像信息。
在一些实施例中,无人飞行器10与智能终端30之间还可以融合现有的图像视觉处理技术,进一步的提供更智能化的服务。例如无人飞行器10可以通过双光相机采集图像的方式,由智能终端30对图像进行解析,从而实现用户40对于无人飞行器10的手势控制。
无线网络20可以是基于任何类型的数据传输原理,用于建立两个节点之间的数据传输信道的无线通信网络,例如位于不同信号频段的蓝牙网络、WiFi网络、无线蜂窝网络或者其结合。
图2为本发明实施例提供的航线规划方法的实施例。如图2所示,该航线规划方法包括如下步骤:
S10、获取所述无人飞行器的预设飞行距离,所述无人飞行器配置有总航线。
具体地,所述预设飞行距离可根据预定飞行速度和预定飞行时间计算得到。
其中,所述预定飞行速度可根据所述无人飞行器需要采集的影像质量进行设定,因为在无人机进行影像采集的曝光时间内,如果无人飞行器的飞行速度过快会出现被采集地物的像与感光面之间发生较大的相对运动,严重的情况下会导致所采集的影像发生模糊,影响精度,用户可根据所述无人飞行器需要采集的影像质量进行设定。同时也可根据航线间的地理环境、天气等因素进行设定。
在确定所述预定飞行速度之后,然后根据所述无人飞行器的电池容量、油耗、电机功率得到当所述无人飞行器的电池容量或燃油量耗尽时,所述无人飞行器的最大飞行时间,所述最大飞行时间由无人机配置的各项参数可得。在航线分割之后,无人机除了按航线执行飞行任务之外,每次执行一段分割的航线任务前后,需要往返于返航点进行充电或其他操作,为了保证在规划的任务航线外往返于返航点期间的电量充足,需要预留出足够的电量。在本发明的一个实施例中,采取预留出最大飞行时间的一个百分数,剩下的时间作为预设的飞行时间的方法。例如,预留20%的飞行时间,则预定飞行时间为最大飞行时间的80%,此比例是示例的而非限制的,可根据实际情况而设定。
在确定所述预定飞行速度和所述预定飞行时间之后,进而可根据预定飞行速度和预定飞行时间计算得到所述预设飞行距离。
具体地,所述总航线为待分割的航线,所述总航线长度大于所述预设飞行距离,所以需要将所述总航线分割,以保证分割后的航线长度小于或者等于所述预设飞行距离,从而确保无人飞行器正常工作。
S20、确定所述总航线的总航线类型及所述总航线中各条子航线的航线距离,其中,所述子航线为由所述总航线中每相邻两个航点构成的航线。
具体地,所述总航线的总航线类型可根据所述总航线中的各条子航线的类型进行确定。例如:若所述总航线中的各条子航线的类型均相同,则可确定所述总航线中均为同一种类型的子航线,故所述总航线的总航线类型为单一航线类型;若所述总航线中的各条子航线具有多种不同类型,则可确定所述总航线中为多种不同类型的子航线,故所述总航线的总航线类型为混合航线类型。
具体地,请参阅图3,所述总航线A包括多个航点1a、2a、3a、4a、5a.....,每相邻的两个航点构成一个子航线。举例说明,航点1a和相邻的航点2a构成一个子航线12a,航点2a和相邻的航点3a构成一个子航线23a,依次类推,可知所述总航线中包括多个子航线。
每个所述子航线的航线距离为相邻的两个航点间的距离。例如:航点1a和相邻的航点2a构成一个子航线12a,所述子航线12a的航线距离为航点1a和相邻的航点2a之间的距离,若航点1a和相邻的航点2a之间的距离为1000m,则所述子航线12a的航线距离为1000m。
S30、根据所述总航线类型、所述航线距离及所述预设飞行距离,分割所述总航线。
具体地,在确定所述总航线类型、所述总航线中的各个子航线的航线距离以及所述预设飞行距离之后,对所述总航线进行分割,分割为若干独立航线,从而使所述无人飞行器可对分割后的总航线分多次执行,每次执行完成后都可以自动飞到返航点更换电池或进行一些实时数据的处理,在返航点更换好电池或完成了其他处理任务之后,再返回上一次中断处的航点,继续沿规划好的航线进行未完成的飞行任务,从而避免用户对所述总航线进行多次规划,提高了航线规划操作的简便性和连贯性。
在本实施例中,通过确定所述总航线类型、所述总航线中的各个子航线的航线距离以及预设飞行距离,对所述总航线进行分割,从而避免用户对所述总航线进行多次规划,提高了航线规划操作的简便性和连贯性。
为了更好的对所述总航线进行规划,需要确定所述总航线的总航线类型,在一些实施例中,请参阅图4,S20包括如下步骤:
S21:判断任意两条所述子航线的子航线类型是否相同。
具体地,所述子航线的子航线类型包括可中断航线类型和持续航线类型。
所述可中断航线类型的子航线与所述持续航线类型的子航线的区别在于,可中断航线类型的子航线可被分割为若干子航线。例如中断航线类型的子航线为航点航线时,所述航点航线包括若干航点,即所述航点航线可被若干所述航点分割为多个子航线。而所述持续航线类型的子航线不可分割,例如中断航线类型的子航线为测绘航线时,所述测绘航线仅包括起始航点和终止航点,所述起始航点和所述终止航点构成所述测绘航线,即所述测绘航线不能被其他航点分割。
举例说明,如图3所示,所述航线A为航点航线,所述航线A包括多个航点1a、2a、3a、4a;所述航线A可被多个所述航点1a、2a、3a、4a分割为三个子航线,航点1a和相邻的航点2a构成其中一个子航线12a,航点2a和相邻的航点3a构成其中一个子航线23a,航点3a和相邻的航点4a构成其中一个子航线34a。如图5所示,所述航线B为测绘航线,一旦测绘航线规划好,起始航点1b和终止航点2b则确定,中间的航线由算法自动计算和规划,无法分割,因此所述航线B不能被分割。
具体地,进而判断总航线中的各个子航线的子航线类型是否均为航点航线或测绘航线中的一种子航线类型,还是所述总航线中的各个子航线的子航线类型既包括航点航线也包括测绘航线。
S22:若是,确定所述总航线的总航线类型为所述单一航线类型。
具体地,若所述总航线中的各条子航线的类型均为航点航线或测绘航线中的一种子航线类型,则可确定所述总航线中的各个子航线均为同一种类型,因此确定所述总航线的总航线类型为单一航线类型。
S23:若否,确定所述总航线的总航线类型为所述混合航线类型。
具体地,若所述总航线中的各个子航线的子航线类型既包括航点航线也包括测绘航线,则可确定所述总航线中包括多种类型的子航线,因此确定所述总航线的总航线类型为混合航线类型。
为了提高航线规划操作的简便性和连贯性,需要根据所述总航线类型、所述航线距离及所述预设飞行距离,分割所述总航线,在一些实施例中,请参阅图6,S30包括如下步骤:
S31:当所述总航线类型为所述单一航线类型时,根据所述航线距离及所述预设飞行距离,分割所述总航线。
具体地,当所述总航线类型为所述单一航线类型时,即所述总航线中的各条子航线的类型均为航点航线或测绘航线中的一种子航线类型时,可根据每个子航线的航线距离与所述预设飞行距离之间的关系,或者可根据各个子航线间的航线距离的累加距离与所述预设飞行距离之间的关系,以分割所述总航线。
S32:当所述总航线类型为所述混合航线类型时,根据每条所述子航线的子航线类型及所述预设飞行距离,分割所述总航线。
具体地,当所述总航线类型为所述混合航线类型时,即所述总航线中即包括航点航线类型的子航线,也包括测绘航线类型的子航线。首先确定所述总航线中的每条所述子航线的航线类型,然后可根据每个所述子航线的航线类型及对应的所述子航线的航线距离与所述预设飞行距离之间的关系,分割所述总航线;或者可根据同种类型的子航线间的航线距离的累加距离与所述预设飞行距离之间的关系,分割所述总航线。
当所述总航线类型为所述单一航线类型时,为了更好的分割所述总航线。在一些实施例中,请参阅图7,S31包括以下步骤:
S311:以起始航点为累加起始点,按照飞行顺序,依序累加每条所述子航线的航线距离,得到每次累加后的航线累加距离。
具体地,以所述总航线的第一个航点为起始航点,以所述起始航点为累加起始点,按照总航线的各个子航线的执行顺序,即所述无人飞行器的飞行顺序,从起始航点开始依序累积相邻的每条所述子航线的航线距离,得到每次累加后的航线累加距离。
举例说明,如图3所示,所述总航线A包括多个航点1a、2a、3a、4a及5a,航点1a和相邻的航点2a构成其中一个子航线12a,航点2a和相邻的航点3a构成其中一个子航线23a,航点3a和相邻的航点4a构成其中一个子航线34a依次类推。
以所述总航线A的第一个航点1a为起始航点,以所述起始航点1a为累加起始点,按照总航线A的各个子航线执行顺序,例如先执行子航线12a,然后依次执行子航线23a、子航线34a等等。从起始航点1a开始依序累加子航线12a、子航线23a、子航线34a的航线距离,得到航向累加距离。例如,首先从起始航点1a开始累加子航线12a航线距离和相邻的子航线23a的航线距离,得到所述航线累加距离,然后在根据子航线12a航线距离和相邻的子航线23a航线距离得到的航线累加距离的基础上,继续累加与子航线23a相邻的子航线34a的航线距离,得到新的航线累加距离,然后依次类推。即随着累加次数的增加,所述航线累加距离不断发生变化和更新。
S312:根据所述每次累加后的航线累加距离及所述预设飞行距离,分割所述总航线。
具体地,由于所述每次累加后的航线累加距离不断发生变化和更新,因此根据每次累加后的航线累加距离与所述预设飞行距离之间的关系,分割所述总航线。
为了更好的根据所述每次累加后的航线累加距离及所述预设飞行距离,分割所述总航线。在一些实施例中,请参阅图8,S312包括以下步骤:
S3121:判断每次累加后的航线累加距离是否大于所述预设飞行距离。
具体地,由于所述每次累加后的航线累加距离会不断发生变化,进而可将累加后的航线累加距离与所述预设飞行距离对比,判断每次累加后的航线累加距离是否大于或等于所述预设飞行距离。
举例说明,如图3所示,假设无人飞行器的预设飞行距离为1000m,子航线12a、子航线23a、子航线34a的航线距离为500m、300m及600m;首先从起始航点1a开始依序累加子航线12a和子航线23a,得到此次航线累加距离为800m,因此可以判断此次航线累加距离800m小于所述预设飞行距离1000m。然后在此次航线累加距离800m的基础上,继续依序累加子航线34a的航线距离,得到新的航线累加距离,即所述航线累加距离更新为1500m,因此可以判断此次航线累加距离1500m大于所述预设飞行距离1000m。
S3122:若是,确定当次累加的前一次累加的航线累加距离包含的全部所述子航线,并将所述全部所述子航线组合成独立航线;将当次的航线累加距离重置为初始值;将所述独立航线的最后一个航点设为所述起始航点。
具体地,当所述累加后的航线累加距离大于所述预设飞行距离时,说明当次累加的所述航线累加距离已经超过无人飞行器的预设飞行距离,为了不超过无人飞行器的预设飞行距离,使无人飞行器能够在预设飞行距离内完成工作任务。因此将当次累加的前一次累加的航线累加距离包含的全部子航线组合成独立航线,所述独立航线的航线距离小于或者等于所述无人飞行器的预设飞行距离,因此可以保证无人飞行器能够一次执行完所述独立航线。
举例说明,如图3所示,首先从起始航点1a开始依序累加子航线12a和子航线23a,得到第一次累加的航线累加距离为800m,第一次累加的航线累加距离800m小于所述预设飞行距离1000m。然后在第一次累加的航线累加距离800m的基础上,继续依序累加子航线23a的航线距离,得到第二次累加的航线累加距离,即所述航线累加距离更新为1500m,则确定当次(即第二次)累加的航线累加距离1500m大于所述预设飞行距离1000m时,将当次(即第二次)累加的前一次(即第一次)累加的所述航线累加距离包含的全部所述子航线,即子航线12a和子航线23a,组合成为一独立航线F1。即所述独立航线F1包括子航线12a和子航线23a,所述无人飞行器能够一次执行完所述独立航线F1。
将满足上述条件的子航线组合成独立航线后,同时将当次的航线累加距离重置为初始值。
具体地,举例说明,如图3所示,确定当次(即第二次)累加的航线累加距离1500m大于所述预设飞行距离1000m时,将当次(即第二次)累加的前一次(即第一次)累加的所述航线累加距离包含的全部所述子航线,即子航线12a和子航线23a,组合成为一独立航线F1后,同时将当次(即第二次)累加的航线累加距离1500m重置为初始值;所述初始值可以为0也可根据实际情况的设置为其他数值或者字符。
将满足上述条件的子航线组合成独立航线后,同时将所述独立航线的最后一个航点设为所述起始航点。
具体地,举例说明,如图3所示,将当次(即第二次)累加的前一次(即第一次)累加的所述航线累加距离包含的全部所述子航线,即子航线12a和子航线23a,组合成为一独立航线F1后,同时将所述独立航线F1的最后一个航点3a设为所述起始航点,并以重新设置的起始航点3a为累加起始点,按照飞行顺序,依序累加每条所述子航线的航线距离,得到每次累加后的航线累加距离,并根据每次累加后的航线累加距离及所述预设飞行距离得到另一独立航线。
S3123:若否,按照飞行顺序,继续依序累加每条所述子航线的航线距离。
具体地,举例说明,如图3所示,首先从起始航点1a开始依序累加子航线12a和子航线23a,得到第一次累加的航线累加距离为800m,此时第一次累加的航线累加距离800m小于所述预设飞行距离1000m,然后按照飞行顺序,在第一次累加的航线累加距离800m的基础上,继续依序累加子航线23a的航线距离,得到第二次累加的航线累加距离,然后继续判断第二次累加后的所述航线累加距离是否大于所述预设飞行距离。依次类推。
当所述总航线类型为所述混合航线类型时,为了更好的分割所述总航线。在一些实施例中,请参阅图9,S32包括以下步骤:
S321:从所述总航线遍历出属于所述持续航线类型的子航线。
具体地,若所述总航线为所述混合航线类型时,由于所述总航线中包括有持续航线类型的子航线和中断航线类型的子航线,且所述持续航线类型的子航线不可分割,因此首先从所述总航线中遍历出属于所述持续航线类型的子航线。
举例说明,如图10所示,所述总航线AB为所述混合航线类型,所述总航线AB包括若干持续航线类型的子航线12a、23a及34a等和若干中断航线类型的子航线12b及23b等。首先从所述总航线中遍历出属于所述持续航线类型的子航线12b及23b等。
S322:判断属于所述持续航线类型的子航线的航线距离是否大于或等于所述预设飞行距离。
具体地,举例说明,如图10所示,首先从所述总航线中遍历出属于所述持续航线类型的子航线12b进行判断,假设所述预设飞行距离为1000m,子航线12b及23b的航线距离分别为800m及1200m,首先判断子航线12b的航线距离800m是否大于或等于所述预设飞行距离1000m,然后继续判断子航线23b的航线距离1200m是否大于或等于所述预设飞行距离1000m。
S323:若是,将属于所述持续航线类型的子航线作为独立航线。
具体地,若属于所述持续航线类型的子航线的航线距离大于或等于所述预设飞行距离,则将所述子航线作为独立航线。例如,如图10所示,子航线23b的航线距离1200m大于所述预设飞行距离1000m,则将所述子航线23b作为一独立航线F2。
当所述总航线类型为所述混合航线类型时,为了更好的分割所述总航线。在一些实施例中,请参阅图11,在S323之后,S32还包括以下步骤:
S324:以起始航点为累加起始点,按照飞行顺序,依序累加每条所述子航线的航线距离,得到每次累加后的航线累加距离。
具体地,以所述总航线的第一个航点为起始航点,以所述起始航点为累加起始点,按照总航线的各个子航线的执行顺序,即所述无人飞行器的飞行顺序,从起始航点开始依序累积相邻的每条所述子航线的航线距离,得到每次累加后的航线累加距离。
需要说明的是,S324中详尽描述的技术细节与S311中的技术细节相同,在此不再赘述。
S325:根据每次累加后的航线累加距离及所述预设飞行距离,分割所述总航线。
具体地,由于所述每次累加后的航线累加距离不断发生变化和更新,因此根据每次累加后的航线累加距离与所述预设飞行距离之间的关系,分割所述总航线。
需要说明的是,S325中详尽描述的技术细节与S312中的技术细节相同,在此不再赘述。
为了更好的根据每次累加后的航线累加距离及所述预设飞行距离,分割所述总航线。在一些实施例中,请参阅图12,S325包括以下步骤:
S3251:判断每次累加后的航线累加距离是否大于或等于所述预设飞行距离。
具体地,由于所述每次累加后的航线累加距离会不断发生变化,进而可将累加后的所述航线累加距离与所述预设飞行距离对比,判断每次累加后的航线累加距离是否大于或等于所述预设飞行距离。
需要说明的是,S3251中详尽描述的技术细节与S3121中的技术细节相同,在此不再赘述。
S3252:若是,确定当次累加的前一次累加的航线累加距离包含的全部所述子航线,并将所述全部所述子航线组合成独立航线;将当次的航线累加距离重置为初始值;将所述独立航线的最后一个航点设为所述起始航点。
具体地,当所述累加后的航线累加距离大于所述预设飞行距离时,说明当次累加的所述航线累加距离已经超过无人飞行器的预设飞行距离,为了不超过无人飞行器的预设飞行距离,使无人飞行器能够在预设飞行距离内完成工作任务。因此将当次累加的前一次累加的航线累加距离包含的全部子航线组合成独立航线,所述独立航线的航线距离小于或者等于所述无人飞行器的预设飞行距离,因此可以保证无人飞行器能够一次执行完所述独立航线。
需要说明的是,S3252中详尽描述的技术细节与S3122中的技术细节相同,在此不再赘述。
S3253:若否,按照飞行顺序,继续累加每条所述子航线的航线距离。
需要说明的是,S3253中详尽描述的技术细节与S3123中的技术细节相同,在此不再赘述。
作为本申请实施例的另一方面,本申请实施例提供一种无人飞行器航线规划装置50。请参阅图13,该无人飞行器航线规划装置50包括:预设飞行距离获取模块51、航线分析模块52以及航线分割模块53。
预设飞行距离获取模块51用于获取所述无人飞行器的预设飞行距离。
航线分析模块52用于确定所述总航线的总航线类型及所述总航线中各条子航线的航线距离,其中,所述子航线为由所述总航线中每相邻两个航点构成的航线。
航线分割模块53用于根据所述总航线类型、所述航线距离及所述预设飞行距离,分割所述总航线。
在本实施例中,通过确定所述总航线类型、所述总航线中的各个子航线的航线距离以及所述预设飞行距离,对所述总航线进行分割,从而避免用户对所述总航线进行多次规划,提高了航线规划操作的简便性和连贯性。
在一些实施例中,无人飞行器航线规划装置50还包括存储模块54,所述存储模块54配置有总航线。
其中,在一些实施例中,所述航线分析模块52具体用于判断任意两条所述子航线的子航线类型是否相同;若是,确定所述总航线的总航线类型为所述单一航线类型;若否,确定所述总航线的总航线类型为所述混合航线类型。
其中,在一些实施例中,所述航线分割模块53包括单一航线分割单元和混合航线分割单元。
所述单一航线分割单元用于当所述总航线类型为所述单一航线类型时,根据所述航线距离及所述预设飞行距离,分割所述总航线。
所述单一航线分割单元包括航线累加距离获取子单元和航线分割子单元。所述航线累加距离获取子单元用于以起始航点为累加起始点,按照飞行顺序,依序累加每条所述子航线的航线距离,得到每次累加后的航线累加距离。所述航线分割子单元用于根据每次累加后的航线累加距离及所述预设飞行距离,分割所述总航线。所述航线分割子单元具体用于判断所述每次累加后的航线累加距离是否大于所述预设飞行距离;若是,确定当次累加的前一次累加的航线累加距离包含的全部所述子航线,并将所述全部所述子航线组合成独立航线;将当次的航线累加距离重置为初始值;将所述独立航线的最后一个航点设为所述起始航点;若否,按照飞行顺序,继续累加每条所述子航线的航线距离。
所述混合航线分割单元用于当所述总航线类型为所述混合航线类型时,根据每条所述子航线的子航线类型及所述预设飞行距离,分割所述总航线。
所述混合航线分割单元包括遍历子单元、持续航线分割子单元、航线累加距离获取子单元和中断航线分割子单元。
所述遍历子单元用于从所述总航线遍历出属于所述持续航线类型的子航线。
所述持续航线分割子单元用于判断属于所述持续航线类型的子航线的航线距离是否大于或等于所述预设飞行距离。
所述航线累加距离获取子单元用于以起始航点为累加起始点,按照飞行顺序,依序累加每条所述子航线的航线距离,得到每次累加后的航线累加距离。
所述中断航线分割子单元用于根据每次累加后的航线累加距离及所述预设飞行距离,分割所述总航线。
所述中断航线分割子单元用于判断所述每次累加后的航线累加距离是否大于所述预设飞行距离;若是,确定当次累加的前一次累加的航线累加距离包含的全部所述子航线,并将所述全部所述子航线组合成独立航线;将当次的航线累加距离重置为初始值;将所述独立航线的最后一个航点设为所述起始航点;若否,按照飞行顺序,继续累加每条所述子航线的航线距离。
需要说明的是,上述航线规划装置可执行本发明实施例所提供的航线规划方法,具备执行方法相应的功能模块和有益效果。未在航线规划装置实施例中详尽描述的技术细节,可参见本发明实施例所提供的航线规划方法。
图14为本发明实施例提供的无人飞行器10的结构框图。该无人飞行器10可以用于实现所述主控芯片中的全部或者部分功能模块的功能。如图14所示,该无人飞行器10可以包括:无人机主体、传感器、处理器110、存储器120以及通信模块130。
所述设置于所述无人飞行器主体上,所述传感器用于获取所述无人飞行器的总航线。所述传感器包括至少一种或者多种能够获取无人飞行器的总航线的传感器,例如所述传感器可包括深度传感器、距离传感器及图像传感器等。
所述处理器110、存储器120以及通信模块130之间通过总线的方式,建立任意两者之间的通信连接。
处理器110可以为任何类型,具备一个或者多个处理核心的处理器110。其可以执行单线程或者多线程的操作,用于解析指令以执行获取数据、执行逻辑运算功能以及下发运算处理结果等操作。
存储器120作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态性计算机可执行程序以及模块,如本发明实施例中的航线规划方法对应的程序指令/模块(例如,附图13所示的预设飞行距离获取模块51、航线分析模块52、航线分割模块53及存储模块54)。处理器110通过运行存储在存储器120中的非暂态软件程序、指令以及模块,从而执行无人飞行器航线规划装置50的各种功能应用以及数据处理,即实现上述任一方法实施例中航线规划方法。
存储器120可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据无人飞行器航线规划装置50的使用所创建的数据等。此外,存储器120可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器120可选包括相对于处理器110远程设置的存储器,这些远程存储器可以通过网络连接至无人飞行器10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述存储器120存储有可被所述至少一个处理器110执行的指令;所述至少一个处理器110用于执行所述指令,以实现上述任意方法实施例中航线规划方法,例如,执行以上描述的方法步骤10、20、30等等,实现图13中的模块51-54的功能。
通信模块130是用于建立通信连接,提供物理信道的功能模块。通信模块130以是任何类型的无线或者有线通信模块130,包括但不限于WiFi模块或者蓝牙模块等。
进一步地,本发明实施例还提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器110执行,例如,被图14中的一个处理器110执行,可使得上述一个或多个处理器110执行上述任意方法实施例中航线规划方法,例如,执行以上描述的方法步骤10、20、30等等,实现图13中的模块51-54的功能。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序产品中的计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非暂态计算机可读取存储介质中,该计算机程序包括程序指令,当所述程序指令被相关设备执行时,可使相关设备执行上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
上述产品可执行本发明实施例所提供的航线规划方法,具备执行航线规划方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的航线规划方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (11)
1.一种航线规划方法,应用于无人飞行器,其特征在于,所述方法包括:
获取所述无人飞行器的预设飞行距离,所述无人飞行器配置有总航线;
确定所述总航线的总航线类型及所述总航线中各条子航线的航线距离,其中,所述子航线为由所述总航线中每相邻两个航点构成的航线;
根据所述总航线类型、所述航线距离及所述预设飞行距离,分割所述总航线。
2.根据权利要求1所述的方法,其特征在于,所述总航线的总航线类型包括单一航线类型与混合航线类型;
所述确定所述总航线的总航线类型,包括:
判断任意两条所述子航线的子航线类型是否相同;
若是,确定所述总航线的总航线类型为所述单一航线类型;
若否,确定所述总航线的总航线类型为所述混合航线类型。
3.根据权利要求2所述的方法,其特征在于,所述根据所述总航线类型、所述航线距离及所述预设飞行距离,分割所述总航线,包括:
当所述总航线类型为所述单一航线类型时,根据所述航线距离及所述预设飞行距离,分割所述总航线;
当所述总航线类型为所述混合航线类型时,根据每条所述子航线的子航线类型及所述预设飞行距离,分割所述总航线。
4.根据权利要求3所述的方法,其特征在于,所述当所述总航线类型为所述单一航线类型时,根据所述航线距离及所述预设飞行距离,分割所述总航线,包括:
以起始航点为累加起始点,按照飞行顺序,依序累加每条所述子航线的航线距离,得到每次累加后的航线累加距离;
根据所述每次累加后的航线累加距离及所述预设飞行距离,分割所述总航线。
5.根据权利要求4所述的方法,其特征在于,所述根据所述每次累加后的航线累加距离及所述预设飞行距离,分割所述总航线,包括:
判断所述每次累加后的航线累加距离是否大于所述预设飞行距离;
若是,确定当次累加的前一次累加的航线累加距离包含的全部所述子航线,并将所述全部所述子航线组合成独立航线;
将当次的航线累加距离重置为初始值;
将所述独立航线的最后一个航点设为所述起始航点;
若否,按照飞行顺序,继续累加每条所述子航线的航线距离。
6.根据权利要求3所述的方法,其特征在于,所述子航线的子航线类型包括可中断航线类型和/或持续航线类型。
7.根据权利要求6所述的方法,其特征在于,所述持续航线类型为测绘航线类型。
8.根据权利要求6所述的方法,其特征在于,所述根据每条所述子航线的子航线类型及所述预设飞行距离,分割所述总航线,包括:
从所述总航线遍历出属于所述持续航线类型的子航线;
判断属于所述持续航线类型的子航线的航线距离是否大于或等于所述预设飞行距离;
若是,将属于所述持续航线类型的子航线作为独立航线。
9.根据权利要求8所述的方法,其特征在于,所述根据每条所述子航线的子航线类型及所述预设飞行距离,分割所述总航线,包括:
以起始航点为累加起始点,按照飞行顺序,依序累加每条所述子航线的航线距离,得到每次累加后的航线累加距离;
根据所述每次累加后的航线累加距离及所述预设飞行距离,分割所述总航线。
10.根据权利要求9所述的方法,其特征在于,所述根据每条所述子航线的子航线类型及所述预设飞行距离,分割所述总航线,包括:
判断所述每次累加后的航线累加距离是否大于所述预设飞行距离;
若是,确定当次累加的前一次累加的航线累加距离包含的全部所述子航线,并将所述全部所述子航线组合成独立航线;
将当次的航线累加距离重置为初始值;
将所述独立航线的最后一个航点设为所述起始航点;
若否,按照飞行顺序,继续累加每条所述子航线的航线距离。
11.一种无人飞行器,其特征在于,包括:
无人飞行器主体;
传感器,其设置于所述无人飞行器主体上,所述传感器用于获取所述无人飞行器的总航线;
处理器,其设置于所述无人飞行器主体内,并且分别与所述传感器通信连接;以及,
与所述处理器通信连接的存储器;其中,
所述存储器存储有可被所述处理器执行的指令,所述指令被所述处理器执行,以使所述处理器能够执行如权利要求1-10任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910817147.2A CN110411458B (zh) | 2019-08-30 | 2019-08-30 | 航线规划方法及无人飞行器 |
PCT/CN2020/111309 WO2021037046A1 (zh) | 2019-08-30 | 2020-08-26 | 航线规划方法及无人飞行器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910817147.2A CN110411458B (zh) | 2019-08-30 | 2019-08-30 | 航线规划方法及无人飞行器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110411458A true CN110411458A (zh) | 2019-11-05 |
CN110411458B CN110411458B (zh) | 2021-11-09 |
Family
ID=68369921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910817147.2A Active CN110411458B (zh) | 2019-08-30 | 2019-08-30 | 航线规划方法及无人飞行器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110411458B (zh) |
WO (1) | WO2021037046A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112292648A (zh) * | 2019-11-19 | 2021-01-29 | 深圳市大疆创新科技有限公司 | 飞行控制方法、设备及系统 |
WO2021037046A1 (zh) * | 2019-08-30 | 2021-03-04 | 深圳市道通智能航空技术有限公司 | 航线规划方法及无人飞行器 |
CN113551685A (zh) * | 2021-07-30 | 2021-10-26 | 重庆大学 | 用于双时变路网的多偏好路线规划方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103543744A (zh) * | 2013-09-10 | 2014-01-29 | 江苏省地质勘查技术院 | 一种无人驾驶飞艇航空磁测飞行航线布置的方法 |
CN105841702A (zh) * | 2016-03-10 | 2016-08-10 | 赛度科技(北京)有限责任公司 | 一种基于粒子群优化算法的多无人机航路规划方法 |
CN105910639A (zh) * | 2016-04-01 | 2016-08-31 | 南京泰司空间信息科技有限公司 | 一种基于拐点的航线分割方法及系统 |
CN106382933A (zh) * | 2016-11-04 | 2017-02-08 | 北京农业智能装备技术研究中心 | 一种用于航空植保飞行器的作业航线获取方法及系统 |
JP2017133976A (ja) * | 2016-01-28 | 2017-08-03 | 株式会社トヨタマップマスター | ナビゲーション装置、ナビゲーション方法、コンピュータプログラム及びコンピュータプログラムを記録した記録媒体 |
CN107291101A (zh) * | 2017-07-28 | 2017-10-24 | 江苏理工学院 | 一种无人机飞行自动控制方法、存储设备及无人机 |
CN109855627A (zh) * | 2019-01-04 | 2019-06-07 | 哈瓦国际航空技术(深圳)有限公司 | 无人机分架次规划航线的方法、装置、设备和存储介质 |
CN109993994A (zh) * | 2017-12-29 | 2019-07-09 | 浙江省测绘科学技术研究院 | 一种航线分割方法及装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109508034B (zh) * | 2018-12-20 | 2020-11-10 | 北京理工大学 | 一种复杂多边形测区下的多旋翼无人机测绘航线规划方法 |
CN110411458B (zh) * | 2019-08-30 | 2021-11-09 | 深圳市道通智能航空技术股份有限公司 | 航线规划方法及无人飞行器 |
-
2019
- 2019-08-30 CN CN201910817147.2A patent/CN110411458B/zh active Active
-
2020
- 2020-08-26 WO PCT/CN2020/111309 patent/WO2021037046A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103543744A (zh) * | 2013-09-10 | 2014-01-29 | 江苏省地质勘查技术院 | 一种无人驾驶飞艇航空磁测飞行航线布置的方法 |
JP2017133976A (ja) * | 2016-01-28 | 2017-08-03 | 株式会社トヨタマップマスター | ナビゲーション装置、ナビゲーション方法、コンピュータプログラム及びコンピュータプログラムを記録した記録媒体 |
CN105841702A (zh) * | 2016-03-10 | 2016-08-10 | 赛度科技(北京)有限责任公司 | 一种基于粒子群优化算法的多无人机航路规划方法 |
CN105910639A (zh) * | 2016-04-01 | 2016-08-31 | 南京泰司空间信息科技有限公司 | 一种基于拐点的航线分割方法及系统 |
CN106382933A (zh) * | 2016-11-04 | 2017-02-08 | 北京农业智能装备技术研究中心 | 一种用于航空植保飞行器的作业航线获取方法及系统 |
CN107291101A (zh) * | 2017-07-28 | 2017-10-24 | 江苏理工学院 | 一种无人机飞行自动控制方法、存储设备及无人机 |
CN109993994A (zh) * | 2017-12-29 | 2019-07-09 | 浙江省测绘科学技术研究院 | 一种航线分割方法及装置 |
CN109855627A (zh) * | 2019-01-04 | 2019-06-07 | 哈瓦国际航空技术(深圳)有限公司 | 无人机分架次规划航线的方法、装置、设备和存储介质 |
Non-Patent Citations (1)
Title |
---|
张龙等: "STK在无人机航线规划中的应用 ", 《自动化与仪器仪表》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021037046A1 (zh) * | 2019-08-30 | 2021-03-04 | 深圳市道通智能航空技术有限公司 | 航线规划方法及无人飞行器 |
CN112292648A (zh) * | 2019-11-19 | 2021-01-29 | 深圳市大疆创新科技有限公司 | 飞行控制方法、设备及系统 |
CN113551685A (zh) * | 2021-07-30 | 2021-10-26 | 重庆大学 | 用于双时变路网的多偏好路线规划方法 |
CN113551685B (zh) * | 2021-07-30 | 2022-08-26 | 重庆大学 | 用于双时变路网的多偏好路线规划方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2021037046A1 (zh) | 2021-03-04 |
CN110411458B (zh) | 2021-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110411458B (zh) | 航线规划方法及无人飞行器 | |
CN112461256B (zh) | 路径规划方法和装置 | |
JP6991240B2 (ja) | 情報処理装置 | |
CN106908065B (zh) | 车辆搭载无人机的双层路径构建方法及系统 | |
CN114255606B (zh) | 辅助驾驶提醒、地图辅助驾驶提醒方法、装置和地图 | |
CN109901617B (zh) | 一种无人机飞行方法、装置及无人机 | |
US20220412764A1 (en) | Navigation method and apparatus | |
US8412392B2 (en) | Methods and systems for displaying predicted downpath parameters in a vertical profile display | |
CN106813666B (zh) | 车辆搭载无人机的双层路径构建方法及系统 | |
CN107314772B (zh) | 一种无人机自学习航点轨迹飞行方法及其系统 | |
CN107144286A (zh) | 导航方法及装置 | |
CN110517538A (zh) | 飞行器主动发现与协同防碰撞方法与系统 | |
EP3032518B1 (en) | Aircraft turns for interval managent | |
US20120035849A1 (en) | Data Driven Route Strip | |
US20210082291A1 (en) | Integrating air and ground data collection for improved drone operation | |
CN103941744A (zh) | 用于确定飞行路径的方法 | |
Khochare et al. | Heuristic algorithms for co-scheduling of edge analytics and routes for UAV fleet missions | |
CN109084794A (zh) | 一种路径规划方法 | |
CN112486202A (zh) | 一种航线编辑方法、装置及控制设备 | |
CN111121782A (zh) | 车载无人机电力巡检的双层路径规划方法与装置 | |
CN111311144B (zh) | 数据处理方法、装置、服务器和非易失性存储介质 | |
EP4046096A1 (en) | Systems and methods for energy based autonomous vehicle control | |
CN113485421A (zh) | 一种无人机飞行巡检方法、系统、设备及介质 | |
CN111625013A (zh) | 无人机执行飞行任务的能量预估方法及装置 | |
CN115547023A (zh) | 一种车辆控制方法、装置及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 518055 Guangdong city of Shenzhen province Nanshan District Xili Street Xueyuan Road No. 1001 Chi Yuen Building 9 layer B1 Applicant after: Shenzhen daotong intelligent Aviation Technology Co.,Ltd. Address before: 518055 Guangdong city of Shenzhen province Nanshan District Xili Street Xueyuan Road No. 1001 Chi Yuen Building 9 layer B1 Applicant before: AUTEL ROBOTICS Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |