CN110409058B - 一种可用于人造神经导管的聚丙烯腈/聚苯胺/镍纳米纤维膜的制备方法 - Google Patents

一种可用于人造神经导管的聚丙烯腈/聚苯胺/镍纳米纤维膜的制备方法 Download PDF

Info

Publication number
CN110409058B
CN110409058B CN201910669567.0A CN201910669567A CN110409058B CN 110409058 B CN110409058 B CN 110409058B CN 201910669567 A CN201910669567 A CN 201910669567A CN 110409058 B CN110409058 B CN 110409058B
Authority
CN
China
Prior art keywords
spinning
pan
polyaniline
pani
nanofiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910669567.0A
Other languages
English (en)
Other versions
CN110409058A (zh
Inventor
张甜
王马约
皮埃尔
施晓晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201910669567.0A priority Critical patent/CN110409058B/zh
Publication of CN110409058A publication Critical patent/CN110409058A/zh
Application granted granted Critical
Publication of CN110409058B publication Critical patent/CN110409058B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/08Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyacrylonitrile as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明提供一种可以简单快速生产可用于制备人造神经导管的聚丙烯腈/聚苯胺/镍纳米纤维膜的方法,称取聚丙烯腈、聚苯胺于瓶中,再加入N,N‑二甲基甲酰胺溶液,充分搅拌使其溶解,加入镍粉,超声均匀,得到纺丝液;将纺丝液吸入注射器中,然后将注射器安装到注射泵上,注射泵固定于往复移动平台上,转筒接收器上粘贴好锡纸,接通纺丝机以及往复平台电源进行纺丝,得到静电纺丝纳米纤维膜。该方法具有操作简单,成本低廉,条件温和,环境友好等优点。通过MTT试剂检测细胞毒性表明,该纳米纤维膜无细胞毒性,即细胞相容性好。通过CCK‑8实验表明,该纳米纤维膜能够很好的有利于神经细胞的粘附与增殖。

Description

一种可用于人造神经导管的聚丙烯腈/聚苯胺/镍纳米纤维膜 的制备方法
技术领域
本发明涉及一种简单快速生产可用于制备人造神经导管的聚丙烯腈/聚苯胺/镍纳米纤维膜的方法。
背景技术
新型材料的开发,是21世纪优先发展的领域。静电纺丝技术近年来在制备纳米纤维领域得到广泛运用,能够制备出多种不同类型的纳米纤维,尤其在制备复合纳米纤维取得了显著的效果,是制备纳米纤维最有效的方法之一。这种新型的生产纳米纤维技术,将在生物医用材料、高温过滤、高效催化、光电器件、能源等领域发挥巨大的作用。周围神经组织由于其结构、功能复杂,一旦发生损伤则致残率高、预后差、治疗复杂,成为当前临床的一大重要难题。由于电纺纤维具有相似细胞外基质的三维空间结构在组织工程方面有着巨大的潜力,纳米纤维可以用于人造神经导管的制备。基于此,我们利用静电纺丝制备一种可用于人造神经导管的纳米纤维材料。
利用某些聚合物制造的纳米材料已被多次证明无细胞毒性,且有较好的细胞相容性。单独的成纤高聚物制备的纳米纤维膜几乎不导电,为了改善纳米纤维膜的导电性,研究人员通常把导电性良好的聚合物与能够成纤的高聚物混纺,从而制得导电性良好的纳米纤维,掺杂金属颗粒也可以有效的改善制备的纳米纤维膜的导电性。聚丙烯腈(PAN)由于价格低廉,化学稳定性较好,所制备的纳米纤维粗细均匀,是使用最广泛的高聚物之一,但是单纯的聚丙烯腈(PAN)本体纤维几乎不导电。聚苯胺(PANI)因为原料易得、合成简单以及稳定性较好,被认为是最有希望实用化的导电高分子材料。聚苯胺(PANI)不仅具有金属的导电性和塑料的可加工性,还具有金属和塑料所欠缺的化学和电化学性能,但其本身对溶剂的要求较高,所得纳米纤维强度较差、脆性大。对于聚丙烯腈(PAN)与聚苯胺(PANI)混合进行静电纺丝的报道较少,目前方法一般是先静电纺丝纯的聚丙烯腈(PAN),然后利用氧化聚合或者原位聚合使聚丙烯腈(PAN)纳米纤维表面沉积聚苯胺(PANI),制得的纳米材料导电性并不理想,且纳米纤维分布不均匀。
基于此,我们选用聚丙烯腈与聚苯胺作为原材料来制造纳米纤维膜,并掺杂纳米金属颗粒,以此来制备符合要求的纳米纤维材料。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的不足,提供一种可以简单快速生产可用于制备人造神经导管的聚丙烯腈/聚苯胺/镍纳米纤维膜的方法。
为解决上述技术问题,本发明提供的技术方案是:
一种可以简单快速生产可用于制备人造神经导管的聚丙烯腈/聚苯胺/镍纳米纤维膜的方法,具体步骤如下:
一种可用于人造神经导管的聚丙烯腈/聚苯胺/镍纳米纤维膜的制备方法,具体步骤如下:
1)静电纺丝机的搭建:将高压电源、微量注射泵、往复移动平台以及转筒接收器按顺序连接好,并连接好地线,接通电源,调试机器;
2)纺丝液的制备:称取聚丙烯腈(PAN)和聚苯胺(PANI)于瓶中,再加入N,N-二甲基甲酰胺(DMF)溶液,充分搅拌使其溶解,加入镍粉,超声1~2h;
3)静电纺丝:将步骤2)中配制好的纺丝液吸入注射器中,然后将注射器安装到步骤1)的注射泵上,微量注射泵固定于往复移动平台上,转筒接收器上粘贴好锡纸,接通纺丝机以及往复平台电源进行纺丝;
4)收集转筒上覆盖的静电纺丝纳米纤维膜。
优选地,所述往复移动平台垂直于喷丝方向左右移动。
优选地,步骤2)中PAN、PANI、镍粉的重量份为:PAN 2.5~5份,PANI 2~10份,Ni粉0.1~1份,原料中每g PAN对应加入DMF 4~8ml,更加优选地,PAN、PANI、镍粉的重量份为:PAN 2.5份,PANI 7.5份,Ni粉0.1份,原料中每g PAN对应加入DMF 4ml。
优选地,步骤3)所述注射器针头型号为18G。
优选地,步骤3)中纺丝操作参数为:
Figure BDA0002141220050000021
更加优选地,所述纺丝操作参数为:
Figure BDA0002141220050000031
优选地,步骤4)所述转筒上所得的纤维膜置于真空干燥箱中干燥备用。
本发明的有益效果在于:本发明提出了一种快速简单生产可用于制备人造神经导管的聚丙烯腈/聚苯胺/镍纳米纤维膜的方法,采用DMF作为溶剂,利用聚丙烯腈(PAN)的可纺性和聚苯胺(PANI)的导电性制备可电纺的液体,然后掺杂纳米金属颗粒,并改进纺丝设备,从而得到分布均匀、导电性优良且生物相容性好的纳米纤维膜,该方法具有操作简单,成本低廉,条件温和,环境友好等优点。通过MTT试剂检测细胞毒性表明,该纳米纤维膜无细胞毒性,即细胞相容性好。通过CCK-8实验表明,该纳米纤维膜能够很好的有利于神经细胞的粘附与增殖。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制。
图1是本申请实施例1及对比例1、2所得纤维膜的电导率测试结果;
图2是本申请实施例1及对比例1、2所得纤维膜的XRD测试结果;
图3是本申请实施例1、2及对比例1所得纤维膜的细胞增殖实验结果;
图4是本申请实施例3所得不同PANI含量的纤维膜的电导率测试结果。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合实施例对本发明作进一步详细描述。
实施例1
(1)静电纺丝机的搭建
将高压电源、微量注射泵、往复移动平台以及转筒接收器按顺序连接好,微量注射泵放于往复平台上,并固定好,随往复平台往复运动,并连接好地线,接通电源,调试机器;
(2)纺丝液的制备
称取PAN 2.5g,PANI 7.5g于瓶中,再往瓶中加入DMF溶液10ml,置于磁力搅拌器上充分搅拌过夜,然后加入镍粉0.1g,将瓶置于超声波清洗器超声1h;
所用注射器针头型号为18G,操作参数为:
Figure BDA0002141220050000041
(3)静电纺丝
将配制好的纺丝液吸入注射器中,然后将注射器安装到注射泵上,注射泵置于往复移动平台上,转筒接收器上粘贴好锡纸,接通电源以及往复平台电源进行纺丝;
(4)纳米纤维膜的收集
收集转筒上覆盖的纳米纤维膜,放于真空干燥箱中,使溶剂充分挥发,取出,得到聚丙烯腈/聚苯胺/镍纳米纤维膜。
实施例2
(1)静电纺丝机的搭建
将高压电源、微量注射泵、往复移动平台以及转筒接收器按顺序连接好,微量注射泵放于往复平台上,并固定好,随往复平台往复运动,并连接好地线,接通电源,调试机器;
(2)纺丝液的制备
称取PAN 5g,PANI 10g于瓶中,再往瓶中加入DMF溶液10ml,置于磁力搅拌器上充分搅拌过夜,然后加入镍粉1g,将瓶置于超声波清洗器超声1h;
所用注射器针头型号为18G,操作参数为:
Figure BDA0002141220050000042
(3)静电纺丝
将配制好的纺丝液吸入注射器中,然后将注射器安装到注射泵上,注射泵置于往复移动平台上,转筒接收器上粘贴好锡纸,接通电源以及往复平台电源进行纺丝;
(4)纳米纤维膜的收集
收集转筒上覆盖的纳米纤维膜,放于真空干燥箱中,使溶剂充分挥发,取出,得到聚丙烯腈/聚苯胺/镍纳米纤维膜。
对比例1
制备方法与实施例1相同,不同的是纺丝液组分只有PAN。
对比例2
制备方法与实施例1相同,不同的是纺丝液组分只有PAN、PANI。
对实施例1和对比例1,2所得纤维膜进行电导率测试、X射线衍射测试,对实施例1,2和对比例1进行生物学方面的测试,即将雪旺细胞种植在纤维膜上,使用CCK-8试剂和SEM来观察神经细胞是否能在纳米纤维膜上很好的粘附与增殖。
导电率测试结果如图1所示。
X射线衍射测试结果如图2,纳米纤维膜成分有PAN、PANI和Ni。
神经细胞在实施例1、2和对比例1所得纤维膜上细胞增殖结果如图3,表明加入PANi及Ni共混后纺丝所得的纤维膜和单纯PAN纤维膜相比无显著性差别,即本申请所得纤维膜能有利于神经细胞的粘附与增殖。
实施例3
制备方法与实施例1相同,调整PANI的量为2~10,测试所得聚丙烯腈/聚苯胺/镍纳米纤维膜的导电率,结果如图4所示。可见,当PAN和DMF加入的量一定时,纤维膜的电导率随着PANi的增加而上升,但随着PANI加入量的增加,所得纺丝液的粘度逐渐增加,到PANI加入量为10g时,已经难以实现纺丝。
本申请通过优化PAN、PANI和Ni的比例,得到了易于纺丝,且导电性能良好的纳米纤维膜。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (7)

1.一种可用于人造神经导管的聚丙烯腈/聚苯胺/镍纳米纤维膜的制备方法,其特征在于,具体步骤如下:
1)静电纺丝机的搭建:将高压电源、微量注射泵、往复移动平台以及转筒接收器按顺序连接好,并连接好地线,接通电源,调试机器;
2)纺丝液的制备:称取聚丙烯腈(PAN)和聚苯胺(PANI)于瓶中,再加入N,N-二甲基甲酰胺(DMF)溶液,充分搅拌使其溶解,加入镍粉,超声1~2h,其中,PAN、PANI、镍粉的重量份为:PAN 2.5~5份,PANI 2~10份,Ni粉0.1~1份,原料中每g PAN对应加入DMF 4~8ml;
3)静电纺丝:将步骤2)中配制好的纺丝液吸入注射器中,然后将注射器安装到步骤1)的注射泵上,微量注射泵固定于往复移动平台上,转筒接收器上粘贴好锡纸,接通纺丝机以及往复平台电源进行纺丝;
4)收集转筒上覆盖的静电纺丝纳米纤维膜。
2.根据权利要求1所述的方法,其特征在于,所述往复移动平台垂直于喷丝方向左右移动。
3.根据权利要求1所述的方法,其特征在于,步骤2)中PAN、PANI、镍粉的重量份为:PAN2.5份,PANI 7.5份,Ni粉0.1份,原料中每g PAN对应加入DMF 4ml。
4.根据权利要求1所述的方法,其特征在于,步骤3)所述注射器针头型号为18G。
5.根据权利要求1所述的方法,其特征在于,步骤3)中纺丝操作参数为:
Figure FDA0003276106070000011
6.根据权利要求1所述的方法,其特征在于,步骤3)中纺丝操作参数为:
Figure FDA0003276106070000012
7.根据权利要求1所述的方法,其特征在于,步骤4)所述转筒上所得的纤维膜置于真空干燥箱中干燥备用。
CN201910669567.0A 2019-07-24 2019-07-24 一种可用于人造神经导管的聚丙烯腈/聚苯胺/镍纳米纤维膜的制备方法 Active CN110409058B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910669567.0A CN110409058B (zh) 2019-07-24 2019-07-24 一种可用于人造神经导管的聚丙烯腈/聚苯胺/镍纳米纤维膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910669567.0A CN110409058B (zh) 2019-07-24 2019-07-24 一种可用于人造神经导管的聚丙烯腈/聚苯胺/镍纳米纤维膜的制备方法

Publications (2)

Publication Number Publication Date
CN110409058A CN110409058A (zh) 2019-11-05
CN110409058B true CN110409058B (zh) 2022-03-04

Family

ID=68362674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910669567.0A Active CN110409058B (zh) 2019-07-24 2019-07-24 一种可用于人造神经导管的聚丙烯腈/聚苯胺/镍纳米纤维膜的制备方法

Country Status (1)

Country Link
CN (1) CN110409058B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1880526A (zh) * 2005-06-13 2006-12-20 中国科学院化学研究所 超疏水导电高分子纳米纤维及其制备方法和用途
CN103255634A (zh) * 2013-05-23 2013-08-21 中原工学院 一种聚丙烯腈/聚苯胺复合微纳米导电纤维的制备方法
CN205874597U (zh) * 2016-07-25 2017-01-11 青岛中科凯尔科技有限公司 一种气流辅助线性齿电极静电纺丝装置
CN208917352U (zh) * 2018-09-30 2019-05-31 苏州克劳丝纳米科技有限公司 桥梁式静电纺丝装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1880526A (zh) * 2005-06-13 2006-12-20 中国科学院化学研究所 超疏水导电高分子纳米纤维及其制备方法和用途
CN103255634A (zh) * 2013-05-23 2013-08-21 中原工学院 一种聚丙烯腈/聚苯胺复合微纳米导电纤维的制备方法
CN103255634B (zh) * 2013-05-23 2015-08-12 中原工学院 一种聚丙烯腈/聚苯胺复合微纳米导电纤维的制备方法
CN205874597U (zh) * 2016-07-25 2017-01-11 青岛中科凯尔科技有限公司 一种气流辅助线性齿电极静电纺丝装置
CN208917352U (zh) * 2018-09-30 2019-05-31 苏州克劳丝纳米科技有限公司 桥梁式静电纺丝装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Application of conductive polymers,scaffolds and electrical stimulation for nerve tissue engineering;Laleh Ghasemi-mobarakeh,etc.;《Journal of tissue engineering and regenerative medicine》;20110110;第e18-e35页 *
Conductive composite films composed of polyaniline thin layers on microporous polyacrylonitrile surfaces;Guangzhao Zhai,etc.;《Thin solid films 519》;20100425;第169-173页 *
Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance;Jun Yan,etc.;《Carbon 48》;20090926;第487-493页 *
The nanofibrous PAN-PANi scaffold as an efficient substrate for skeletal muscle differentiation using satellite cells;Simzar Hosseinzadeh,etc.;《Bioprocess biosyst eng》;20161231;第1163-1172页 *
Ultra high electrical performance of nano nickel oxide and polyaniline composite materials;Xiaomin Cai,etc.;《Ploymers》;20171231(第9期);第1-14页 *
纳米镍/聚苯胺的原位合成及性能表征;高雪梅;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20091231(第12期);第36、38、50页 *

Also Published As

Publication number Publication date
CN110409058A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
Ma et al. Electrospun sodium alginate/poly (ethylene oxide) core–shell nanofibers scaffolds potential for tissue engineering applications
Abd Razak et al. A review of electrospun conductive polyaniline based nanofiber composites and blends: processing features, applications, and future directions
Pan et al. Significantly reinforced composite fibers electrospun from silk fibroin/carbon nanotube aqueous solutions
He et al. Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering
CN101187111B (zh) 用于医用敷料含纳米银明胶/壳聚糖复合纳米纤维毡及制备
CN103572408B (zh) 核-壳结构的电活性复合纤维及组织工程支架制备方法
Li et al. Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol (PVA)/Chitosan (CS)/Graphene (Gr) nanofibrous membranes
CN109537163B (zh) 一种壳聚糖/海藻酸钠/聚乙烯醇聚电解质纳米纤维复合膜及其制备方法
CN102115918B (zh) 一种超细定向聚合物纤维的射流稳定电驱动纺丝制备方法
Liang et al. Continuous and integrated PEDOT@ Bacterial cellulose/CNT hybrid helical fiber with “reinforced cement-sand” structure for self-stretchable solid supercapacitor
Wang et al. Facile production of natural silk nanofibers for electronic device applications
Massoumi et al. AB 2 Y-shaped miktoarm star conductive polyaniline-modified poly (ethylene glycol) and its electrospun nanofiber blend with poly (ε-caprolactone)
CN101270198B (zh) 静电纺混纺聚丙烯腈/羟乙基纤维素纳米纤维膜的方法
CN109914037B (zh) 一种非织造纳米石墨烯/聚丙烯腈无纺布的制备方法
CN106268350A (zh) 一种抗菌过滤膜的制备方法
CN102168371A (zh) 在位聚合制备聚吡咯包覆聚乳酸电纺丝复合膜的方法
CN102277654B (zh) 一种透明质酸和壳聚糖复合聚电解质纳米纤维的制备方法
Hu et al. Lignin-based/polypyrrole carbon nanofiber electrode with enhanced electrochemical properties by electrospun method
CN106498508B (zh) 一种聚乳酸静电纺丝溶液的制备方法
CN109135226B (zh) 一种聚乳酸/聚苯胺/纳米微晶纤维素复合导电薄膜及其制备方法
CN110983758A (zh) 一种用于柔性力学传感器的导电丝素膜的制备方法
CN102268745A (zh) 静电纺丝法制备pan多孔纳米纤维
CN112251914A (zh) 一种压电性能良好的耐高温复合纳米纤维膜及其制备方法
CN103225172A (zh) 硫酸软骨素基纳米纤维无纺布及其制备方法和医用用途
CN100441755C (zh) 用于仿生细胞外基质纤维支架的明胶/壳聚糖共混的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant