CN110408633B - Prokaryotic expression preparation method of BTV1 VP2 protein - Google Patents
Prokaryotic expression preparation method of BTV1 VP2 protein Download PDFInfo
- Publication number
- CN110408633B CN110408633B CN201910618587.5A CN201910618587A CN110408633B CN 110408633 B CN110408633 B CN 110408633B CN 201910618587 A CN201910618587 A CN 201910618587A CN 110408633 B CN110408633 B CN 110408633B
- Authority
- CN
- China
- Prior art keywords
- protein
- vp2u
- btv1
- expression
- gene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 101710081079 Minor spike protein H Proteins 0.000 title claims abstract description 69
- 230000009465 prokaryotic expression Effects 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 230000014509 gene expression Effects 0.000 claims abstract description 76
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 63
- 239000013612 plasmid Substances 0.000 claims abstract description 47
- 239000006228 supernatant Substances 0.000 claims abstract description 24
- 230000006698 induction Effects 0.000 claims abstract description 21
- 238000012408 PCR amplification Methods 0.000 claims abstract description 20
- 241000700605 Viruses Species 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 17
- 208000003836 bluetongue Diseases 0.000 claims abstract description 12
- 238000001976 enzyme digestion Methods 0.000 claims abstract description 10
- 230000009466 transformation Effects 0.000 claims abstract description 6
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 claims description 19
- 239000000047 product Substances 0.000 claims description 18
- 241000588724 Escherichia coli Species 0.000 claims description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 239000012634 fragment Substances 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000001939 inductive effect Effects 0.000 claims description 6
- 239000012528 membrane Substances 0.000 claims description 6
- 108090000790 Enzymes Proteins 0.000 claims description 4
- 102000004190 Enzymes Human genes 0.000 claims description 4
- 238000001042 affinity chromatography Methods 0.000 claims description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 238000012216 screening Methods 0.000 claims description 4
- 230000001131 transforming effect Effects 0.000 claims description 4
- 102000012410 DNA Ligases Human genes 0.000 claims description 3
- 108010061982 DNA Ligases Proteins 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 238000004925 denaturation Methods 0.000 claims description 3
- 230000036425 denaturation Effects 0.000 claims description 3
- 238000012257 pre-denaturation Methods 0.000 claims description 3
- 238000012163 sequencing technique Methods 0.000 claims description 3
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000005215 recombination Methods 0.000 claims 2
- 230000006798 recombination Effects 0.000 claims 2
- 241000672609 Escherichia coli BL21 Species 0.000 claims 1
- 241001052560 Thallis Species 0.000 claims 1
- 239000001963 growth medium Substances 0.000 claims 1
- 230000001954 sterilising effect Effects 0.000 claims 1
- 239000000725 suspension Substances 0.000 claims 1
- 102000004169 proteins and genes Human genes 0.000 abstract description 42
- 238000000855 fermentation Methods 0.000 abstract description 41
- 230000004151 fermentation Effects 0.000 abstract description 41
- 229960005486 vaccine Drugs 0.000 abstract description 7
- 241001465754 Metazoa Species 0.000 abstract description 6
- 238000009776 industrial production Methods 0.000 abstract description 5
- 108091026890 Coding region Proteins 0.000 abstract description 4
- 238000002474 experimental method Methods 0.000 abstract description 4
- 238000010353 genetic engineering Methods 0.000 abstract description 3
- 108091008146 restriction endonucleases Proteins 0.000 abstract description 3
- 241000120506 Bluetongue virus Species 0.000 description 20
- 241000894006 Bacteria Species 0.000 description 15
- 239000007788 liquid Substances 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 14
- 238000005457 optimization Methods 0.000 description 14
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 101150093578 VP2 gene Proteins 0.000 description 12
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 8
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 240000000220 Panda oleosa Species 0.000 description 6
- 235000016496 Panda oleosa Nutrition 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 108020004705 Codon Proteins 0.000 description 5
- 230000029087 digestion Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 229940031626 subunit vaccine Drugs 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 238000002965 ELISA Methods 0.000 description 4
- 101710172711 Structural protein Proteins 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 4
- 229930027917 kanamycin Natural products 0.000 description 4
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 4
- 229960000318 kanamycin Drugs 0.000 description 4
- 229930182823 kanamycin A Natural products 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000012474 protein marker Substances 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- 101710154606 Hemagglutinin Proteins 0.000 description 3
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 3
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 3
- 101710176177 Protein A56 Proteins 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 238000001742 protein purification Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000013638 trimer Substances 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- 238000011725 BALB/c mouse Methods 0.000 description 2
- 241001493069 Bluetongue virus 1 Species 0.000 description 2
- 241000134316 Culicoides <genus> Species 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 241000282849 Ruminantia Species 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 229940031567 attenuated vaccine Drugs 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 210000000234 capsid Anatomy 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000035931 haemagglutination Effects 0.000 description 2
- 230000000521 hyperimmunizing effect Effects 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 230000001018 virulence Effects 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 241000256111 Aedes <genus> Species 0.000 description 1
- 208000031295 Animal disease Diseases 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 244000201986 Cassia tora Species 0.000 description 1
- 235000014552 Cassia tora Nutrition 0.000 description 1
- 241001533384 Circovirus Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 101150027802 L2 gene Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000702247 Reoviridae Species 0.000 description 1
- 206010043275 Teratogenicity Diseases 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 206010058874 Viraemia Diseases 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 206010000210 abortion Diseases 0.000 description 1
- 231100000176 abortion Toxicity 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003766 bioinformatics method Methods 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000000185 hemagglutinin Substances 0.000 description 1
- 208000021760 high fever Diseases 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229940031551 inactivated vaccine Drugs 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 238000000751 protein extraction Methods 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 231100000211 teratogenicity Toxicity 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- -1 that is Substances 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2720/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
- C12N2720/00011—Details
- C12N2720/12011—Reoviridae
- C12N2720/12111—Orbivirus, e.g. bluetongue virus
- C12N2720/12122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Virology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
技术领域technical field
本申请属于动物疫苗制备技术领域,具体涉及一种利用基因工程技术制备BTV1(蓝舌病1型病毒)VP2蛋白的制备方法专利申请事宜。The present application belongs to the technical field of animal vaccine preparation, and specifically relates to a patent application for a preparation method of BTV1 (Bluetongue
背景技术Background technique
蓝舌病(Bluetougue,BT)是一种由蓝舌病毒(bluetongue virus,BTV)以库蠓、伊蚊等昆虫为媒介,严重感染反刍动物的烈性传染病,这种病毒主要侵害反刍类牲畜,可以引发高热、抑郁以及口腔、鼻腔和胃肠道黏膜发生溃疡性炎症变化等症状,已被国际动物卫生组织(OIE)定义为法定报告的传染病,我国农业部也已将该病定为一类动物疫病。基于上述发病原因,可以看出:蓝舌病的发生和分布与媒介昆虫的分布有密切关系,主要暴发于库蠓大量活动的夏秋季节,特别多见于低洼潮湿多水区域,而且主要发生在热带和亚热带。目前,蓝舌病给全球的养殖产业带来了严重的威胁,引起了世界相关人士的高度重视。Bluetongue (BT) is a serious infectious ruminant disease caused by bluetongue virus (BTV) using Culicoides, Aedes mosquitoes and other insects as vectors. This virus mainly affects ruminant livestock. It can cause symptoms such as high fever, depression, and ulcerative inflammatory changes in the oral, nasal and gastrointestinal mucosa. It has been defined as a statutory reportable infectious disease by the International Organization for Animal Health (OIE), and the Ministry of Agriculture of my country has also designated the disease as a Animal diseases. Based on the above-mentioned causes, it can be seen that the occurrence and distribution of bluetongue are closely related to the distribution of vector insects. The outbreak mainly occurs in summer and autumn when Culicoides are active, especially in low-lying, humid and watery areas, and mainly occurs in tropical areas. and subtropical. At present, bluetongue disease has brought a serious threat to the global aquaculture industry, which has attracted great attention from relevant people around the world.
研究表明,BTV属于呼肠弧病毒科环状病毒属蓝舌病病毒亚群,有27种血清型,各血清型间无交叉保护。到目前为止, 已经有7个血清型(BTV1、BTV2、BTV3、BTV4、BTV12、BTV15、BTV16)在我国被发现。其中BTV1 和BTV16 在中国流行最广。BTV基因组约19218bp,分子量1.3×107,为分子质量最大的RNA病毒,基因组为10 个节段的双链RNA,其中4 个小片段(S7-S10)、3 个中片段(M4-M6)、3 个大片段(L1-L3),节段基因组分别编码3 个非结构蛋白(NS1-NS3)、7 个结构蛋白(VP1-VP7)。Studies have shown that BTV belongs to the bluetongue virus subgroup of the Circovirus family of Reoviridae, with 27 serotypes, and there is no cross-protection between serotypes. So far, 7 serotypes (BTV1, BTV2, BTV3, BTV4, BTV12, BTV15, BTV16) have been found in my country. Among them, BTV1 and BTV16 are the most popular in China. The genome of BTV is about 19218bp and the molecular weight is 1.3×10 7 . It is the RNA virus with the largest molecular weight. The genome is double-stranded RNA with 10 segments, including 4 small segments (S7-S10) and 3 medium segments (M4-M6). , 3 large segments (L1-L3), segmental genome encoding 3 non-structural proteins (NS1-NS3) and 7 structural proteins (VP1-VP7).
完整的BTV粒子呈二十面体对称结构,无囊膜。BTV 具有双层蛋白衣壳,L2和M5基因编码的VP2和VP5是构成 BTV外壳的主要成分,病毒内壳即核心衣壳主要由L3和S7编码的主要结构蛋白VP3和VP7和次要结构蛋白VP1、VP4、VP6构成,与BTV病毒的复制有关。在BTV的外壳有60个类似三角状的VP2三聚体凸起,外周围绕着120个VP5的球状三聚体,即膜穿透蛋白,中层有260 个VP7三聚体构成,内层包含几乎完全被VP7 层包裹的120个 VP3 单体。Intact BTV particles have an icosahedral symmetric structure without capsule. BTV has a double-layered protein capsid. VP2 and VP5 encoded by L2 and M5 genes are the main components of the BTV shell. The inner shell of the virus, the core capsid, is mainly composed of L3 and S7. The main structural proteins VP3 and VP7 and the minor structural proteins It is composed of VP1, VP4 and VP6 and is related to the replication of BTV virus. There are 60 triangular-like VP2 trimers in the outer shell of BTV, surrounded by 120 VP5 globular trimers, that is, membrane penetrating proteins, the middle layer is composed of 260 VP7 trimers, and the inner layer contains almost 120 VP3 monomers completely wrapped by the VP7 layer.
的VP2蛋白由L2基因编码,含956个氨基酸,大小约110 kDa,是病毒的主要型特异性抗原和血凝素蛋白,与病毒的毒力、受体结合、细胞吸附作用和畜主特异性免疫有关VP2与中和抗体的产生有关,是BTV血清型特异性蛋白;BTV有血凝素,可凝集绵羊及人的O型红细胞,其血凝活性与VP2有关,血凝抑制试验可用于BTV分型。而VP5蛋白能增强中和抗体的产生,因此能够提高疫苗的效力;VP3和VP7蛋白较为保守,均具有BTV抗原决定簇,对BTV内部结构的稳定具有重要作用。The VP2 protein is encoded by the L2 gene, contains 956 amino acids, and is about 110 kDa in size. It is the main type-specific antigen and hemagglutinin protein of the virus. It is related to the virulence, receptor binding, cell adsorption and animal specificity of the virus. Immune-related VP2 is related to the production of neutralizing antibodies and is a BTV serotype-specific protein; BTV has hemagglutinin, which can agglutinate O-type red blood cells of sheep and humans, and its hemagglutination activity is related to VP2, and hemagglutination inhibition test can be used for BTV Type. The VP5 protein can enhance the production of neutralizing antibodies, so it can improve the efficacy of the vaccine; VP3 and VP7 proteins are relatively conservative, and both have BTV antigenic determinants, which play an important role in the stability of the internal structure of BTV.
目前,防控蓝舌病的疫苗主要有灭活疫苗、弱毒疫苗、基因工程亚单位疫苗等等。其中,弱毒疫苗能刺激机体产生强大的保护性免疫应答,但也可能引起一些副反应:如在妊娠期使用会致畸和流产,降低泌乳动物产量,产生病毒血症等,同时还存在毒力返强的风险。基因工程亚单位疫苗具有安全、廉价、可适用于多种血清型的优点,有很好的应用前景,但目前基因工程亚单位疫苗还处于研究阶段。而VP2蛋白是BTV的主要型特异性抗原和血凝素蛋白,是BTV亚单位疫苗研究的主要靶标,因此,生产和科研上均迫切需要大量制备BTVVP2 蛋白。At present, vaccines for the prevention and control of bluetongue mainly include inactivated vaccines, attenuated vaccines, and genetically engineered subunit vaccines. Among them, the attenuated vaccine can stimulate the body to produce a strong protective immune response, but it may also cause some side effects: such as teratogenicity and abortion when used during pregnancy, reduce the production of lactating animals, produce viremia, etc., and also have virulence The risk of returning to strength. Genetically engineered subunit vaccines have the advantages of being safe, inexpensive, and applicable to a variety of serotypes, and have good application prospects, but at present, genetically engineered subunit vaccines are still in the research stage. The VP2 protein is the main type-specific antigen and hemagglutinin protein of BTV, and is the main target of BTV subunit vaccine research. Therefore, it is urgent to produce a large amount of BTVVP2 protein in both production and scientific research.
目前,重组外源蛋白的工业化生产,需要能够高效稳定表达外源基因产物的工程菌,以及能够大规模培养发酵工程菌的技术和工艺。然而,现有研究中工程菌的VP2 蛋白表达量均差强人意,纯化和浓缩需耗费大量人力、物力、财力,难以达到工业化生产应用。因此,亟需开发一种能够大幅度提高工程菌产量的VP2 蛋白发酵工艺,以期能够缩短生产周期、降低生产成本、提高BTV VP2蛋白的生产效率,为 BTV的防治和新型亚单位疫苗的研发和生产提供的研究基础。At present, the industrial production of recombinant exogenous proteins requires engineered bacteria that can efficiently and stably express foreign gene products, as well as technologies and processes that can cultivate fermentation engineering bacteria on a large scale. However, the VP2 protein expression levels of engineered bacteria in existing studies are all unsatisfactory, and purification and concentration require a lot of manpower, material resources, and financial resources, and it is difficult to achieve industrial production applications. Therefore, there is an urgent need to develop a VP2 protein fermentation process that can greatly improve the yield of engineered bacteria, in order to shorten the production cycle, reduce production costs, and improve the production efficiency of BTV VP2 protein, which is beneficial for the prevention and treatment of BTV and the research and development of new subunit vaccines. Production provides the research basis.
发明内容SUMMARY OF THE INVENTION
本申请主要目的在于提供一种可溶性蓝舌病1型病毒(BTV1)VP2蛋白的可溶性原核表达制备方法,从而为相关疫苗制备奠定一定技术基础。The main purpose of this application is to provide a soluble prokaryotic expression preparation method of soluble bluetongue virus type 1 (BTV1) VP2 protein, so as to lay a certain technical foundation for the preparation of related vaccines.
本申请所采取的技术方案详述如下。The technical solution adopted in this application is described in detail as follows.
蓝舌病1型病毒VP2蛋白基因编码序列VP2U,由2886bp碱基组成,具体碱基序列如SEQ ID NO.1所示。The coding sequence VP2U of the VP2 protein gene of the
利用所述蓝舌病1型病毒VP2蛋白基因编码序列的BTV1 VP2蛋白原核表达制备方法,包括如下步骤:Utilize the BTV1 VP2 protein prokaryotic expression preparation method of the
(1)PCR扩增(1) PCR amplification
设计PCR扩增VP2U基因序列用引物序列如下:The primer sequences used to design PCR amplification of VP2U gene sequence are as follows:
VP2U-F:5’- CGGGATCCATGGACGAGCTGGGTAT -3’,(序列中5’端“GGATCC”部分序列为BamH I酶切位点)VP2U-F: 5'-CGGGATCCATGGACGAGCTGGGTAT-3', (the "GGATCC" part of the sequence at the 5' end of the sequence is the BamH I restriction site)
VP2U-R:5’-CCGCTCGAGTTAAACGTTGAGGAGCTTAGT -3’;(序列中5’端“CTCGAG”部分为Xho I酶切位点)VP2U-R: 5'-CCGCTCGAGTTAAACGTTGAGGAGCTTAGT-3'; (the "CTCGAG" part of the 5' end of the sequence is the Xho I restriction site)
以含有蓝舌病1型病毒VP2蛋白基因编码序列VP2U的重组质粒pUC-VP2U为模板,进行PCR扩增,PCR扩增时,50μl反应体系设计如下:The recombinant plasmid pUC-VP2U containing the coding sequence VP2U of the VP2 protein gene of
PrimeSTAR® HS(Premix)酶,25 μl;PrimeSTAR® HS (Premix) enzyme, 25 μl;
上游引物F,1 μl;Upstream primer F, 1 μl;
下游引物R,1 μl;Downstream primer R, 1 μl;
模板质粒pUC-VP2U,1 μl;Template plasmid pUC-VP2U, 1 μl;
灭菌去离子水,22 μl;Sterilized deionized water, 22 μl;
PCR反应条件为:95℃预变性3 min;94℃变性30 s,56℃退火30 s,72℃延伸2min,共30个循环;72℃延伸10 min;PCR reaction conditions were: pre-denaturation at 95°C for 3 min; denaturation at 94°C for 30 s, annealing at 56°C for 30 s, extension at 72°C for 2 min, a total of 30 cycles; extension at 72°C for 10 min;
对PCR扩增产物回收、提纯后备用;The PCR amplification products are recovered and purified for later use;
(2)酶切,并与质粒pET28进行连接(2) Enzyme digestion and ligation with plasmid pET28
对步骤(1)中所回收的PCR扩增产物进行BamH I、Xho I双酶切,同时对质粒pET28进行BamH I、Xho I双酶切,回收目的片段;The PCR amplification product recovered in step (1) was double digested with BamH I and Xho I, and the plasmid pET28 was double digested with BamH I and Xho I to recover the target fragment;
利用T4 DNA连接酶将所回收的目的片段进行连接,16℃连接过夜;The recovered target fragments were ligated with T4 DNA ligase, and ligated at 16°C overnight;
(3)转化、筛选,获得重组正确的重组质粒pET28-VP2U(3) Transform and screen to obtain the correct recombinant plasmid pET28-VP2U
将步骤(2)中的连接产物转化E.coli感受态细胞DH5α后,进行抗性筛选,并进一步进行双酶切鉴定和测序鉴定,确认获得重组正确的重组质粒pET28-VP2U;After transforming the ligation product in step (2) into E.coli competent cell DH5α, carry out resistance screening, and further carry out double digestion identification and sequencing identification to confirm that the correct recombinant plasmid pET28-VP2U is obtained;
(4)转化、诱导表达(4) Transformation and induction of expression
将步骤(3)中所构建的重组质粒pET28-VP2U转化大肠杆菌BL21(DE3)感受态细胞,获得表达BTV1 VP2蛋白的大肠杆菌表达菌株pET28-VP2U-BL21;The recombinant plasmid pET28-VP2U constructed in step (3) was transformed into E. coli BL21 (DE3) competent cells to obtain an E. coli expression strain pET28-VP2U-BL21 expressing BTV1 VP2 protein;
进一步接种于培养基中,利用IPTG诱导表达BTV1 VP2蛋白;It was further inoculated into the medium, and the expression of BTV1 VP2 protein was induced by IPTG;
诱导表达结束后,进一步离心并破碎菌体,重悬后离心收集上清,即为含有BTV1VP2蛋白的上清液,进一步提纯后即可作为疫苗制备中的抗原进行应用。After the induction and expression, the cells are further centrifuged and broken, and the supernatant is collected by centrifugation after resuspending, which is the supernatant containing the BTV1VP2 protein, which can be used as an antigen in vaccine preparation after further purification.
步骤(4)中,所述培养基为含有50μg/mL Kana+的LB液体培养基或者为含有卡那霉素50μg/mL的基础发酵培养基;In step (4), the medium is an LB liquid medium containing 50 μg/mL Kana+ or a basal fermentation medium containing 50 μg/mL kanamycin;
所述基础发酵培养基,组分为:12g/L蛋白胨,24g/L酵母提取物,16.43g/L K2HPO4•3H2O,2.31g/L KH2PO4,5.04g/L甘油。The basic fermentation medium is composed of: 12 g/L peptone, 24 g/L yeast extract, 16.43 g/L K 2 HPO 4 •3H 2 O, 2.31 g/L KH 2 PO 4 , and 5.04 g/L glycerol.
步骤(4)中,IPTG诱导表达时,IPTG终浓度为0.1~1.0mM,诱导表达温度为20℃~37℃,诱导表达时间为6~12h。In step (4), when IPTG induces expression, the final concentration of IPTG is 0.1-1.0 mM, the induction expression temperature is 20°C to 37°C, and the induction expression time is 6 to 12 hours.
步骤(4)中,提纯操作时,先将上清液体0.22μm滤膜过滤后,再用镍亲和层析法进行纯化。In step (4), during the purification operation, the supernatant liquid is first filtered with a 0.22 μm filter membrane, and then purified by nickel affinity chromatography.
现有技术中,利用基因工程获得BTV1 VP2蛋白时,虽然有较多真核表达系统研究和应用,但鉴于原核表达系统生产成本较低、易于发酵制备等优点,因此仍有必要就蛋白的原核表达系统的构建进行深入研究。In the prior art, when using genetic engineering to obtain BTV1 VP2 protein, although there are many eukaryotic expression system research and application, but in view of the advantages of prokaryotic expression system production cost is low, easy to ferment preparation and other advantages, it is still necessary to study the prokaryotic expression of the protein. The construction of the expression system was studied in depth.
总体而言,本申请与现有技术相比,主要技术优势体现在如下几个方面:In general, compared with the prior art, the main technical advantages of the present application are reflected in the following aspects:
(1)本发明通过对BTV1 VP2编码基因进行优化,使其更适合在大肠杆菌宿主中高效率表达目标蛋白;而通过对优化前后BTV1 VP2基因在大肠杆菌中融合表达情况的实验分析,BTV1 VP2原始基因在pET28a载体中几乎无目的蛋白表达,而本发明中优化后的BTV1VP2基因在pET28a载体中的可溶性有明显增加,并且此可溶性目的蛋白仍然保持有较高活性;(1) The present invention optimizes the BTV1 VP2 encoding gene to make it more suitable for high-efficiency expression of the target protein in the E. coli host; and through the experimental analysis of the fusion expression of the BTV1 VP2 gene in E. coli before and after optimization, BTV1 VP2 original The gene has almost no target protein expression in the pET28a vector, while the solubility of the optimized BTV1VP2 gene in the pET28a vector is significantly increased in the present invention, and the soluble target protein still maintains a high activity;
(2)本发明对BTV1 VP2蛋白的表达条件进行了系统优化,尤其是对规模发酵过程中的菌体发酵密度、发酵条件进行了初步优化,为提高产物的比生产率(单位体积单位时间内产物的产量)奠定了初步的技术基础。(2) The present invention systematically optimizes the expression conditions of the BTV1 VP2 protein, especially preliminarily optimizes the bacterial fermentation density and fermentation conditions in the large-scale fermentation process, in order to improve the specific productivity of the product (product per unit volume per unit time). output) and laid the initial technical foundation.
总体上,本申请通过对相关编码基因的优化,进一步借助于原核表达系统的技术优势,为发酵制备BTV1 VP2蛋白奠定了一定技术基础。初步实验结果表明,发酵液上清中的目的蛋白表达量可达到58.4μg/ml,这一数值明显高于目的蛋白BTV1 VP2在其他原核表达系统中的产量,可为工业化生产奠定良好的技术基础。In general, the present application has laid a certain technical foundation for the fermentation and preparation of BTV1 VP2 protein by optimizing the relevant coding genes and further relying on the technical advantages of the prokaryotic expression system. Preliminary experimental results show that the expression level of the target protein in the supernatant of the fermentation broth can reach 58.4 μg/ml, which is significantly higher than the yield of the target protein BTV1 VP2 in other prokaryotic expression systems, which can lay a good technical foundation for industrial production. .
附图说明Description of drawings
图1为VP2目的基因扩增;其中,M为DL15000分子量标记;1为优化前VP2基因(左图);2为优化后VP2基因(右图);Figure 1 is the amplification of the VP2 target gene; M is the molecular weight marker of DL15000; 1 is the VP2 gene before optimization (left picture); 2 is the VP2 gene after optimization (right picture);
图2为重组质粒的双酶切鉴定图,其中,M为DL2000分子量标记;1为pET28a-VP2U质粒;2为pET28a-VP2U质粒双酶切产物;3为pET28a-VP2质粒;4为pET28a-VP2质粒双酶切产物;Figure 2 is the double-enzyme digestion identification map of the recombinant plasmid, wherein M is the molecular weight marker of DL2000; 1 is the pET28a-VP2U plasmid; 2 is the double-enzyme digestion product of the pET28a-VP2U plasmid; 3 is the pET28a-VP2 plasmid; 4 is the pET28a-VP2 Plasmid double digestion product;
图3为重组VP2蛋白在大肠杆菌中诱导表达条件优化的SDS-PAGE鉴定图,其中,M为标准蛋白Marker;A为IPTG浓度优化:1-6分别为终浓度为:0.1 mM、0.2 mM、0.4 mM、0.6 mM、0.8 mM、1.0 mM的IPTG诱导表达结果;B为诱导温度优化:1-2分别为20℃诱导表达超声上清及沉淀;3-4分别为25℃诱导表达超声上清及沉淀;5-6分别为30℃诱导表达超声上清及沉淀;C为诱导表达时间优化:1-4分别为诱导表达6h、8h、10h、12h后目的蛋白表达情况;Figure 3 is the SDS-PAGE identification chart of the optimized induction and expression conditions of recombinant VP2 protein in E. coli, where M is the standard protein Marker; A is the IPTG concentration optimization: 1-6 are the final concentrations: 0.1 mM, 0.2 mM, 0.4 mM, 0.6 mM, 0.8 mM, 1.0 mM IPTG-induced expression results; B is the induction temperature optimization: 1-2 were 20 ℃ induced expression ultrasonic supernatant and precipitate; 3-4 were 25 ℃ induced expression ultrasonic supernatant and precipitation; 5-6 are the supernatant and precipitation induced to express at 30°C, respectively; C is the optimization of the induction expression time: 1-4 are the expression of the target protein after 6h, 8h, 10h, and 12h of induction, respectively;
图4为重组VP2蛋白在大肠杆菌中表达的SDS-PAGE鉴定图,其中,M为标准蛋白Marker;1为VP2U基因表达的重组VP2蛋白超声上清;2为VP2U基因表达的重组VP2蛋白超声沉淀;3为原始VP2基因表达的重组VP2蛋白超声上清;4为原始VP2基因表达的重组VP2蛋白超声沉淀;Figure 4 is the SDS-PAGE identification chart of recombinant VP2 protein expressed in E. coli, wherein M is the standard protein Marker; 1 is the ultrasonic supernatant of the recombinant VP2 protein expressed by the VP2U gene; 2 is the ultrasonic precipitation of the recombinant VP2 protein expressed by the VP2U gene ; 3 is the ultrasonic supernatant of recombinant VP2 protein expressed by the original VP2 gene; 4 is the ultrasonic precipitation of the recombinant VP2 protein expressed by the original VP2 gene;
图5为纯化后重组VP2蛋白的SDS-PAGE及Western-Blot鉴定图(左图为SDS-PAGE;右图为Western-Blot),M为标准蛋白Marker;1为未诱导菌阴性对照;2为纯化的VP2蛋白;Figure 5 shows the SDS-PAGE and Western-Blot identification of the purified recombinant VP2 protein (the left picture is SDS-PAGE; the right picture is Western-Blot), M is the standard protein Marker; 1 is the negative control of uninduced bacteria; 2 is the Purified VP2 protein;
图6为BTV1灭活病毒SDS-PAGE鉴定结果,其中,M为标准蛋白Marker;1为浓缩后的BTV1灭活病毒。Figure 6 is the identification result of BTV1 inactivated virus by SDS-PAGE, wherein, M is the standard protein Marker; 1 is the concentrated BTV1 inactivated virus.
图7为DOT-ELISA鉴定结果,其中,1为BTV1灭活病毒;2为纯化的VP2蛋白;3为未诱导菌阴性对照。Figure 7 is the DOT-ELISA identification results, wherein, 1 is the BTV1 inactivated virus; 2 is the purified VP2 protein; 3 is the negative control of uninduced bacteria.
具体实施方式Detailed ways
下面结合实施例对本申请做进一步的解释说明。在介绍具体实施例前,就下述实施例中部分实验背景情况简要介绍说明如下。The application will be further explained below in conjunction with the examples. Before introducing specific embodiments, a brief introduction and description of some experimental backgrounds in the following embodiments are as follows.
生物材料:biomaterials:
pET-28a质粒,Novagen(Merck, Germany)公司产品;pET-28a plasmid, product of Novagen (Merck, Germany);
鉴定使用的BTV1灭活病毒,由云南省畜牧兽医科学研究院惠赠;The BTV1 inactivated virus used in the identification was donated by the Yunnan Academy of Animal Husbandry and Veterinary Sciences;
主要实验试剂:Main experimental reagents:
PCR扩增中高保真热启动PrimeSTAR® HS(Premix)酶,TaKaLa公司产品;High-fidelity hot-start PrimeSTAR® HS (Premix) enzyme for PCR amplification, a product of TaKaLa;
限制性内切酶BamHI、Xho I,NEB(New England Biolabs, Inc.)公司产品;Restriction endonucleases BamHI, Xho I, products of NEB (New England Biolabs, Inc.);
其他情况:Other cases:
下述实施例中所涉及的仪器设备如无特别说明,均为常规仪器设备;The instruments and equipment involved in the following examples are conventional instruments and equipment unless otherwise specified;
所涉及的试剂如无特别说明,均为市售常规试剂;The reagents involved are commercially available conventional reagents unless otherwise specified;
所涉及的试验方法,如无特别说明,均为常规方法,参考《分子克隆:实验室手册》(New York:Cold Spring Harbor Laboratory Press,1989)中所述的条件进行操作即可。The test methods involved, unless otherwise specified, are conventional methods, and can be operated with reference to the conditions described in "Molecular Cloning: Laboratory Manual" (New York: Cold Spring Harbor Laboratory Press, 1989).
实施例1Example 1
需要说明的是,现有BTV1 VP2基因序列在进行原核表达时,受限于大肠杆菌基因组序列与病毒基因序列差异性,导致实际表达所得VP2蛋白多以包涵体形式存在,因此造成了表达效率较低,为克服此缺陷,发明人对现有BTV1 VP2基因(GenBank: JX101695.1)序列进行了详细的生物信息学分析,对其所有的氨基酸全部采用使用频率最高的密码子,同时通过优化其mRNA的二级结构,结合对最优密码子频率的修正以及配合后续表达过程中酶切位点的规避,从而设计获得了一个全新的BTV1 VP2 DNA序列,该序列全长2886bp,如SEQ IDNO.1所示。It should be noted that the existing BTV1 VP2 gene sequence is limited by the difference between the Escherichia coli genome sequence and the viral gene sequence during prokaryotic expression, resulting in the fact that the VP2 protein obtained from the actual expression mostly exists in the form of inclusion bodies, thus causing a relatively high expression efficiency. Low, in order to overcome this defect, the inventors conducted a detailed bioinformatics analysis of the existing BTV1 VP2 gene (GenBank: JX101695.1) sequence, and adopted the most frequently used codons for all amino acids. The secondary structure of mRNA, combined with the modification of the optimal codon frequency and the avoidance of the restriction enzyme cleavage site in the subsequent expression process, designed and obtained a brand-new BTV1 VP2 DNA sequence with a full length of 2886bp, as shown in SEQ ID NO. 1 shown.
进一步将所设计基因序列交由生工生物工程(上海)股份有限公司合成后,转化进入pUC57质粒中,以备后续实验应用,此重组质粒命名为:pUC-VP2U。The designed gene sequence was further synthesized by Sangon Bioengineering (Shanghai) Co., Ltd., and then transformed into the pUC57 plasmid for subsequent experimental applications. The recombinant plasmid was named: pUC-VP2U.
所优化的BTV1 VP2基因序列(VP2U),具体碱基序列如下:The optimized BTV1 VP2 gene sequence (VP2U), the specific base sequence is as follows:
ATGGACGAGCTGGGTATCCCAATCTACAAGCAAGGATTCCCTGAGCACCTGCTGCACGGCTACGAGTTCACTATTGACAGCTCTACCAAGATCCAGTCAGTTGGCGGTCGTCACGACGTGACTAAGCTGCCCGAAATGAACGCCTACGACATCAAGGCTGAATCCATCCGCACCGCCCTGTGGTACAACCCTGTTCGTAACGACGGTTTCGTCCTGCCTCGTGTCCTCGACATCACCCTGCGCGGATACGACGGAAAGCGTGCCGTGATCGACTCCAGCAAGCACAAGATCTTCCACACTGACGAGAGGTGGGTCCAGTGGATGATGAAGGACTCAATGGACGCTCAACCCCTCAAGGTCGGCCTGGACGACCGCACACAAAAGATCGCTCACTCATTGCACAATTGTGTTGTGAAGATCGACTCTAAGAAGGCTGACACCATGTCTTACCACGTGGAACCTATCGAAGACCCCAGTAAGGGCTGTCTCCACACCCGTGCCATGCTGTGGAACCACCTGGTTCGCATCGAAATGTCCCACGCCGCCCAAGAAATCGCTTACACACTGAAGCCTACCTACGACATCGTCGTCCACGCTGAACGCCGTGACAGGTCACAACCCTTCCAGCCTGGAGACCAGACCCTGATCAACTTCGGTCGCGGTCAGAAGGTTCAGATGAACCACAACAGCTACGAGAAGATGGTTGAAGGCCTGGCTCACCTCGTGATCCGCGGAAAGACTCCTGAGCTGATCCGTGACGAAATCGCTAAGCTCGACGAGATCTGCAATCGCTGGATCAGGTCCCGTCACGACCCTGGTGAAATCAAGGCCTACGAACTCTGCAAAATCCTCTCCACAGTTGGACGTAAGATGCTCGACCAGGAAAAGGAACCAGCTGACGAAGCCTCTTTGAGCATCCGTTTCCAAGAAGCTATCGACAACAAGTTCCGCCAGCATGACCCTGAACGCCTGAAAATCTTTGAGCACCGTAACCAGCGCCGTGATGAGGACAGGTTCTACATCCTCCTGATGATCGCTGCCTCTGACACATTCAACACTCGCGTCTGGTGGTCCAACCCATACCCCTGTCTGCGTGGAACCCTGATGGCTTCTGAAACCAAGCTGGGTGACGTGTATTCTATGATGCGCAGCTGGTACGACTGGTCTGTTCGTCCTACATACACTCCCCACGAAAAGAGCAGAGAGCAGGAAAAGTACATCTACGGACGCGTGAACCTGTTCGACTACGTCGCCGAACCAGGCACAAAGATCATCCATTGGGAATACAAGTTGAACCAGCAAACAAAAGACATCACATACGAGCAGGGTAACCCATGCGACCTGTTCCCCGACGACGACGAAGCCATCATCACTAAGTTCGATGACGTCGCTTACGGACAGATGGTTTCCGACCTGATCAACGGCGGATGGGATCAGGAGAGGTTCAAGATGCACAAGATCCTCAAGAGCCAGGGCAACGTGCTGACCATCGATTTCGAAAAGGACGCTAAGCTGACAAGTAACGAAGGCGTTACAATGCCAGAATACTTCGACAAGTGGATCATCGCCCCAATGTTCAACGCTAAGTTGCGCATCAAGCACAGCGAGATCGCCCAAAGAAGAGACGACGATCCTATGGTTAAGAGAACACTCAGCCCTATCGCTTTCGACCCTATCGTCCTCCAACGTCTCACTCTCGCTCGTTACTACGACATCAGGCCCGCTATCATGGGTCAGGCCCTGTCACGTCAACAAGGCCAGTCTACTTACGATGAGGAGGTCTCCAAGATCGAAGGATACGCTGAGATCCTCCAGCGTCGTGGAATCGTGCAAATCCCTAAGAAGCCATGCCCCACTGTCACCGCTCAGTACACACTGGAACGCTACGCCCTCTTCCTGATCAACATCTTGGAGCAGCACGTGATCCGCTCCACCGATGAGGATGTCATCTACAGCCACCCTCGTGTGGACCACAAGCTGGAAATCTACGGTGAATCCATCGTTGACATCTCCCAGATCGTGATCTTCGTGTTCGACTTTTTGTTCGAGCGTAGGCGCACCGTCCGCGGCGTGTACGAGTCCCGTTACATGGTGACCCGTATCCGCGACGCCCAGGGCCAGAACAGGATCAACGTCATCACTGAGTTCTTCCCAACTTTCGGCTACTACCTGAACCGTATCAAGGAGGCCACCATCATGCAGGAAATCATGTACCTGAATTTCCTGCCCTTGTTCTTCCTGGTTAGCGACAACATCATGTACACCCATAAGCAATGGTCAGTCCCACTGCTGCTGTACGCTCACGAACTGAAGGTCATCCCTCTGGAGGTGGGTTCATACAATGACCGCTGTGGCCTGATTTCATACGTTGAGTACATGGTGTTCTTCCCCTCTAAGGCTTTCAGGACAAGCAAGTTGGACGAAGTGCAGCCTAAGATCGCTAGGGAGATGCTCAAATACTACACCAACACAAAGATCTTCGAAGGTGGTATCAACCTGAACGTGATCACCACTAAGCAGCTCCTGTACGAGACATACCTGGCTTCCCTGTGCGGTGGACTCTCTGATGGAATCGTGTGGTACCTCCCTATTACACACCCATCTAAGTGTCTGGTCGCCGTTGAGGTCTCCGATGAGAGGGTGCCAGCTTCCATCCGCGCCAGTCGCATCAAGCTGCGCTTCCCTCTGAGCGTTAAGCACCTGAAGGGTATCGTTGTGATCCAAATCGACGAAGAAGGCAAGTTCACAGTTTACTCCGAGGGAATCGTTAGCCACCGTATCTGTAAGAAGAACCTGCTGAAGTACATGTGTGACATCGTCCTGCTCAAGTTCTCCGGCCACGTGTTCGGAAACGACGAGATGCTGACTAAGCTCCTCAACGTTTAA。ATGGACGAGCTGGGTATCCCAATCTACAAGCAAGGATTCCCTGAGCACCTGCTGCACGGCTACGAGTTCACTATTGACAGCTCTACCAAGATCCAGTCAGTTGGCGGTCGTCACGACGTGACTAAGCTGCCCGAAATGAACGCCTACGACATCAAGGCTGAATCCATCCGCACCGCCCTGTGGTACAACCCTGTTCGTAACGACGGTTTCGTCCTGCCTCGTGTCCTCGACATCACCCTGCGCGGATACGACGGAAAGCGTGCCGTGATCGACTCCAGCAAGCACAAGATCTTCCACACTGACGAGAGGTGGGTCCAGTGGATGATGAAGGACTCAATGGACGCTCAACCCCTCAAGGTCGGCCTGGACGACCGCACACAAAAGATCGCTCACTCATTGCACAATTGTGTTGTGAAGATCGACTCTAAGAAGGCTGACACCATGTCTTACCACGTGGAACCTATCGAAGACCCCAGTAAGGGCTGTCTCCACACCCGTGCCATGCTGTGGAACCACCTGGTTCGCATCGAAATGTCCCACGCCGCCCAAGAAATCGCTTACACACTGAAGCCTACCTACGACATCGTCGTCCACGCTGAACGCCGTGACAGGTCACAACCCTTCCAGCCTGGAGACCAGACCCTGATCAACTTCGGTCGCGGTCAGAAGGTTCAGATGAACCACAACAGCTACGAGAAGATGGTTGAAGGCCTGGCTCACCTCGTGATCCGCGGAAAGACTCCTGAGCTGATCCGTGACGAAATCGCTAAGCTCGACGAGATCTGCAATCGCTGGATCAGGTCCCGTCACGACCCTGGTGAAATCAAGGCCTACGAACTCTGCAAAATCCTCTCCACAGTTGGACGTAAGATGCTCGACCAGGAAAAGGAACCAGCTGACGAAGCCTCTTTGAGCATCCGTTTCCAAGAAGCTATCGACAACAAGTTCCGCCAGCATGACCCTGAACGCCTGAAAATCTTTGAGCACCGTAACCAGCGCC GTGATGAGGACAGGTTCTACATCCTCCTGATGATCGCTGCCTCTGACACATTCAACACTCGCGTCTGGTGGTCCAACCCATACCCCTGTCTGCGTGGAACCCTGATGGCTTCTGAAACCAAGCTGGGTGACGTGTATTCTATGATGCGCAGCTGGTACGACTGGTCTGTTCGTCCTACATACACTCCCCACGAAAAGAGCAGAGAGCAGGAAAAGTACATCTACGGACGCGTGAACCTGTTCGACTACGTCGCCGAACCAGGCACAAAGATCATCCATTGGGAATACAAGTTGAACCAGCAAACAAAAGACATCACATACGAGCAGGGTAACCCATGCGACCTGTTCCCCGACGACGACGAAGCCATCATCACTAAGTTCGATGACGTCGCTTACGGACAGATGGTTTCCGACCTGATCAACGGCGGATGGGATCAGGAGAGGTTCAAGATGCACAAGATCCTCAAGAGCCAGGGCAACGTGCTGACCATCGATTTCGAAAAGGACGCTAAGCTGACAAGTAACGAAGGCGTTACAATGCCAGAATACTTCGACAAGTGGATCATCGCCCCAATGTTCAACGCTAAGTTGCGCATCAAGCACAGCGAGATCGCCCAAAGAAGAGACGACGATCCTATGGTTAAGAGAACACTCAGCCCTATCGCTTTCGACCCTATCGTCCTCCAACGTCTCACTCTCGCTCGTTACTACGACATCAGGCCCGCTATCATGGGTCAGGCCCTGTCACGTCAACAAGGCCAGTCTACTTACGATGAGGAGGTCTCCAAGATCGAAGGATACGCTGAGATCCTCCAGCGTCGTGGAATCGTGCAAATCCCTAAGAAGCCATGCCCCACTGTCACCGCTCAGTACACACTGGAACGCTACGCCCTCTTCCTGATCAACATCTTGGAGCAGCACGTGATCCGCTCCACCGATGAGGATGTCATCTACAGCCACCCTCGTGTGGACCACAAGCTGGAAATCTACGGTGAATCCAT CGTTGACATCTCCCAGATCGTGATCTTCGTGTTCGACTTTTTGTTCGAGCGTAGGCGCACCGTCCGCGGCGTGTACGAGTCCCGTTACATGGTGACCCGTATCCGCGACGCCCAGGGCCAGAACAGGATCAACGTCATCACTGAGTTCTTCCCAACTTTCGGCTACTACCTGAACCGTATCAAGGAGGCCACCATCATGCAGGAAATCATGTACCTGAATTTCCTGCCCTTGTTCTTCCTGGTTAGCGACAACATCATGTACACCCATAAGCAATGGTCAGTCCCACTGCTGCTGTACGCTCACGAACTGAAGGTCATCCCTCTGGAGGTGGGTTCATACAATGACCGCTGTGGCCTGATTTCATACGTTGAGTACATGGTGTTCTTCCCCTCTAAGGCTTTCAGGACAAGCAAGTTGGACGAAGTGCAGCCTAAGATCGCTAGGGAGATGCTCAAATACTACACCAACACAAAGATCTTCGAAGGTGGTATCAACCTGAACGTGATCACCACTAAGCAGCTCCTGTACGAGACATACCTGGCTTCCCTGTGCGGTGGACTCTCTGATGGAATCGTGTGGTACCTCCCTATTACACACCCATCTAAGTGTCTGGTCGCCGTTGAGGTCTCCGATGAGAGGGTGCCAGCTTCCATCCGCGCCAGTCGCATCAAGCTGCGCTTCCCTCTGAGCGTTAAGCACCTGAAGGGTATCGTTGTGATCCAAATCGACGAAGAAGGCAAGTTCACAGTTTACTCCGAGGGAATCGTTAGCCACCGTATCTGTAAGAAGAACCTGCTGAAGTACATGTGTGACATCGTCCTGCTCAAGTTCTCCGGCCACGTGTTCGGAAACGACGAGATGCTGACTAAGCTCCTCAACGTTTAA。
实施例2Example 2
在实施例1基础上,发明人进一步以质粒pET28作为载体,将优化后的VP2U重组转入质粒pET28中构建了重组质粒表达载体pET28-VP2U,从而便于后续的原核表达,具体重组质粒表达载体pET28-VP2U的构建过程简要介绍如下。On the basis of Example 1, the inventors further used plasmid pET28 as a carrier, and recombined the optimized VP2U into plasmid pET28 to construct a recombinant plasmid expression vector pET28-VP2U, thereby facilitating subsequent prokaryotic expression. The specific recombinant plasmid expression vector pET28 - The construction process of VP2U is briefly described below.
需要说明的是,为便于证明本申请基因序列优化后表达效果,以现有BTV1 VP2基因(GenBank: JX101695.1)作为对照,发明人同样委托生工生物工程(上海)股份有限公司合成制备了重组质粒命名为:pUC-VP2。在此基础上,发明人同样制备了重组质粒表达载体pET28-VP2以作为对照。It should be noted that, in order to prove the expression effect of the optimized gene sequence of the present application, with the existing BTV1 VP2 gene (GenBank: JX101695.1) as a control, the inventor also entrusted Sangon Bioengineering (Shanghai) Co., Ltd. The recombinant plasmid was named: pUC-VP2. On this basis, the inventors also prepared a recombinant plasmid expression vector pET28-VP2 as a control.
(一)PCR扩增(1) PCR amplification
PCR扩增优化后VP2U基因序列(引物由生工生物工程(上海)股份有限公司合成提供)时,引物序列设计如下:When the optimized VP2U gene sequence was amplified by PCR (the primers were synthesized and provided by Sangon Bioengineering (Shanghai) Co., Ltd.), the primer sequences were designed as follows:
VP2U-F:5’- CGGGATCCATGGACGAGCTGGGTAT -3’,(序列中5’端“GGATCC”部分序列为BamH I酶切位点)VP2U-F: 5'-CGGGATCCATGGACGAGCTGGGTAT-3', (the "GGATCC" part of the sequence at the 5' end of the sequence is the BamH I restriction site)
VP2U-R:5’-CCGCTCGAGTTAAACGTTGAGGAGCTTAGT -3’;(序列中5’端“CTCGAG”部分为Xho I酶切位点)VP2U-R: 5'-CCGCTCGAGTTAAACGTTGAGGAGCTTAGT-3'; (the "CTCGAG" part of the 5' end of the sequence is the Xho I restriction site)
PCR扩增VP2基因序列(引物由生工生物工程(上海)股份有限公司合成提供)时,引物序列设计如下:When PCR amplifying the VP2 gene sequence (the primers were synthesized and provided by Sangon Bioengineering (Shanghai) Co., Ltd.), the primer sequences were designed as follows:
VP2-F:5’- CGGGATCCATGGATGAGTTAGGCATA -3’(序列中5’端“GGATCC”部分序列为BamH I酶切位点)VP2-F: 5'-CGGGATCCATGGATGAGTTAGGCATA-3' (the "GGATCC" part of the sequence at the 5' end of the sequence is the BamH I restriction site)
VP2-R:5’-CCGCTCGAGTCATACGTTGAGAAGTTTTGTTA -3’( 序列中5’端“CTCGAG”部分为Xho I酶切位点)VP2-R: 5'-CCGCTCGAGTCATACGTTGAGAAGTTTTGTTA-3' (the "CTCGAG" part at the 5' end of the sequence is the Xho I restriction site)
以pUC-VP2U质粒或pUC-VP2为模板,进行PCR扩增,PCR扩增时,50μl反应体系设计如下:Using pUC-VP2U plasmid or pUC-VP2 as the template, PCR amplification was performed. During PCR amplification, the 50 μl reaction system was designed as follows:
PrimeSTAR® HS(Premix)酶,25 μl;PrimeSTAR® HS (Premix) enzyme, 25 μl;
上游引物F,1 μl;Upstream primer F, 1 μl;
下游引物R,1 μl;Downstream primer R, 1 μl;
模板质粒pUC-VP2U或pUC-VP2质粒,1 μl;Template plasmid pUC-VP2U or pUC-VP2 plasmid, 1 μl;
灭菌去离子水,22 μl;Sterilized deionized water, 22 μl;
PCR反应条件为:95℃预变性3 min;94℃变性30 s,56℃退火30 s,72℃延伸2min,共30个循环;72℃延伸10 min。The PCR reaction conditions were as follows: pre-denaturation at 95°C for 3 min; denaturation at 94°C for 30 s, annealing at 56°C for 30 s, extension at 72°C for 2 min, a total of 30 cycles; extension at 72°C for 10 min.
对PCR扩增产物进行质量分数1%琼脂糖凝胶电泳检测,结果如图1所示。分析可以看出,优化前后基因的PCR扩增产物大小均约为2893 bp,与预期相符,证明成功获得了全长密码子优化前、后的BTV1 VP2基因。The PCR amplification products were detected by
进一步对PCR扩增产物回收、提纯后备用。The PCR amplification product is further recovered and purified for later use.
(二)酶切,并与质粒pET28进行连接(2) Enzyme digestion and ligation with plasmid pET28
对步骤(一)中所回收的PCR扩增产物(原BTV1 VP2基因或优化后的BTV1 VP2U基因)进行BamH I、Xho I双酶切,同时对质粒pET28进行BamH I、Xho I双酶切,再分别利用DNA回收试剂盒回收目的片段;The PCR amplification product (original BTV1 VP2 gene or the optimized BTV1 VP2U gene) recovered in step (1) was subjected to BamH I and Xho I double digestion, and plasmid pET28 was simultaneously subjected to BamH I and Xho I double digestion, Then use the DNA recovery kit to recover the target fragment;
利用T4 DNA连接酶将所回收的目的片段进行连接,16℃连接过夜。The recovered target fragments were ligated with T4 DNA ligase and ligated at 16°C overnight.
(三)转化、筛选,获得重组正确的重组质粒I(pET28-VP2U)和重组质粒II(pET28-VP2)(3) Transform and screen to obtain the correct recombinant plasmid I (pET28-VP2U) and recombinant plasmid II (pET28-VP2)
将步骤(二)中的连接产物转化E.coli感受态细胞DH5α后,进行抗性筛选,进一步挑取单克隆进行培养后,提取阳性菌落质粒进行双酶切鉴定。After the ligation product in step (2) was transformed into E. coli competent cells DH5α, resistance screening was carried out, and after further picking single clones for cultivation, positive colony plasmids were extracted for double-enzyme digestion identification.
鉴定结果如图2所示。分析可以看出,双酶切后片段大小与VP2及VP2U目的基因大小相符,说明重组载体成功构建。The identification results are shown in Figure 2. It can be seen from the analysis that the size of the fragment after double digestion is consistent with the size of the VP2 and VP2U target genes, indicating that the recombinant vector was successfully constructed.
进一步地,将双酶切阳性的质粒送至生工生物工程有限公司进行测序鉴定,确保获得构建正确的重组质粒I(pET28-VP2U)和重组质粒II(pET28-VP2)。Further, the double-enzyme digestion-positive plasmids were sent to Sangon Bioengineering Co., Ltd. for sequencing and identification to ensure that the correctly constructed recombinant plasmid I (pET28-VP2U) and recombinant plasmid II (pET28-VP2) were obtained.
而对含有构建正确的重组质粒I(pET28-VP2U)和重组质粒II(pET28-VP2)的大肠杆菌进一步培养扩增后,分别提取构建正确的重组质粒I(pET28-VP2U)和重组质粒II(pET28-VP2),以备进一步转化和表达VP2蛋白。After further culturing and amplifying the Escherichia coli containing the correctly constructed recombinant plasmid I (pET28-VP2U) and recombinant plasmid II (pET28-VP2), the correctly constructed recombinant plasmid I (pET28-VP2U) and recombinant plasmid II (pET28-VP2U) and II ( pET28-VP2) for further transformation and expression of VP2 protein.
实施例3Example 3
在实施例2基础上,发明人将所构建的重组质粒I(pET28-VP2U)和重组质粒II(pET28-VP2)分别转化大肠杆菌BL21(DE3)感受态细胞,分别获得表达BTV1 VP2蛋白的大肠杆菌表达菌株pET28-VP2U-BL21和pET28-VP2-BL21,然后进行了初步表达验证,具体实验过程简要介绍如下。On the basis of Example 2, the inventors transformed the constructed recombinant plasmid I (pET28-VP2U) and recombinant plasmid II (pET28-VP2) into E. coli BL21 (DE3) competent cells, respectively, and obtained large intestine expressing BTV1 VP2 protein. Bacillus expresses strains pET28-VP2U-BL21 and pET28-VP2-BL21, and then carried out preliminary expression verification. The specific experimental process is briefly described as follows.
(一)菌株培养和诱导表达(1) Strain culture and induction of expression
分别将大肠杆菌表达菌株pET28-VP2U-BL21和pET28-VP2-BL21接种于含有50μg/mL Kana+的LB液体培养基中培养至OD600值约为0.8时,加入IPTG至终浓度为0.3mM,然后于25℃诱导表达10h。The E. coli expression strains pET28-VP2U-BL21 and pET28-VP2-BL21 were respectively inoculated into LB liquid medium containing 50 μg/mL Kana+ and cultured to an OD 600 value of about 0.8, IPTG was added to a final concentration of 0.3 mM, and then Expression was induced at 25°C for 10h.
(二)蛋白提纯和鉴定(2) Protein purification and identification
取诱导表达后的菌液5 mL,12000r/min离心10min,弃掉上清,收集菌体;Take 5 mL of the induced expression bacterial solution, centrifuge at 12000 r/min for 10 min, discard the supernatant, and collect the bacterial cells;
用1mL PBS重悬菌体后,超声破碎(超声破碎时间为10min,超声3s,间歇3s,功率为45w);After resuspending the cells with 1 mL of PBS, ultrasonically disrupted (ultrasonic fragmentation time is 10 min, ultrasonic for 3 s, intermittent for 3 s, power is 45 w);
12000 r/min离心15 min分离出上清和沉淀,分别用SDS-PAGE进行鉴定。The supernatant and pellet were separated by centrifugation at 12000 r/min for 15 min, and identified by SDS-PAGE respectively.
鉴定结果如图3所示。从图中可以看出,经密码子优化后pET28-VP2U-BL21表达菌株中约120kDa处有BTV1 VP2重组蛋白表达,且可溶性表达量高,而未经优化的pET28-VP2-BL21表达菌株中就没有BTV1 VP2重组蛋白表达;说明密码子优化明显提升了重组蛋白可溶性表达量高。The identification results are shown in Figure 3. It can be seen from the figure that the recombinant protein of BTV1 VP2 is expressed at about 120kDa in the pET28-VP2U-BL21 expression strain after codon optimization, and the soluble expression level is high, while that in the unoptimized pET28-VP2-BL21 expression strain No BTV1 VP2 recombinant protein was expressed; indicating that codon optimization significantly improved the soluble expression of recombinant protein.
(三)诱导表达条件优化(3) Optimization of inducible expression conditions
在上述实验基础上,针对步骤(一)中诱导剂IPTG浓度、诱导表达时间、诱导温度等诱导表达条件进行了进一步优化。具体实验过程及结果简要介绍如下。On the basis of the above experiments, the inducing expression conditions such as the concentration of the inducer IPTG, the induction expression time, and the induction temperature in step (1) were further optimized. The specific experimental process and results are briefly introduced as follows.
(1)IPTG浓度优化:将过夜活化菌种1:100接种于含有50μg/mL Kana+的LB液体培养基中培养至OD600值约为0.8时,分别加入终浓度为:0.1 mM、0.2 mM、0.4 mM、0.6 mM、0.8mM、1.0 mM的IPTG,30℃、诱导表达8h后收集菌体,经SDS-PAGE鉴定目的蛋白表达情况;结果发现IPTG浓度对目的蛋白表达量总体影响不大(图3A),但从实际操作角度而言,由于0.2mM更易控制用量,因而后续均以0.2 mM作为应用浓度;(1) IPTG concentration optimization: Inoculate 1:100 of the overnight activated strains in LB liquid medium containing 50 μg/mL Kana+ and culture to an OD 600 value of about 0.8, add the final concentrations: 0.1 mM, 0.2 mM, 0.4 mM, 0.6 mM, 0.8 mM, 1.0 mM IPTG, 30 ℃, after induction expression for 8 h, collected the bacteria, and identified the expression of the target protein by SDS-PAGE; the results showed that the IPTG concentration had little effect on the overall expression of the target protein (Fig. 3A), but from a practical point of view, since 0.2 mM is easier to control the dosage, 0.2 mM is used as the application concentration in the following applications;
(2)诱导表达温度优化:将过夜活化菌种1:100接种于含有50μg/mL Kana+的LB液体培养基中培养至OD600值约为0.8时,加入终浓度为 0.2 mM的IPTG,分别于20℃、25℃、37℃诱导表达10h后收集菌体,超声破碎后经SDS-PAGE鉴定目的蛋白表达情况;结果发现20℃时目的蛋白可溶性表达量最高(图3B);(2) Optimization of induction expression temperature: Inoculate overnight activated strains at 1:100 in LB liquid medium containing 50 μg/mL Kana+ and culture to an OD 600 value of about 0.8, add IPTG with a final concentration of 0.2 mM, respectively. The cells were collected after inducing expression at 20°C, 25°C and 37°C for 10 hours. After ultrasonication, the expression of the target protein was identified by SDS-PAGE. The results showed that the soluble expression of the target protein was the highest at 20°C (Figure 3B).
(3)诱导表达时间优化:将过夜活化菌种1:100接种于含有50μg/mL Kana+的LB液体培养基中培养至OD600值约为0.8时,加入终浓度为 0.2 mM的IPTG,于20℃分别诱导表达6h、8h、10h、12h后收集菌体,SDS-PAGE鉴定目的蛋白表达情况;结果发现诱导表达10h时目的蛋白可溶性表达量最高(图3C)。(3) Optimization of induction expression time: Inoculate 1:100 of the overnight activated strains in LB liquid medium containing 50 μg/mL Kana+ and culture to an OD 600 value of about 0.8, add IPTG with a final concentration of 0.2 mM, at 20 After inducing expression at ℃ for 6h, 8h, 10h, and 12h, the cells were collected, and the expression of the target protein was identified by SDS-PAGE; the results showed that the soluble expression of the target protein was the highest when the expression was induced for 10h (Figure 3C).
综上实验结果表明,重组蛋白较优表达和操作条件为:IPTG浓度为0.2mM、诱导温度20℃、诱导10 h时目的蛋白表达量最高(图4)。To sum up, the experimental results showed that the optimal expression and operating conditions of the recombinant protein were: IPTG concentration of 0.2 mM, induction temperature of 20 °C, and induction of 10 h for the highest expression of the target protein (Figure 4).
实施例4Example 4
在实施例4基础上,发明人进一步利用所构建的大肠杆菌表达菌株pET28-VP2U-BL21进行了小规模发酵培养实验,以考察其实际应用情况,具体实验过程简介如下。On the basis of Example 4, the inventor further used the constructed Escherichia coli expression strain pET28-VP2U-BL21 to conduct a small-scale fermentation culture experiment to investigate its practical application. The specific experimental process is briefly described as follows.
(一)菌株活化(1) Strain activation
将-80℃甘油管保存的基因工程菌E.coli pET28-VP2U-BL21菌株在含有50μg/mL卡那霉素的LB固体培养基表面划线接种,随后将平皿于37℃恒温培养箱中倒置培养过夜;The genetically engineered bacteria E.coli pET28-VP2U-BL21 strain stored in -80 ℃ glycerol tube was streaked on the surface of LB solid medium containing 50 μg/mL kanamycin, and then the plate was inverted in a 37 ℃ constant temperature incubator Incubate overnight;
第二天,将活化后的菌种接种到50mL的种子培养基(Kana+/LB液体培养基,其中卡那霉素浓度为50μg/mL)中,37℃振荡培养14小时,以此作为种子液。The next day, the activated strains were inoculated into 50 mL of seed medium (Kana+/LB liquid medium, in which the concentration of kanamycin was 50 μg/mL), and shaken at 37°C for 14 hours, which was used as the seed liquid .
需要解释的是,本实施例中大肠杆菌表达菌株pET28-VP2U-BL21在转化成功后,为便于保存,因此采用了-80℃甘油管保存,实际应用中,在转化成功后,可以直接接种于种子培养基中发酵制备种子液,而无需接种于LB固体培养基先进行活化。It should be explained that in this example, after the successful transformation of the Escherichia coli expression strain pET28-VP2U-BL21, in order to facilitate preservation, a -80°C glycerol tube was used for preservation. In practical applications, after successful transformation, it can be directly inoculated in The seed liquid is prepared by fermentation in the seed medium, without the need to inoculate the LB solid medium for activation.
(二)发酵培养(2) Fermentation culture
发酵罐中,5L基础发酵培养基,121℃灭菌20min,降温至35℃,调节pH=6.8,接种步骤(一)中所制备的种子液50mL(接种比例,1:100),需要注意的是,接种前,基础发酵培养基中加入灭菌后卡那霉素至浓度为50μg/mL;In the fermenter, 5L basic fermentation medium, sterilized at 121°C for 20min, cooled to 35°C, adjusted to pH=6.8, inoculated with 50mL of the seed solution prepared in step (1) (inoculation ratio, 1:100), note that Yes, before inoculation, add sterilized kanamycin to the basal fermentation medium to a concentration of 50 μg/mL;
最大通气量为50%,通气量范围为100~150VVM;最大搅拌转速为50%,搅拌转速150~300r/min,37℃培养3小时左右。The maximum ventilation rate was 50%, and the ventilation rate range was 100-150 VVM; the maximum stirring speed was 50%, the stirring speed was 150-300 r/min, and the culture was carried out at 37 °C for about 3 hours.
所述基础发酵培养基,组分为:12g/L蛋白胨,24g/L酵母提取物,16.43g/L K2HPO4•3H2O,2.31g/L KH2PO4,5.04g/L甘油。The basic fermentation medium is composed of: 12 g/L peptone, 24 g/L yeast extract, 16.43 g/L K 2 HPO 4 •3H 2 O, 2.31 g/L KH 2 PO 4 , and 5.04 g/L glycerol.
(三)诱导蛋白表达(3) Induced protein expression
待步骤(2)中发酵液的OD600为7.0-8.0左右时(即37℃培养3小时左右时),将发酵液温度降至20℃,加入终浓度为0.2mmol/L的诱导剂IPTG,继续发酵24h进行目的蛋白的诱导表达;When the OD 600 of the fermentation broth in step (2) is about 7.0-8.0 (that is, when cultured at 37°C for about 3 hours), the temperature of the fermentation broth is lowered to 20°C, and the inducer IPTG with a final concentration of 0.2mmol/L is added. Continue to ferment for 24h to induce the expression of the target protein;
发酵过程中,通过通气与搅拌操作,控制溶氧量在20~30%之间。During the fermentation process, the amount of dissolved oxygen is controlled between 20 and 30% through aeration and stirring operations.
(四)蛋白提取和纯化(4) Protein extraction and purification
待发酵结束后,8000r/min离心20min收集菌体,然后用PBS重悬诱导表达后菌体,再高压破碎或超声破碎,并进一步12000r/min离心15min,取菌液上清,0.22μm滤膜过滤后,用镍亲和层析法进行纯化。After the fermentation, the cells were collected by centrifugation at 8000r/min for 20min, then resuspended with PBS to induce the expression of the cells, and then crushed by high pressure or sonication, and further centrifuged at 12000r/min for 15min, and the supernatant of the bacterial liquid was taken and filtered with a 0.22 μm membrane. After filtration, purification was performed by nickel affinity chromatography.
具体镍亲和层析法进行纯化操作时,可参考如下步骤进行操作:先用平衡液(50mMTris-HCl,300mM NaCl,10mM咪唑)平衡;再用洗涤液(50mM Tris-HCl,300mM NaCl,40mM咪唑)洗脱杂蛋白;最后用洗脱液(50mM Tris-HCl,300mM NaCl,250mM咪唑)洗脱目的蛋白。When purifying by nickel affinity chromatography, please refer to the following steps: first equilibrate with equilibration solution (50mM Tris-HCl, 300mM NaCl, 10mM imidazole); then use washing solution (50mM Tris-HCl, 300mM NaCl, 40mM imidazole) to elute the impurity protein; finally, use the eluent (50 mM Tris-HCl, 300 mM NaCl, 250 mM imidazole) to elute the target protein.
需要说明的是,以某次较优实验为例,发酵结束后测定结果表明,发酵液中菌体干重可达126.5g/L,离心后菌体干重占比达到12.65%,这一结果表明,发酵调节、发酵效果是较优的,可为实际蛋白制备奠定较好的发酵基础。It should be noted that, taking a certain optimal experiment as an example, the measurement results after fermentation showed that the dry weight of the bacteria in the fermentation broth could reach 126.5g/L, and the proportion of the dry weight of the bacteria after centrifugation reached 12.65%. It shows that the fermentation regulation and fermentation effect are excellent, which can lay a good fermentation foundation for the actual protein preparation.
而对纯化后蛋白进行鉴定,结果如图5所示。可以看出:SDS-PAGE及Western Blot结果均显示重组蛋白纯化效果较好,分析表明,VP2纯度约为80%。The purified protein was identified, and the results are shown in Figure 5. It can be seen that: SDS-PAGE and Western Blot results show that the recombinant protein purification effect is good, analysis shows that the purity of VP2 is about 80%.
(五)BTV1 VP2重组蛋白的表达含量测定(5) Determination of expression content of BTV1 VP2 recombinant protein
在步骤(3)所得纯化蛋白基础上,利用BCA蛋白浓度测定试剂盒,采用ELISA夹心法,发明人进一步对发酵液中BTV1 VP2重组蛋白的表达量情况进行了测定,具体测定过程简介如下。On the basis of the purified protein obtained in step (3), using the BCA protein concentration determination kit and the ELISA sandwich method, the inventors further determined the expression of BTV1 VP2 recombinant protein in the fermentation broth. The specific determination process is as follows.
首先,用已测定浓度的纯化目的蛋白原液稀释成一系列浓度,具体有:2 µg/mL、1µg/mL、0.5 µg/mL、0.25 µg/mL、0.125 µg/mL,以此作为标准浓度,通过ELISA检测,用浓度做纵坐标,对应OD450检测值做横坐标,建立标准线性回归方程。First, dilute the purified target protein stock solution with the determined concentration to a series of concentrations, specifically: 2 µg/mL, 1 µg/mL, 0.5 µg/mL, 0.25 µg/mL, 0.125 µg/mL, as the standard concentration, through For ELISA detection, use the concentration as the ordinate and the corresponding OD 450 detection value as the abscissa to establish a standard linear regression equation.
其次,将发酵后破菌液上清稀释成一系列倍数,具体为:50、100、200、400倍。Next, the supernatant of the fermented bacteria-broken liquid was diluted into a series of multiples, specifically: 50, 100, 200, and 400 times.
最后,对发酵后破菌液上清测出的OD450值通过标准线性回归方程求得对应浓度(单位为µg/mL),再乘以稀释倍数即为发酵破菌液上清目的蛋白浓度(单位为µg/mL)。Finally, the OD 450 value measured in the supernatant of the fermented bacteria-broken liquid was obtained by a standard linear regression equation to obtain the corresponding concentration (unit: µg/mL), and then multiplied by the dilution factor to obtain the target protein concentration of the fermented bacteria-broken liquid supernatant ( The unit is µg/mL).
由于破菌液是由菌体湿重∶破菌缓冲液=1:10配制的,所以发酵菌体的目的蛋白表达量(单位为µg/g菌体)为:10×发酵破菌液上清目的蛋白浓度(单位为µg/mL),再乘以发酵液菌体密度(单位为g菌体/L发酵液),则为发酵目的蛋白表达量浓度(单位为µg/L发酵液)。具体公式如下:Since the bacteria breaking liquid is prepared by the wet weight of the bacteria body: bacteria breaking buffer = 1:10, the expression amount of the target protein of the fermented bacteria (unit is µg/g bacteria) is: 10 × fermentation bacteria breaking liquid supernatant The concentration of the target protein (unit: µg/mL), multiplied by the bacterial density of the fermentation broth (unit: g bacterial cell/L fermentation broth), is the expression concentration of the fermentation target protein (unit: µg/L fermentation broth). The specific formula is as follows:
发酵破菌液上清目的蛋白浓度(µg/mL)=稀释倍数×标准目的蛋白浓度(µg/mL)×OD450(发酵破菌液上清)/OD450(标准目的蛋白浓度);The concentration of target protein in the supernatant of the fermentation broth (µg/mL) = dilution factor × standard target protein concentration (µg/mL) × OD 450 (supernatant of the fermentation broth) / OD 450 (standard target protein concentration);
发酵目的蛋白表达量浓度(µg/L发酵液)=10×发酵破菌液上清目的蛋白浓度(µg/mL)×发酵液菌体密度(g菌体/L发酵液)。The concentration of fermentation target protein expression (µg/L fermentation broth) = 10×the concentration of target protein in the supernatant of the fermentation broth (µg/mL)×the bacterial density of the fermentation broth (g bacterial cells/L fermentation broth).
对不同批次发酵液中BTV1 VP2发酵表达结果进行测定,结果如下表所示:The fermentation expression results of BTV1 VP2 in different batches of fermentation broth were determined, and the results are shown in the following table:
。 .
从上表结果可以看出,本发明通过对BTV1 VP2蛋白基因表达序列的优化,不仅能够在大肠杆菌中表达BTV1 VP2蛋白,而且可溶性表达量较高,能够满足工业化生产的要求。It can be seen from the results in the above table that the present invention can not only express BTV1 VP2 protein in Escherichia coli by optimizing the expression sequence of BTV1 VP2 protein gene, but also has a high soluble expression level, which can meet the requirements of industrial production.
(六)BTV1 VP2重组蛋白活性鉴定(6) Activity identification of BTV1 VP2 recombinant protein
为确定本申请所制备BTV1 VP2蛋白的可用性,发明人进一步对其活性进行检测鉴定,具体实验过程简要介绍如下。In order to determine the availability of the BTV1 VP2 protein prepared in this application, the inventors further detected and identified its activity. The specific experimental process is briefly described as follows.
(1)制备灭活病毒BTV1高免血清(1) Preparation of inactivated virus BTV1 hyperimmune serum
将BTV1灭活病毒浓缩后(浓缩后病毒的SDS-PAGE鉴定结果如图6所示),加入弗氏完全佐剂乳化制成免疫原,通过背部皮下多点注射的方法,免疫4~8周龄的雌性BALB/c小鼠3只,免疫剂量50μl/只;After the BTV1 inactivated virus was concentrated (the SDS-PAGE identification result of the concentrated virus is shown in Figure 6), it was emulsified with Freund's complete adjuvant to make an immunogen, and the immunogen was immunized for 4 to 8 weeks by subcutaneous injection at multiple points on the back. 3 female BALB/c mice of age, the immunization dose was 50 μl/mice;
每隔3周用弗氏不完全佐剂与免疫抗原乳化后以相同的方法和剂量对BALB/c小鼠进行加强免疫,共免疫3次,最后获得高免血清。BALB/c mice were boosted with the same method and dose after emulsification with incomplete Freund's adjuvant and immunizing antigen every 3 weeks, and immunized three times in total, and finally obtained hyperimmune serum.
(2)BTV1 VP2蛋白活性测定(2) Determination of BTV1 VP2 protein activity
采用DOT ELISA法进行活性测定,具体操作为:The activity was determined by DOT ELISA, and the specific operations were as follows:
将条状NC膜在磷酸盐缓冲液(PBS)中完全浸湿,室温晾干;Wet the strip-shaped NC membrane completely in phosphate buffered saline (PBS) and dry it at room temperature;
取1μl纯化的BTV1 VP2蛋白点在NC膜上,再取1μl灭活BTV1病毒以及1μl 未诱导的蛋白分别作为阳性对照和阴性对照,以1:500稀释的阳性血清作为一抗,1:5000稀释的HRP标记的羊抗鼠作为二抗,AEC显色。Take 1 μl of purified BTV1 VP2 protein and spot it on the NC membrane, and then take 1 μl of inactivated BTV1 virus and 1 μl of uninduced protein as positive control and negative control, respectively, use 1:500 diluted positive serum as primary antibody, 1:5000 dilution HRP-conjugated goat anti-mouse was used as the secondary antibody, and AEC was developed.
实验结果(结果如图7所示)表明经原核表达系统获得的BTV1 VP2蛋白能与BTV1病毒免疫的小鼠血清发生特异性反应,说明BTV1 VP2蛋白具有良好反应原性,可以用于进一步疫苗制备应用。The experimental results (the results are shown in Figure 7) show that the BTV1 VP2 protein obtained by the prokaryotic expression system can react specifically with the serum of mice immunized with BTV1 virus, indicating that the BTV1 VP2 protein has good reactogenicity and can be used for further vaccine preparation application.
SEQUENCE LISTING SEQUENCE LISTING
<110> 郑州大学<110> Zhengzhou University
河南中泽生物工程有限公司 Henan Zhongze Biological Engineering Co., Ltd.
<120> 一种BTV1 VP2蛋白的原核表达制备方法<120> A kind of prokaryotic expression preparation method of BTV1 VP2 protein
<130> none<130> none
<160> 1<160> 1
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 2886<211> 2886
<212> DNA<212> DNA
<213> bluetongue virus<213> bluetongue virus
<400> 1<400> 1
atggacgagc tgggtatccc aatctacaag caaggattcc ctgagcacct gctgcacggc 60atggacgagc tgggtatccc aatctacaag caaggattcc ctgagcacct gctgcacggc 60
tacgagttca ctattgacag ctctaccaag atccagtcag ttggcggtcg tcacgacgtg 120tacgagttca ctattgacag ctctaccaag atccagtcag ttggcggtcg tcacgacgtg 120
actaagctgc ccgaaatgaa cgcctacgac atcaaggctg aatccatccg caccgccctg 180actaagctgc ccgaaatgaa cgcctacgac atcaaggctg aatccatccg caccgccctg 180
tggtacaacc ctgttcgtaa cgacggtttc gtcctgcctc gtgtcctcga catcaccctg 240tggtacaacc ctgttcgtaa cgacggtttc gtcctgcctc gtgtcctcga catcaccctg 240
cgcggatacg acggaaagcg tgccgtgatc gactccagca agcacaagat cttccacact 300cgcggatacg acggaaagcg tgccgtgatc gactccagca agcacaagat cttccacact 300
gacgagaggt gggtccagtg gatgatgaag gactcaatgg acgctcaacc cctcaaggtc 360gacgagaggt gggtccagtg gatgatgaag gactcaatgg acgctcaacc cctcaaggtc 360
ggcctggacg accgcacaca aaagatcgct cactcattgc acaattgtgt tgtgaagatc 420ggcctggacg accgcacaca aaagatcgct cactcattgc acaattgtgt tgtgaagatc 420
gactctaaga aggctgacac catgtcttac cacgtggaac ctatcgaaga ccccagtaag 480gactctaaga aggctgacac catgtcttac cacgtggaac ctatcgaaga ccccagtaag 480
ggctgtctcc acacccgtgc catgctgtgg aaccacctgg ttcgcatcga aatgtcccac 540ggctgtctcc acacccgtgc catgctgtgg aaccacctgg ttcgcatcga aatgtcccac 540
gccgcccaag aaatcgctta cacactgaag cctacctacg acatcgtcgt ccacgctgaa 600gccgcccaag aaatcgctta cacactgaag cctacctacg acatcgtcgt ccacgctgaa 600
cgccgtgaca ggtcacaacc cttccagcct ggagaccaga ccctgatcaa cttcggtcgc 660cgccgtgaca ggtcacaacc cttccagcct ggagaccaga ccctgatcaa cttcggtcgc 660
ggtcagaagg ttcagatgaa ccacaacagc tacgagaaga tggttgaagg cctggctcac 720ggtcagaagg ttcagatgaa ccacaacagc tacgagaaga tggttgaagg cctggctcac 720
ctcgtgatcc gcggaaagac tcctgagctg atccgtgacg aaatcgctaa gctcgacgag 780ctcgtgatcc gcggaaagac tcctgagctg atccgtgacg aaatcgctaa gctcgacgag 780
atctgcaatc gctggatcag gtcccgtcac gaccctggtg aaatcaaggc ctacgaactc 840atctgcaatc gctggatcag gtcccgtcac gaccctggtg aaatcaaggc ctacgaactc 840
tgcaaaatcc tctccacagt tggacgtaag atgctcgacc aggaaaagga accagctgac 900tgcaaaatcc tctccacagt tggacgtaag atgctcgacc aggaaaagga accagctgac 900
gaagcctctt tgagcatccg tttccaagaa gctatcgaca acaagttccg ccagcatgac 960gaagcctctt tgagcatccg tttccaagaa gctatcgaca acaagttccg ccagcatgac 960
cctgaacgcc tgaaaatctt tgagcaccgt aaccagcgcc gtgatgagga caggttctac 1020cctgaacgcc tgaaaatctt tgagcaccgt aaccagcgcc gtgatgagga caggttctac 1020
atcctcctga tgatcgctgc ctctgacaca ttcaacactc gcgtctggtg gtccaaccca 1080atcctcctga tgatcgctgc ctctgacaca ttcaacactc gcgtctggtg gtccaaccca 1080
tacccctgtc tgcgtggaac cctgatggct tctgaaacca agctgggtga cgtgtattct 1140tacccctgtc tgcgtggaac cctgatggct tctgaaacca agctgggtga cgtgtattct 1140
atgatgcgca gctggtacga ctggtctgtt cgtcctacat acactcccca cgaaaagagc 1200atgatgcgca gctggtacga ctggtctgtt cgtcctacat acactcccca cgaaaagagc 1200
agagagcagg aaaagtacat ctacggacgc gtgaacctgt tcgactacgt cgccgaacca 1260agagagcagg aaaagtacat ctacggacgc gtgaacctgt tcgactacgt cgccgaacca 1260
ggcacaaaga tcatccattg ggaatacaag ttgaaccagc aaacaaaaga catcacatac 1320ggcacaaaga tcatccattg ggaatacaag ttgaaccagc aaacaaaaga catcacatac 1320
gagcagggta acccatgcga cctgttcccc gacgacgacg aagccatcat cactaagttc 1380gagcagggta acccatgcga cctgttcccc gacgacgacg aagccatcat cactaagttc 1380
gatgacgtcg cttacggaca gatggtttcc gacctgatca acggcggatg ggatcaggag 1440gatgacgtcg cttacggaca gatggtttcc gacctgatca acggcggatg ggatcaggag 1440
aggttcaaga tgcacaagat cctcaagagc cagggcaacg tgctgaccat cgatttcgaa 1500aggttcaaga tgcacaagat cctcaagagc cagggcaacg tgctgaccat cgatttcgaa 1500
aaggacgcta agctgacaag taacgaaggc gttacaatgc cagaatactt cgacaagtgg 1560aaggacgcta agctgacaag taacgaaggc gttacaatgc cagaatactt cgacaagtgg 1560
atcatcgccc caatgttcaa cgctaagttg cgcatcaagc acagcgagat cgcccaaaga 1620atcatcgccc caatgttcaa cgctaagttg cgcatcaagc acagcgagat cgcccaaaga 1620
agagacgacg atcctatggt taagagaaca ctcagcccta tcgctttcga ccctatcgtc 1680agagacgacg atcctatggt taagagaaca ctcagcccta tcgctttcga ccctatcgtc 1680
ctccaacgtc tcactctcgc tcgttactac gacatcaggc ccgctatcat gggtcaggcc 1740ctccaacgtc tcactctcgc tcgttactac gacatcaggc ccgctatcat gggtcaggcc 1740
ctgtcacgtc aacaaggcca gtctacttac gatgaggagg tctccaagat cgaaggatac 1800ctgtcacgtc aacaaggcca gtctacttac gatgaggagg tctccaagat cgaaggatac 1800
gctgagatcc tccagcgtcg tggaatcgtg caaatcccta agaagccatg ccccactgtc 1860gctgagatcc tccagcgtcg tggaatcgtg caaatcccta agaagccatg ccccactgtc 1860
accgctcagt acacactgga acgctacgcc ctcttcctga tcaacatctt ggagcagcac 1920accgctcagt acacactgga acgctacgcc ctcttcctga tcaacatctt ggagcagcac 1920
gtgatccgct ccaccgatga ggatgtcatc tacagccacc ctcgtgtgga ccacaagctg 1980gtgatccgct ccaccgatga ggatgtcatc tacagccacc ctcgtgtgga ccacaagctg 1980
gaaatctacg gtgaatccat cgttgacatc tcccagatcg tgatcttcgt gttcgacttt 2040gaaatctacg gtgaatccat cgttgacatc tcccagatcg tgatcttcgt gttcgacttt 2040
ttgttcgagc gtaggcgcac cgtccgcggc gtgtacgagt cccgttacat ggtgacccgt 2100ttgttcgagc gtaggcgcac cgtccgcggc gtgtacgagt cccgttacat ggtgacccgt 2100
atccgcgacg cccagggcca gaacaggatc aacgtcatca ctgagttctt cccaactttc 2160atccgcgacg cccagggcca gaacaggatc aacgtcatca ctgagttctt cccaactttc 2160
ggctactacc tgaaccgtat caaggaggcc accatcatgc aggaaatcat gtacctgaat 2220ggctactacc tgaaccgtat caaggaggcc accatcatgc aggaaatcat gtacctgaat 2220
ttcctgccct tgttcttcct ggttagcgac aacatcatgt acacccataa gcaatggtca 2280ttcctgccct tgttcttcct ggttagcgac aacatcatgt acacccataa gcaatggtca 2280
gtcccactgc tgctgtacgc tcacgaactg aaggtcatcc ctctggaggt gggttcatac 2340gtcccactgc tgctgtacgc tcacgaactg aaggtcatcc ctctggaggt gggttcatac 2340
aatgaccgct gtggcctgat ttcatacgtt gagtacatgg tgttcttccc ctctaaggct 2400aatgaccgct gtggcctgat ttcatacgtt gagtacatgg tgttcttccc ctctaaggct 2400
ttcaggacaa gcaagttgga cgaagtgcag cctaagatcg ctagggagat gctcaaatac 2460ttcaggacaa gcaagttgga cgaagtgcag cctaagatcg ctagggagat gctcaaatac 2460
tacaccaaca caaagatctt cgaaggtggt atcaacctga acgtgatcac cactaagcag 2520tacaccaaca caaagatctt cgaaggtggt atcaacctga acgtgatcac cactaagcag 2520
ctcctgtacg agacatacct ggcttccctg tgcggtggac tctctgatgg aatcgtgtgg 2580ctcctgtacg agacatacct ggcttccctg tgcggtggac tctctgatgg aatcgtgtgg 2580
tacctcccta ttacacaccc atctaagtgt ctggtcgccg ttgaggtctc cgatgagagg 2640tacctcccta ttacacaccc atctaagtgt ctggtcgccg ttgaggtctc cgatgagagg 2640
gtgccagctt ccatccgcgc cagtcgcatc aagctgcgct tccctctgag cgttaagcac 2700gtgccagctt ccatccgcgc cagtcgcatc aagctgcgct tccctctgag cgttaagcac 2700
ctgaagggta tcgttgtgat ccaaatcgac gaagaaggca agttcacagt ttactccgag 2760ctgaagggta tcgttgtgat ccaaatcgac gaagaaggca agttcacagt ttactccgag 2760
ggaatcgtta gccaccgtat ctgtaagaag aacctgctga agtacatgtg tgacatcgtc 2820ggaatcgtta gccaccgtat ctgtaagaag aacctgctga agtacatgtg tgacatcgtc 2820
ctgctcaagt tctccggcca cgtgttcgga aacgacgaga tgctgactaa gctcctcaac 2880ctgctcaagt tctccggcca cgtgttcgga aacgacgaga tgctgactaa gctcctcaac 2880
gtttaa 2886gtttaa 2886
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910618587.5A CN110408633B (en) | 2019-07-10 | 2019-07-10 | Prokaryotic expression preparation method of BTV1 VP2 protein |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910618587.5A CN110408633B (en) | 2019-07-10 | 2019-07-10 | Prokaryotic expression preparation method of BTV1 VP2 protein |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110408633A CN110408633A (en) | 2019-11-05 |
CN110408633B true CN110408633B (en) | 2022-06-24 |
Family
ID=68360803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910618587.5A Active CN110408633B (en) | 2019-07-10 | 2019-07-10 | Prokaryotic expression preparation method of BTV1 VP2 protein |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110408633B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112390862B (en) * | 2020-10-27 | 2022-03-22 | 中国检验检疫科学研究院 | Protein for detecting bluetongue disease and its encoding gene and soluble preparation method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1563383A (en) * | 2004-03-17 | 2005-01-12 | 云南出入境检验检疫局检验检疫技术中心 | Plamid vector, VP7 expresses antigen of blue tongue virus VP7 gene recombined expression, and preparation method |
WO2017029619A1 (en) * | 2015-08-18 | 2017-02-23 | University Of Cape Town | Synthetic btv vp2 multiepitope peptide vaccine |
CN109897092A (en) * | 2019-04-02 | 2019-06-18 | 深圳出入境检验检疫局动植物检验检疫技术中心 | A kind of solvable preparation method of blue tongue virus NS3 gene |
-
2019
- 2019-07-10 CN CN201910618587.5A patent/CN110408633B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1563383A (en) * | 2004-03-17 | 2005-01-12 | 云南出入境检验检疫局检验检疫技术中心 | Plamid vector, VP7 expresses antigen of blue tongue virus VP7 gene recombined expression, and preparation method |
WO2017029619A1 (en) * | 2015-08-18 | 2017-02-23 | University Of Cape Town | Synthetic btv vp2 multiepitope peptide vaccine |
CN109897092A (en) * | 2019-04-02 | 2019-06-18 | 深圳出入境检验检疫局动植物检验检疫技术中心 | A kind of solvable preparation method of blue tongue virus NS3 gene |
Non-Patent Citations (3)
Title |
---|
"Expression and purification of the outer shell proteinVP2 of the 4th serotype Bluetongue virus, and preparation of monoclonal antibodies against this protein";Han Zhou et al.;《Process Biochemistry》;20170628;第61卷;第119-123页 * |
"Soluble expression and purification of Bluetongue Virus Type 1 (BTV1) structure protein VP2 in Escherichia coli and its immunogenicity in mice";Aiping Wang et al.;《PeerJ》;20210104;第9卷;第1-16页 * |
"蓝舌病1型病毒VP2蛋白的原核表达及免疫反应性分析";宋建领 等;《中国畜牧兽医》;20171231;第44卷(第7期);第2119-2125页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110408633A (en) | 2019-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103585625B (en) | A kind of porcine epizootic diarrhea recombinant baculovirus genetic engineering subunit vaccine and preparation method thereof and application | |
CN101264323A (en) | Respiratory syncytial virus subunit vaccine, preparation method and application | |
CN106148358A (en) | A kind of method utilizing escherichia expression system to prepare pig parvoviral virus sample particle subunits vaccine and application | |
CN103013895B (en) | Genetic engineering live vaccine of recombinant Salmonella choleraesuis and Porcine epidemic diarrhea virus, preparation and application | |
CN105087616B (en) | A kind of fusion of mycoplasma hyopneumoniae and preparation method thereof | |
CN116514999B (en) | Chimeric expression foot-and-mouth disease virus antigen epitope fusion protein, self-assembled nanoparticle preparation and application thereof | |
CN105462937B (en) | A kind of enterovirus vaccine for chimeric virus-like particles and its preparation method and application | |
CN102559615A (en) | Preparation method of EV71 vaccine and vaccine prepared by preparation method | |
CN104974231A (en) | Novel porcine reproductive and respiratory syndrome virus variant GP5 recombinant protein and preparation method and application thereof | |
CN110408633B (en) | Prokaryotic expression preparation method of BTV1 VP2 protein | |
CN108822192B (en) | An immunoprotective antigen protein APJL_1976 of Actinobacillus pleuropneumoniae and its application | |
CN115340609B (en) | A kind of foot-and-mouth disease virus multi-antigen epitope fusion protein, protein cage nanoparticle and preparation method thereof | |
CN107936123B (en) | A porcine transmissible gastroenteritis virus fusion protein and its preparation method and application | |
CN108840913B (en) | A kind of Actinobacillus pleuropneumoniae immunoprotective antigen protein APJL_0922 and its application | |
CN116462743B (en) | Acinetobacter baumannii translation elongation factor recombinant protein, preparation method and application | |
CN114540393B (en) | A porcine circovirus type 3 virus-like particle and its construction method and application | |
CN115991745A (en) | A Helicobacter pylori recombinant antigen protein TatB and its preparation method and application | |
CN103421729B (en) | Gene recombined swine cholera salmonella choleraesuis vaccine for blue-ear disease and application thereof | |
CN102294027A (en) | Respiratory syncytial virus F2 protein subunit vaccine and preparation method thereof | |
CN104357458A (en) | Recombinant haemophilus parasuis immune protective antigen PotD and preparation method thereof | |
CN115010815B (en) | A method for preparing tandem hepatitis B core virus-like particles for pigs | |
CN116640190B (en) | A recombinant Helicobacter pylori antigen protein RlpA f and its preparation method and application | |
CN119306849A (en) | A kind of porcine rotavirus nanoparticle and its preparation method and application | |
CN118638830A (en) | Preparation method of subunit antigen of Muscovy duck parvovirus VP2 and application of preparing Muscovy duck parvovirus VP2 subunit vaccine | |
CN105749272A (en) | Vaccine expressing giant panda canine distemper virus H, F gene recombinant goat pox virus, its preparation method and immunization application method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |