CN110408458A - 一种实现固液界面自润滑和高摩擦可逆的方法 - Google Patents

一种实现固液界面自润滑和高摩擦可逆的方法 Download PDF

Info

Publication number
CN110408458A
CN110408458A CN201910655709.8A CN201910655709A CN110408458A CN 110408458 A CN110408458 A CN 110408458A CN 201910655709 A CN201910655709 A CN 201910655709A CN 110408458 A CN110408458 A CN 110408458A
Authority
CN
China
Prior art keywords
ionic liquid
liquid
base oil
lubricating
methylimidazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910655709.8A
Other languages
English (en)
Inventor
瞿振宇
廖炯焘
范淇
安蓉
邱秀华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201910655709.8A priority Critical patent/CN110408458A/zh
Publication of CN110408458A publication Critical patent/CN110408458A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/027Compositions based on metals or inorganic oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0026Non-ferro
    • F16D2200/003Light metals, e.g. aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

本发明公开一种实现固液界面自润滑和高摩擦可逆的方法,该方法为将离子液体和基础油混合配制成溶液,其中离子液体与基础油的摩尔比为1:5~1:25,并充分混合;将得到的溶液铺在洁净的Ti衬底上,获得表面附有润滑剂的Ti片。本发明制备的离子液体与一定量的基础油相混合,在金属表面,能实现固液界面自润滑和高摩擦可逆,有望用于火车铁轨、机械齿轮、微机电系统、汽车与轮船等的传动制动装置,减少摩擦带来的损耗;本发明制备的离子液体黏度高,能在固液界面间形成大量分子键,这使得其能长久存留于固体表面,克服高载荷可能造成的离子液体被挤出的难题。

Description

一种实现固液界面自润滑和高摩擦可逆的方法
技术领域
本发明属于摩擦学领域,特别是一种实现固液界面自润滑和高摩擦可逆的方法。
背景技术
在如今的摩擦学领域中,被大量使用的传统润滑油始仍然符合阿蒙东定律(Amontons' laws),即摩擦力与法向压力成正比,满足F=μN的关系式(式中F为摩擦力,N为法向压力,μ为摩擦系数)。在摩擦系数一定的前提下,追求小摩擦力的同时不得不降低载荷,但载荷的降低却并不能完全满足实际的应用。而本方案中涉及的方法改变了上述的关系,具体如下:
在研究离子液体的润滑性能时,发现离子液体除了其本身的性质会导致“摩擦力与压力呈负相关”的现象出现以外,实验结果还表明当压力增大到一个临界值时,“摩擦力—压力”曲线出现拐点,曲线开始符合上述的阿蒙东定律,因此在高载荷下可以得到较大的摩擦力。
实验结果表明,将离子液体加入到基础油中并没有改变离子液体原有的特性。除此之外,当压力从零开始增加并超过“临界值”之后再降回到低于“临界值”时,“摩擦力与压力呈负相关”的现象会再次出现,说明这是一个可逆的过程。
目前已知传统润滑油在使用的过程中会遇到如下几个问题:传统润滑油会在压力过大的时候被挤出需要润滑的表面,造成润滑油的损耗;传统润滑油比较容易挥发,因此无法用于真空极限环境下;一些润滑油在配制过程中加入了卤族元素,会引起金属的腐蚀。在该方法中以上问题都得到了改善。
发明内容
本发明的目的在于提供一种实现固液界面自润滑和高摩擦可逆的方法。
实现本发明目的提供的技术解决方案为:
一种实现固液界面自润滑和高摩擦可逆的方法,将离子液体和基础油混合配制成溶液,其中离子液体与基础油的摩尔比为1:5~1:25,并充分混合;将得到的溶液铺在洁净的Ti衬底上,获得表面附有润滑剂的Ti片。
具体步骤为:步骤1.1:制备离子液体与基础油摩尔比为1:5~1:25的离子液体-基础油溶液;
步骤1.2:将步骤1.1中制得的离子液体-基础油溶液以体积比1:100000溶解在无水乙醇中制成混合溶液:
步骤1.3:裁剪钛片作为衬底,置于乙醇中超声50KHz震荡10min以除去表面污垢;
步骤1.4:将钛片取出,自然干燥后置于烧杯中,用移液枪吸取步骤1.2中所得的混合溶液,滴加到烧杯中的钛片表面上,浸没Ti片;
步骤1.5:用保鲜膜封口,侧面留孔,室温下自然干燥,获得表面附有润滑剂的钛片。
进一步的,离子液体为无卤素离子液体。
进一步的,离子液体中,阳离子是[EPy]+(N-乙基吡啶)、[BPy]+(N-丁基吡啶)、[HPy]+(N-己基吡啶)、[P2,4,4,4]+(三丁基乙基膦)、[P4,4,4,4]+(四丁基膦)、[P4,4,4,8]+(三丁基辛基膦)、[P6,6,6,14]+(三己基十四基膦)、[DMlm]+(1-癸基-3-甲基咪唑)、[C12-Mlm]+(1-十二基-3-甲基咪唑)、[C14-Mlm]+(1-十四基-3-甲基咪唑)、[HO2MMlm]+(1-羧甲基-3-甲基咪唑)、[Hemim]+(1-羟乙基-3-甲基咪唑)、[EOOEMlm]+(1-乙酸乙酯基-3-甲基咪唑)的至少一种;阴离子是[CO3]2-、[HSO4]-、[NO3]-、[H2PO4]-、[AcO]-(醋酸)、[Tos]-(对甲基苯磺酸)、[MS]-(甲磺酸)、[Lac]-(乳酸)、[DCA]-(二氰胺)、[BScB]-(螯合硼)、[BOB]-(二草酸硼酸)、[BMB]-(二丙二酸硼酸)、[B(CN)4]-中的至少一种。
进一步的,基础油为150N基础油、32号基础油、46号基础油、聚癸烯、聚十二烯、二乙二醇二丁醚、二甘醇、三羟甲基丙烷酯、季戊四醇酯、苯二甲酸酯、新戊二醇酯、聚α烯烃-PAO8中的至少一种。
进一步的,步骤1.2中,混合过程中,室温条件下,进行超声震荡混合20分钟以上。
进一步的,超声条件为,超声50kHz震荡30min。
本发明相对于现有技术相比具有显著优点:
1.本发明制备的离子液体与一定量的基础油相混合,在金属表面,能实现固液界面自润滑和高摩擦可逆,有望用于火车铁轨、机械齿轮、微机电系统、汽车与轮船等的传动制动装置,减少摩擦带来的损耗;
2.本发明制备的离子液体极难挥发,可应用于真空环境中。例如减少真空环境下机械零件的损耗,与普通润滑油相比,离子液体作用时间更长,可有效减少因为摩擦产生的损耗,延长零件寿命,这弥补了真空极限环境下润滑技术的空白;
3.本发明制备的离子液体黏度高,能在固液界面间形成大量分子键,这使得其能长久存留于固体表面,克服高载荷可能造成的离子液体被挤出的难题;
4.本发明制备的本发明中的离子液体中不含有卤族元素,有效避免了传统润滑油对金属的腐蚀问题。
附图说明
图1为25wt%[P6,6,6,14]+[BSCB]-离子液体在基底Ti上经非平衡分子动力学模拟得到的在不同狭缝宽度(探针针尖到固体表面间间距)下,离子液体中阴阳离子与基础油的数密度分布曲线;a)狭缝宽度为4.7nm,b)狭缝宽度为6.7nm,c)狭缝宽度为8.7nm,d)狭缝宽度为10.7nm。
图2为AFM测试得到的钛表面不同离子液体的摩擦力-荷载曲线图。
具体实施方式
下面结合附图对本发明作进一步详细描述。
实施例1
步骤1:制备样品。具体包括如下步骤:
步骤1.1:制备摩尔比为1:5~1:25的离子液体-基础油溶液;
步骤1.2:将1.1中制得的离子液体-基础油溶液以体积比1:100000溶解在无水乙醇中制成混合溶液:量取100mL乙醇、1μL离子液体-基础油溶液配比混合后,超声50kHz震荡30min以保证混合均匀;
步骤1.3:裁剪钛片作为衬底,置于10mL乙醇中超声50KHz震荡10min以除去表面污垢;
步骤1.4:将钛片取出,自然干燥后置于烧杯中,用移液枪吸取1.2中所得的混合溶液10mL,滴加到烧杯中的钛片表面上,浸没钛片;
步骤1.5:用保鲜膜封口,侧面留孔,室温下自然干燥,获得表面附有润滑剂的钛片。
实施例2
与实施例1类似,区别在于,将实施例1中的离子液体[P6,6,6,14]+[BOB]-改为[P6,6,6,14]+[BMB]-,其他条件保持一致。
实施例3
与实施例1类似,区别在于,将实施例1中的离子液体[P6,6,6,14]+[BOB]-改为[P6,6,6,14]+[DCA]-,其他条件保持一致。
实施例4
与实施例1类似,区别在于,将实施例1中的离子液体[P6,6,6,14]+[BOB]-改为[P4,4,4,8]+[BScB]-,其他条件保持一致。
实施例5
与实施例1类似,区别在于,将实施例1中的离子液体[P6,6,6,14]+[BOB]-改为[P6,6,6,14]+[BScB]-,其他条件保持一致。
5个实施例均得到如图1所示的自润滑趋势曲线。
实施例6
与实施例1类似,区别在于,将实施例1中的离子液体改为纯基础油(DEGDBE),其他条件保持一致。
实施例6不能实现自润滑,说明DEGDBE不具有自润滑的性质。
实施例7
与实施例1类似,区别在于,将实施例1中的Si3N4探针改为碳材料探针,其他条件保持一致。
实施例7也出现自润滑趋势,说明这种自润滑特性不受探针的影响。
摩擦测量。具体包括如下步骤:
步骤2.1:使用Si3N4探针在Multi-Mode 8原子力显微镜(AFM,Bruker)上进行摩擦力测量;
步骤2.2:原子力显微镜测试到的摩擦力和载荷信号以V为单位,需将此电信号校正转换为以N为单位的力信号,使用不同的探针时需要重新校正;
步骤2.3:侧向力显微镜trace和retrace信号相减得到摩擦力的电信号,通过校正,将其转换为真实的摩擦力力学信号;
步骤2.4:在多个样品位置重复进行五次以上测量获得平均值。
测量钛表面离子液体膜厚。具体包括如下步骤:
步骤3.1:采用硼酸玻璃小球探针测离子液体液膜厚度,该小球直径需远远大于液膜厚度,浸入离子液体;
步骤3.2:通过AFM力曲线的approach部分,在跳入位置与接触线上的零力点之间的差值即液膜的厚度。
测量接触角。具体包括如下步骤:
步骤4.1:接触角测量仪器开机,微量注射器取离子液体,载物台上方夹具夹取钛片作为衬底;
步骤4.2:将进样器或微量注射器固定在载物台上方调焦,获得清晰图像;
步骤4.3:用微量注射器压出样品,进样器下端出现一个清晰的小液滴;
步骤4.4:载物台慢慢上升触碰悬挂在进样器下端的液滴,留在钛平面上;
步骤4.5:冻结图像并保存在文件夹中;
步骤4.6:量角法得到接触角的数值。
分子模拟,具体包括如下步骤:
步骤5.1:利用非平衡分子动力学(NEMD)模拟,单壁碳纳米管(SWCNT)作为原子力显微镜的探针模型,Si(111)表面作为基底,选用[P4,4,4,8]+[BScB]-作为离子液体模型;
步骤5.2:SWCNT探针模型中的C原子和固体表面Si原子设置为不带电荷的Lennard-Jones(LJ)球形粒子;
步骤5.3:用方程表示出范德华力,不同原子之间的静电相互作用和C原子之间的相互作用;
步骤5.4:得到不同原子类型的混合L-J参数。
摩擦测量所得数据见图2。由图可得,随着压力的增大,摩擦力与压力先呈负相关后呈正相关,因此能做到自润滑与高摩擦的可逆变化。
膜厚测量得到的数据均在nm到μm数量级,说明固液接触层较厚,相互作用效果较好。
接触角测量中所测得的接触角都相对较小,这说明固液作用强度较大,在受到较大压力的情况下不易被挤出需要润滑的表面。
分子模拟所得的结果见图1。由图可得,离子液体倾向于紧贴固体表面,因为离子液体黏度较大,因此紧贴固体表面的离子液体会使固液界面作用强度更大,更不易被挤出需要润滑的表面。
本发明采用的离子液体和基础油除了实施例中公开的以外还可以采用其他离子液体及基础油进行替换。

Claims (7)

1.一种实现固液界面自润滑和高摩擦可逆的方法,其特征在于:将离子液体和基础油混合配制成溶液,其中离子液体与基础油的摩尔比为1:5~1:25,并充分混合;将得到的溶液铺在洁净的Ti衬底上,获得表面附有润滑剂的Ti片。
2.根据权利要求1所述的实现固液界面自润滑和高摩擦可逆的方法,其特征在于:
步骤1.1:制备离子液体与基础油摩尔比为1:5~1:25的离子液体-基础油溶液;
步骤1.2:将步骤1.1中制得的离子液体-基础油溶液以体积比1:100000溶解在无水乙醇中制成混合溶液:
步骤1.3:裁剪钛片作为衬底,置于乙醇中超声50KHz震荡10min以除去表面污垢;
步骤1.4:将钛片取出,自然干燥后置于烧杯中,用移液枪吸取步骤1.2中所得的混合溶液,滴加到烧杯中的钛片表面上,浸没Ti片;
步骤1.5:用保鲜膜封口,侧面留孔,室温下自然干燥,获得表面附有润滑剂的钛片。
3.根据权利要求1-2任一项所述的方法,其特征在于:所述的离子液体为无卤素离子液体。
4.根据权利要求3所述的方法,其特征在于:所述的离子液体中,阳离子是[EPy]+(N-乙基吡啶)、[BPy]+(N-丁基吡啶)、[HPy]+(N-己基吡啶)、[P2,4,4,4]+(三丁基乙基膦)、[P4,4,4,4]+(四丁基膦)、[P4,4,4,8]+(三丁基辛基膦)、[P6,6,6,14]+(三己基十四基膦)、[DMlm]+(1-癸基-3-甲基咪唑)、[C12-Mlm]+(1-十二基-3-甲基咪唑)、[C14-Mlm]+(1-十四基-3-甲基咪唑)、[HO2MMlm]+(1-羧甲基-3-甲基咪唑)、[Hemim]+(1-羟乙基-3-甲基咪唑)、[EOOEMlm]+(1-乙酸乙酯基-3-甲基咪唑)的至少一种;阴离子是[CO3]2-、[HSO4]-、[NO3]-、[H2PO4]-、[AcO]-(醋酸)、[Tos]-(对甲基苯磺酸)、[MS]-(甲磺酸)、[Lac]-(乳酸)、[DCA]-(二氰胺)、[BScB]-(螯合硼)、[BOB]-(二草酸硼酸)、[BMB]-(二丙二酸硼酸)、[B(CN)4]-中的至少一种。
5.根据权利要求1-2任一项所述的方法,其特征在于:所述的基础油为150N基础油、32号基础油、46号基础油、聚癸烯、聚十二烯、二乙二醇二丁醚、二甘醇、三羟甲基丙烷酯、季戊四醇酯、苯二甲酸酯、新戊二醇酯、聚α烯烃-PAO8中的至少一种。
6.根据权利要求2所述的方法,其特征在于:步骤1.2中,混合过程中,室温条件下,进行超声震荡混合20分钟以上。
7.根据权利要求6所述的方法,其特征在于:超声条件为,超声50kHz震荡30min。
CN201910655709.8A 2019-07-19 2019-07-19 一种实现固液界面自润滑和高摩擦可逆的方法 Pending CN110408458A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910655709.8A CN110408458A (zh) 2019-07-19 2019-07-19 一种实现固液界面自润滑和高摩擦可逆的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910655709.8A CN110408458A (zh) 2019-07-19 2019-07-19 一种实现固液界面自润滑和高摩擦可逆的方法

Publications (1)

Publication Number Publication Date
CN110408458A true CN110408458A (zh) 2019-11-05

Family

ID=68362106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910655709.8A Pending CN110408458A (zh) 2019-07-19 2019-07-19 一种实现固液界面自润滑和高摩擦可逆的方法

Country Status (1)

Country Link
CN (1) CN110408458A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688144A (zh) * 2007-06-20 2010-03-31 慕尼黑克吕伯尔润滑器两合公司 离子液体用于改善润滑剂组合物性能的用途
WO2014012080A1 (en) * 2012-07-12 2014-01-16 President And Fellows Of Harvard College Slippery self-lubricating polymer surfaces
CN108165344A (zh) * 2017-12-22 2018-06-15 南京理工大学 一种自润滑材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688144A (zh) * 2007-06-20 2010-03-31 慕尼黑克吕伯尔润滑器两合公司 离子液体用于改善润滑剂组合物性能的用途
WO2014012080A1 (en) * 2012-07-12 2014-01-16 President And Fellows Of Harvard College Slippery self-lubricating polymer surfaces
CN108165344A (zh) * 2017-12-22 2018-06-15 南京理工大学 一种自润滑材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AN RONG: "Friction of Ionic Liquid-Glycol Ether Mixtures at Titanium Interfaces: Negative Load Dependence", 《ADVANCED MATERIALS INTERFACES》 *

Similar Documents

Publication Publication Date Title
Liu et al. Structure and frictional properties of self-assembled surfactant monolayers
Simič et al. Adsorption mechanisms for fatty acids on DLC and steel studied by AFM and tribological experiments
Hoque et al. Alkylphosphonate modified aluminum oxide surfaces
Totolin et al. Halogen-free borate ionic liquids as novel lubricants for tribological applications
Kheireddin et al. Inorganic nanoparticle-based ionic liquid lubricants
Cuevas et al. Eco-friendly modification of a regenerated cellulose based film by silicon, carbon and N-doped carbon quantum dots
Abrahami et al. Interface strength and degradation of adhesively bonded porous aluminum oxides
Abdul Samad et al. Nanocomposite UHMWPE–CNT polymer coatings for boundary lubrication on aluminium substrates
Al‐Maliki et al. Effects of atmospheric plasma treatment on adhesion and tribology of aromatic thermoplastic polymers
Guo et al. Adhesion and friction of nanoparticles/polyelectrolyte multilayer films by AFM and micro-tribometer
Rawat et al. Pristine and alkylated MoS2 nanosheets for enhancement of tribological performance of paraffin grease under boundary lubrication regime
Alam et al. Ultralow wear poly (tetrafluoroethylene): a virtuous cycle of wear reduction and tribochemical accumulation
Arcifa et al. Lubrication of Si-based tribopairs with a hydrophobic ionic liquid: the multiscale influence of water
Pu et al. Micro/nano-tribological behaviors of crown-type phosphate ionic liquid ultrathin films on self-assembled monolayer modified silicon
Yegin et al. The effect of nanoparticle functionalization on lubrication performance of nanofluids dispersing silica nanoparticles in an ionic liquid
Krämer et al. Study of morphology and mechanical properties of polystyrene–polybutadiene blends with nanometre resolution using AFM and force–distance curves
JP5843403B2 (ja) カーボンナノチューブを含む潤滑油
Ghosh et al. Tribological properties of PDA+ PTFE coating in oil-lubricated condition
CN110408458A (zh) 一种实现固液界面自润滑和高摩擦可逆的方法
Chlanda et al. Investigation into morphological and electromechanical surface properties of reduced-graphene-oxide-loaded composite fibers for bone tissue engineering applications: A comprehensive nanoscale study using atomic force microscopy approach
CN110596430B (zh) 纳米颗粒粘附力检测方法
Li et al. Tuning the surface reactivity and tribological performance of phosphonium-based ionic liquid at steel/steel interfaces by bromide/phosphate anion mixtures
Hsieh et al. Wetting characteristics of poly (p-phenylene terephthalamide) single fibers and their adhesion to epoxy
Ochanda et al. Salinity effects on the degree of hydrophobicity and longevity for superhydrophobic fibrous coatings
Gao et al. Extremely low friction on gold surface with surfactant molecules induced by surface potential

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191105