CN110401484B - 一种基于mimo的星载相干激光通信分集系统 - Google Patents

一种基于mimo的星载相干激光通信分集系统 Download PDF

Info

Publication number
CN110401484B
CN110401484B CN201910654875.6A CN201910654875A CN110401484B CN 110401484 B CN110401484 B CN 110401484B CN 201910654875 A CN201910654875 A CN 201910654875A CN 110401484 B CN110401484 B CN 110401484B
Authority
CN
China
Prior art keywords
mimo
rear end
space
laser
combiner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910654875.6A
Other languages
English (en)
Other versions
CN110401484A (zh
Inventor
胡思奇
朱野
刘会杰
俞杭华
王硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Engineering Center for Microsatellites
Original Assignee
Shanghai Engineering Center for Microsatellites
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Engineering Center for Microsatellites filed Critical Shanghai Engineering Center for Microsatellites
Priority to CN202110454672.XA priority Critical patent/CN113179129B/zh
Priority to CN201910654875.6A priority patent/CN110401484B/zh
Publication of CN110401484A publication Critical patent/CN110401484A/zh
Application granted granted Critical
Publication of CN110401484B publication Critical patent/CN110401484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/118Arrangements specific to free-space transmission, i.e. transmission through air or vacuum specially adapted for satellite communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5561Digital phase modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system

Abstract

本发明公开了一种基于MIMO的星载相干激光通信分集系统,包括:发射端上位机;纠错编码器,所述纠错编码器的前端与所述发射端上位机相连;空时编码器,所述空时编码器的前端与所述纠错编码器的后端相连;相位调制器,所述相位调制器的前端与所述空时编码器的后端相连;激光器;望远镜;干涉滤光片;分光片;信道估计器,所述信道估计器接收一路来自分光片的入射光;合并器;本振激光器;解调器,所述解调器的前端与所述光电探测器的后端相连;纠错译码器,所述纠错译码器的前端与所述解调器的后端相连;以及接收端上位机,所述接收端上位机与所述纠错编码器的后端相连。

Description

一种基于MIMO的星载相干激光通信分集系统
技术领域
本发明涉及卫星通信技术领域,尤其涉及一种基于MIMO的星载相干激光通信分集系统。
背景技术
相干探测在接收灵敏度上存在优势,对于空间远距离通信链路这样的弱信号强度探测,相干探测比直接探测的激光通信体制在通信速率和探测灵敏度上获得较大提升。为了进一步提高探测灵敏度,目前主要采用分集接收技术在接收端使用多个光学天线接收光信号,当各支路接收信号相互独立时,将其适当合并,可以有效改善信道对空间通信系统性能的影响。
传统的星载相干激光通信分集技术为一发多收,在接收端采用分集接收技术。下面以一发四收BPSK调制为例进行说明其他一发多收和其他调制方式的情况可进行同样推导。在这种分集技术下,每一个接收支路接收到的光场表达式如公式(1)所示:
Figure BDA0002136555190000011
其中,
Figure BDA0002136555190000012
中,A表示光场的振幅,ω表示光场的频率,
Figure BDA0002136555190000013
表示第k个码片的调制相位。
Figure BDA0002136555190000014
表示信道对发射端到光学接收天线0的影响;
Figure BDA0002136555190000015
表示信道对发射端到光学接收天线1的影响;
Figure BDA0002136555190000016
表示信道对发射端到光学接收天线2的影响;
Figure BDA0002136555190000017
表示信道对发射端到光学接收天线3的影响,n0、n1、n2和n3分别是四个光学接收天线的接收噪声,分别服从n0~N(μ0,σ0,n1~N(μ1,σ1,n2~N(μ2,σ2)和n3~N(μ3,σ3)的高斯分布,且相互独立。四个支路的接收光场r0、r1、r2、r3分别与本振光Elo=Aej (ωt)相干后将光电流进行合并,合并后的表达式如公式(2)所示:
Figure BDA0002136555190000021
其中,R为光电探测器的响应系数。噪声经过合并后为
Figure BDA0002136555190000022
信噪比如公式(3)所示:
Figure BDA0002136555190000023
单路信噪比如公式(4)所示:
Figure BDA0002136555190000024
当各路噪声相同时获得最大合并增益,SNRmrrc=4SNRsingle。由于采用了一发四收的分集接收技术,信噪比获得了4倍的增益。传统的星载相干激光通信分集技术采用一发多收来提高接收信噪比,在星载激光通信场景中,由于载荷尺寸和重量的增加会造成卫星成本和制作难度的增加。例如上述例子中一发四收模式相比于一发一收模收将接收信噪比提高了四倍,但卫星携带的载荷也从一台激光器和一个光学天线增加到一台激光器和四个光学天线增加了卫星制作难度卫星成本和发射成本。
发明内容
针对传统的星载相干激光通信分集技术采用一发多收来提高接收信噪比,在星载激光通信场景中,由于载荷尺寸和重量的增加会造成卫星成本和制作难度的增加,根据本发明的一个方面,提供一种基于MIMO的星载相干激光通信分集系统,包括:
发射端上位机;
纠错编码器,所述纠错编码器的前端与所述发射端上位机相连;
空时编码器,所述空时编码器的前端与所述纠错编码器的后端相连;
相位调制器,所述相位调制器的前端与所述空时编码器的后端相连;
激光器,所述激光器的前端与所述相位调制器的后端相连;
望远镜,所述望远镜接收来自所述激光器的入射光;
干涉滤光片,所述干涉滤光片的前端与所述望远镜的后端相连;
分光片,所述分光片用于将来自所述干涉滤光片的入射光分成两路;
信道估计器,所述信道估计器接收一路来自分光片的入射光;
合并器,所述合并器接收另一路来自分光片的入射光,且所述信道估计器的后端与所述合并器的前端相连;
本振激光器,所述本振激光器与所述合并器的前端相连;
光电探测器,所述光电探测器的前端与所述合并器的后端相连;
解调器,所述解调器的前端与所述光电探测器的后端相连;
纠错译码器,所述纠错译码器的前端与所述解调器的后端相连;以及
接收端上位机,所述接收端上位机与所述纠错编码器的后端相连。
在本发明的一个实施例中,所述空时编码器对M个激光器发送信息序列进行空时分组编码,其中M≥2。
在本发明的一个实施例中,所述相位调制器按照所述空时编码器产生的编码序列对所述激光器阵列进行空时编码调制。
在本发明的一个实施例中,所述信道估计器用于估计信道振幅和相位信息。
在本发明的一个实施例中,所述信道估计器由光纤耦合器、平衡探测器以及本振激光器构成。
在本发明的一个实施例中,所述信道估计器中:
所述本振激光器的输出端与所述光纤耦合器的前端相连;
所述光纤耦合器的后端与所述平衡探测器的输入端相连;
所述平衡探测器的输出端与所述本振激光器相连,以及
所述平衡探测器的输出端作为所述信道估计器的输出端。
在本发明的一个实施例中,所述合并器由相位调制器和光纤耦合器构成。
在本发明的一个实施例中,所述合并器中:
入射光场进入到所述相位调制器的前端;
所述信道估计器的后端与所述相位调制器的前端相连,基于估计出的信道参数调制所述相位调制器;
所述相位调制器的输出端与所述本振激光器的输出端共同接入所述光纤耦合器的输入端;以及
所述光纤耦合器的输出端与所述合并器的输出端相连。
本发明提供一种基于MIMO的星载相干激光通信分集系统,该系统依次由发射端上位机、纠错编码器、空时编码器、相位调制器、激光器、望远镜、干涉滤光片、分光片、信道估计器、本振激光器、合并器、光电探测器、解调器,纠错译码器、接收端上位机构成。本发明提供的该种基于MIMO的星载相干激光通信分集系统的空时编码器对多个激光器发送信息序列进行空时分组编码,信道估计器由光纤耦合器、平衡探测器构成,可以估计出信道振幅和相位特征,合并器由相位调制器和光耦合器构成,可以按照空时分组码对接收信号进行最大比合并。本发明提供的该种基于MIMO的星载相干激光通信分集系统,可以得到N×M合并增益。在降低单个卫星携带载荷的尺寸和重量的情况下实现一发N×M收相干激光通信系统同样的合并增益,且保留相干通信体制。
附图说明
为了进一步阐明本发明的各实施例的以上和其它优点和特征,将参考附图来呈现本发明的各实施例的更具体的描述。可以理解,这些附图只描绘本发明的典型实施例,因此将不被认为是对其范围的限制。在附图中,为了清楚明了,相同或相应的部件将用相同或类似的标记表示。
图1示出根据本发明的一个实施例形成的一种基于MIMO的星载相干激光通信分集系统示意图;
图2示出根据本发明的一个实施例形成的该种基于MIMO的星载相干激光通信分集系统的信道估计器示意图;
图3示出根据本发明的一个实施例形成的该种基于MIMO的星载相干激光通信分集系统的合并器示意图。
具体实施方式
在以下的描述中,参考各实施例对本发明进行描述。然而,本领域的技术人员将认识到可在没有一个或多个特定细节的情况下或者与其它替换和/或附加方法、材料或组件一起实施各实施例。在其它情形中,未示出或未详细描述公知的结构、材料或操作以免使本发明的各实施例的诸方面晦涩。类似地,为了解释的目的,阐述了特定数量、材料和配置,以便提供对本发明的实施例的全面理解。然而,本发明可在没有特定细节的情况下实施。此外,应理解附图中示出的各实施例是说明性表示且不一定按比例绘制。
在本说明书中,对“一个实施例”或“该实施例”的引用意味着结合该实施例描述的特定特征、结构或特性被包括在本发明的至少一个实施例中。在本说明书各处中出现的短语“在一个实施例中”并不一定全部指代同一实施例。
需要说明的是,本发明的实施例以特定顺序对方法步骤进行描述,然而这只是为了方便区分各步骤,而并不是限定各步骤的先后顺序,在本发明的不同实施例中,可根据方法的调节来调整各步骤的先后顺序。
本发明提供一种基于MIMO的星载相干激光通信分集系统,该系统依次由发射端上位机、纠错编码器、空时编码器、相位调制器、激光器、望远镜、干涉滤光片、分光片、信道估计器、本振激光器、合并器、光电探测器、解调器,纠错译码器、接收端上位机构成。本发明提供的该种基于MIMO的星载相干激光通信分集系统的空时编码器对多个激光器发送信息序列进行空时分组编码,信道估计器由光纤耦合器、平衡探测器构成,可以估计出信道振幅和相位特征,合并器由相位调制器和光耦合器构成,可以按照空时分组码对接收信号进行最大比合并。本发明提供的该种基于MIMO的星载相干激光通信分集系统,可以得到N×M合并增益。在降低单个卫星携带载荷的尺寸和重量的情况下实现一发N×M收相干激光通信系统同样的合并增益,且保留相干通信体制。
下面结合图1来详细介绍根据本发明的一个实施例的一种基于MIMO的星载相干激光通信分集系统。图1示出根据本发明的一个实施例形成的一种基于MIMO的星载相干激光通信分集系统示意图,如图1所示,该基于MIMO的星载相干激光通信分集系统进一步由发射端上位机1、纠错编码器2、空时编码器3、相位调制器4、激光器5、望远镜6、干涉滤光片7、分光片8、信道估计器9、本振激光器10、合并器11、光电探测器12、解调器13、纠错译码器14以及接收端上位机15构成。
其中,发射端上位机1与纠错编码器2的前端相连;纠错编码器2的后端与空时编码器3的前端相连;空时编码器3的后端与相位调制器4的前端相连;相位调制器4的后端与激光器5的前端相连。
接收端沿入射光方向依次是望远镜6,干涉滤光7、分光片8,分光片8;将光路分成两路,一路入射进信道估计器9,另一路入射进合并器11;信道估计器9的后端与合并器11的前端相连;本振激光器10与合并器11的前端相连;合并器11的后端与光电探测器12相连;光电探测器12的后端与解调器13的前端相连;解调器13的后端与纠错译码器14的前端相连;纠错编码器14的后端与接收端上位机15相连。
在本发明的一个具体实施例中,发射端上位机1的型号为HP100010cI,厂商为HP公司;纠错编码器2的型号为XC6SLX162CSG324I,厂商为Xilinx公司;空时编码器3的型号为TMS320C6415,厂商为TexasInstrument公司;相位调制器4的型号为LN27SFC,厂商为Thorlabs公司;激光器5的型号为SFL1550P,厂商为Thorlabs公司;望远镜6的型号为NBK7LA1238,厂商为Thorlabs公司;干涉滤光片7的型号为FL05155040,厂商为Thorlabs公司;分光片8的型号为BSW18,厂商为Thorlabs公司;本振激光器10的型号为SFL1550P,厂商为Thorlabs公司;光电探测器12的型号为9102B,厂商为ETenterprise公司;解调器13的型号为XC6SLX162CSG324I,厂商为Xilinx公司;纠错译码器14的型号为XC6SLX162CSG324I,厂商为Xilinx公司;接收端上位机15的型号为HP100010cI,厂商为HP公司。
下面结合图2来介绍本发明的一个实施例形成的该种基于MIMO的星载相干激光通信分集系统的信道估计器9。图2示出根据本发明的一个实施例形成的该种基于MIMO的星载相干激光通信分集系统的信道估计器示意图,如图2所示,该信道估计器9由光纤耦合器16、平衡探测器17以及本振激光器10构成。本振激光器10的输出端与光纤耦合器16的前端相连,光纤耦合器16的后端与平衡探测器17的输入端相连,平衡探测器17的输出端与本振激光器10相连,同时作为信道估计器9的输出端。
在本发明的一个具体实施例中,该信道估计器9中的光纤耦合器16的型号为PNQ1550HF,厂商为Thorlabs公司;平衡探测器17的型号为PDB210C,厂商为Thorlabs公司;本振激光器10的型号为SFL1550P,厂商为Thorlabs公司。
下面结合图3来介绍本发明的一个实施例形成的该种基于MIMO的星载相干激光通信分集系统的合并器11。图3示出根据本发明的一个实施例形成的该种基于MIMO的星载相干激光通信分集系统的合并器示意图,如图3所示,该合并器11由相位调制器18和光纤耦合器19构成。入射光场进入到相位调制器18的前端,信道估计器9与相位调制器18的前端相连,用估计出的信道参数调制相位调制器18;相位调制器18的输出端与本振激光器10的输出端共同接入光纤耦合器19的输入端;光纤耦合器19的输出端与合并器11的输出端相连。
在本发明的一个实施例中,相位调制器18的型号为LN27SFC,厂商为Thorlabs公司;光纤耦合器19的型号为PNQ1550HF,厂商为Thorlabs公司。
本发明的该种基于MIMO的星载相干激光通信分集系统的工作过程如下:
(1)发射端发送信道估计序列,该估计序列为发射端与接收端共享的已知序列F0、F1、F2、…Fk
(2)2个光学接收天线接收信道估计序列,产生信道估计h0、h1、h2、h3
(3)发射端上位机的信息序列d0、d1、d2、…dm进过纠错编码器生成纠错编码信息序列c0、c1、c2、…cm
(4)空时编码器对纠错编码信息序列c0、c1、c2、…cm进行空时分组编码经过调制器和激光器得到发送光场序列s0、s1、s2、…s2m。其中
Figure BDA0002136555190000071
表示光场的振幅,ω表示光场的频率,
Figure BDA0002136555190000072
表示第k个码片的调制相位。记码片周期为T,在t时刻从0号天线发送的信息表示为s0,从1号天线发送的信息表示为s1。在t+T时刻,0号天线发射信息
Figure BDA0002136555190000073
1号天线发射信息
Figure BDA0002136555190000074
其中
Figure BDA0002136555190000075
记为对第n个信息取共轭。发射信息序列如表1所示;
表1 空时编码发送序列
Figure BDA0002136555190000081
(5)调制器按照空时编码后的信息序列s0、s1、s2、…s2m调制激光器,在一个码片周期内,2个信号同时从2个发射光学天线发射;
(6)2个光信号经过信道后到达2个光学接收天线,信道对0号发射天线到0号接收天线的影响记为
Figure BDA0002136555190000082
信道对1号发射天线到0号接收天线的影响记为
Figure BDA0002136555190000083
信道对0号发射天线到1号接收天线的影响记为
Figure BDA0002136555190000084
信道对1号发射天线到1号接收天线的影响记为
Figure BDA0002136555190000085
表2表示2×2系统信道影响;
表2 2×2系统信道影响
0号接收大线 1号接收天线
0号发射大线 h<sub>0</sub> h<sub>2</sub>
1号发射天线 h<sub>1</sub> h<sub>3</sub>
(7)将0号光学天线在t时刻和t+T时刻接收到的光场记为r0、r1,将1号光学天线在t时刻和t+T时刻接收到的光场记为r2、r3,如表3所示。
表3 2×2系统不同时刻接收信号
0号接收大线 1号接收大线
时刻t r<sub>0</sub> r<sub>2</sub>
时刻t+T r<sub>1</sub> r<sub>3</sub>
四个接收光场的表达式为:
r0=h0s0+h1s1+n0
Figure BDA0002136555190000091
r2=h2s0+h3s1+n2
Figure BDA0002136555190000092
其中n0,n1,n2和n3表示接收噪声,分别服从n0~N(μ0,σ0),n1~N(μ1,σ1),n2~N(μ2,σ2)和n3~N(μ3,σ3)的高斯分布,且相互独立。
(8)将接收到的光场r0、r1、r2、r3在合并器中按照空时分组码进行最大比合并,得到合并后的光场,如下式所述:
Figure BDA0002136555190000093
Figure BDA0002136555190000094
将式(5)代入式(6)可得:
Figure BDA0002136555190000095
Figure BDA0002136555190000096
(9)经过最大比合并后的光场
Figure BDA0002136555190000097
Figure BDA0002136555190000098
与本振光Elo=Aej(ωt)进行相干,由光电探测器将干涉光强转换为光电流,第m个码片内的光强为Im=Is+In,其中Is为信号光产生的光电流,Im为噪声产生的光电流表达式如下:
Figure BDA00021365551900000912
其中,R为光电探测器的响应系数。噪声经过合并后为:
Figure BDA00021365551900000910
对于BPSK调制而言,合并后信噪比为:
Figure BDA00021365551900000911
当各路噪声相同时,SNRmrrc=4SNRsingle实现与一发四收分集系统同样的分集增益效果。
(10)解调器对光电流信号Im进行解调,将解调后的信息送入纠错译码器;
(11)纠错译码器对解调器送入的信息进行纠错译码,将译码后的信息传送给接收端上位机,完成通信。
基于本发明提供的该种基于MIMO的星载相干激光通信分集系统,该系统依次由发射端上位机、纠错编码器、空时编码器、相位调制器、激光器、望远镜、干涉滤光片、分光片、信道估计器、本振激光器、合并器、光电探测器、解调器,纠错译码器、接收端上位机构成。本发明提供的该种基于MIMO的星载相干激光通信分集系统的空时编码器对多个激光器发送信息序列进行空时分组编码,信道估计器由光纤耦合器、平衡探测器构成,可以估计出信道振幅和相位特征,合并器由相位调制器和光耦合器构成,可以按照空时分组码对接收信号进行最大比合并。本发明提供的该种基于MIMO的星载相干激光通信分集系统,可以得到N×M合并增益。在降低单个卫星携带载荷的尺寸和重量的情况下实现一发N×M收相干激光通信系统同样的合并增益,且保留相干通信体制。
尽管上文描述了本发明的各实施例,但是,应该理解,它们只是作为示例来呈现的,而不作为限制。对于相关领域的技术人员显而易见的是,可以对其做出各种组合、变型和改变而不背离本发明的精神和范围。因此,此处所公开的本发明的宽度和范围不应被上述所公开的示例性实施例所限制,而应当仅根据所附权利要求书及其等同替换来定义。

Claims (8)

1.一种基于MIMO的星载相干激光通信分集系统,包括:
发射端上位机;
纠错编码器,所述纠错编码器的前端与所述发射端上位机相连;
空时编码器,所述空时编码器的前端与所述纠错编码器的后端相连;
相位调制器,所述相位调制器的前端与所述空时编码器的后端相连;
激光器,所述激光器的前端与所述相位调制器的后端相连;
望远镜,所述望远镜接收来自所述激光器的入射光;
干涉滤光片,所述干涉滤光片的前端与所述望远镜的后端相连;
分光片,所述分光片用于将来自所述干涉滤光片的入射光分成两路;
信道估计器,所述信道估计器接收一路来自分光片的入射光;
合并器,所述合并器接收另一路来自分光片的入射光,且所述信道估计器的后端与所述合并器的前端相连,所述合并器将接收到的光场按照空时分组码对接收信号进行最大比合并,得到合并后的光场;
本振激光器,所述本振激光器与所述合并器的前端相连,将经过最大比合并后的光场与本振光进行相干;
光电探测器,所述光电探测器的前端与所述合并器的后端相连,由光电探测器将干涉光强转换为光电流,其中当各路噪声相同时,合并后信噪比是各路噪声的和,在降低单个卫星携带载荷的尺寸和重量的情况下实现一发N×M收相干激光通信系统同样的合并增益,且保留相干通信体制;
解调器,所述解调器的前端与所述光电探测器的后端相连;
纠错译码器,所述纠错译码器的前端与所述解调器的后端相连;以及
接收端上位机,所述接收端上位机与所述纠错编码器的后端相连。
2.如权利要求1所述的基于MIMO的星载相干激光通信分集系统,其特征在于,所述空时编码器对M个激光器发送信息序列进行空时分组编码,其中M≥2。
3.如权利要求1所述的基于MIMO的星载相干激光通信分集系统,其特征在于,所述相位调制器按照所述空时编码器产生的编码序列对所述激光器阵列进行空时编码调制。
4.如权利要求1所述的基于MIMO的星载相干激光通信分集系统,其特征在于,所述信道估计器用于估计信道振幅和相位信息。
5.如权利要求1所述的基于MIMO的星载相干激光通信分集系统,其特征在于,所述信道估计器由光纤耦合器、平衡探测器以及本振激光器构成。
6.如权利要求5所述的基于MIMO的星载相干激光通信分集系统,其特征在于,所述信道估计器中:
所述本振激光器的输出端与所述光纤耦合器的前端相连;
所述光纤耦合器的后端与所述平衡探测器的输入端相连;
所述平衡探测器的输出端与所述本振激光器相连,以及
所述平衡探测器的输出端作为所述信道估计器的输出端。
7.如权利要求1所述的基于MIMO的星载相干激光通信分集系统,其特征在于,所述合并器由相位调制器和光纤耦合器构成。
8.如权利要求7所述的基于MIMO的星载相干激光通信分集系统,其特征在于,所述合并器中:
入射光场进入到所述相位调制器的前端;
所述信道估计器的后端与所述相位调制器的前端相连,基于估计出的信道参数调制所述相位调制器;
所述相位调制器的输出端与所述本振激光器的输出端共同接入所述光纤耦合器的输入端;以及
所述光纤耦合器的输出端与所述合并器的输出端相连。
CN201910654875.6A 2019-07-19 2019-07-19 一种基于mimo的星载相干激光通信分集系统 Active CN110401484B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110454672.XA CN113179129B (zh) 2019-07-19 2019-07-19 星载激光通信方法
CN201910654875.6A CN110401484B (zh) 2019-07-19 2019-07-19 一种基于mimo的星载相干激光通信分集系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910654875.6A CN110401484B (zh) 2019-07-19 2019-07-19 一种基于mimo的星载相干激光通信分集系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110454672.XA Division CN113179129B (zh) 2019-07-19 2019-07-19 星载激光通信方法

Publications (2)

Publication Number Publication Date
CN110401484A CN110401484A (zh) 2019-11-01
CN110401484B true CN110401484B (zh) 2021-05-07

Family

ID=68324745

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910654875.6A Active CN110401484B (zh) 2019-07-19 2019-07-19 一种基于mimo的星载相干激光通信分集系统
CN202110454672.XA Active CN113179129B (zh) 2019-07-19 2019-07-19 星载激光通信方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202110454672.XA Active CN113179129B (zh) 2019-07-19 2019-07-19 星载激光通信方法

Country Status (1)

Country Link
CN (2) CN110401484B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116938336B (zh) * 2023-09-18 2023-12-19 中国科学院长春光学精密机械与物理研究所 多天线激光通信系统的信号合并方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457648A (zh) * 2013-09-17 2013-12-18 哈尔滨工业大学 基于双极化mimo陆地移动卫星信道的空时网格编码传输系统及编码器的编码方法
CN104702381A (zh) * 2015-03-20 2015-06-10 清华大学 基于光频梳源和波分复用的mimo传输系统
CN107370569A (zh) * 2016-05-13 2017-11-21 法国矿业电信学校联盟 用于光学mimo系统的时空编码方法和设备
CN107634803A (zh) * 2016-07-18 2018-01-26 法国矿业电信学校联盟 多模光纤光传输系统中的空时和前向纠错联合编码
CN109428649A (zh) * 2017-09-01 2019-03-05 华为技术有限公司 光信号传输系统及光信号传输方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100630108B1 (ko) * 2002-10-10 2006-09-27 삼성전자주식회사 공간-시간 블럭부호를 사용하여 송신 안테나 다이버시티를지원하는 송수신 장치
CN101282175B (zh) * 2008-05-16 2012-07-04 西安理工大学 基于垂直分层空时编码的自由空间mimo光通信系统
CN105281833A (zh) * 2014-06-13 2016-01-27 南京复实通讯科技有限公司 可见光信号传输方法及其系统
CN104104417B (zh) * 2014-06-24 2017-12-05 广东科学技术职业学院 超高速光纤无线mimo传输方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457648A (zh) * 2013-09-17 2013-12-18 哈尔滨工业大学 基于双极化mimo陆地移动卫星信道的空时网格编码传输系统及编码器的编码方法
CN104702381A (zh) * 2015-03-20 2015-06-10 清华大学 基于光频梳源和波分复用的mimo传输系统
CN107370569A (zh) * 2016-05-13 2017-11-21 法国矿业电信学校联盟 用于光学mimo系统的时空编码方法和设备
CN107634803A (zh) * 2016-07-18 2018-01-26 法国矿业电信学校联盟 多模光纤光传输系统中的空时和前向纠错联合编码
CN109428649A (zh) * 2017-09-01 2019-03-05 华为技术有限公司 光信号传输系统及光信号传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"OPN04-4: Space-Time Coded Modulation and Detection in Coherent Freespace Optical Communications";A. A. Evans et al;《IEEE Globecom 2006, San Francisco, CA》;20061231;第1-5页 *

Also Published As

Publication number Publication date
CN113179129A (zh) 2021-07-27
CN113179129B (zh) 2024-04-26
CN110401484A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
US9967028B2 (en) System and a method for free space optical communications
US6782211B1 (en) Cross polarization interface canceler
US20150349888A1 (en) Multiple-input method and apparatus of free-space optical communication
US9252876B2 (en) Hybrid communication apparatus for high-rate data transmission between moving and/or stationary platforms
US8433205B2 (en) Crosstalk-free high-dimensional constellations for dual-polarized nonlinear fiber-optic communications
CN109067468B (zh) 应用于直检光通信系统的kk传输方法及直检光通信系统
CN111769880A (zh) 应用波长分集的串行中继ofdm自由空间光通信系统及方法
CN112383354B (zh) 基于光编码的空间-偏振混合分集自由空间光通信系统
KR20180088384A (ko) 편광코딩을 기반으로 하는 테라헤르츠 디지털 통신 시스템 및 방법
CN110401484B (zh) 一种基于mimo的星载相干激光通信分集系统
KR101931957B1 (ko) 편광 다중 광전송을 위한 시편광 코딩을 이용한 광 전송 방법 및 시스템
CN111313976A (zh) 脉冲幅度调制信号外差相干pon系统及收发方法
Saeed et al. Performance evaluation of MIMO FSO communication with gamma-gamma turbulence channel using diversity techniques
CN113285903B (zh) 一种大规模mimo-ofdm光无线通信系统及其低峰均比通信方法
KR20090066198A (ko) 단말의 수신 장치, 기지국의 송신 장치 및 수신 신호 결합 방법
Yu et al. Performance evaluation of direct-detection coherent receiver array for free-space communications with full-link simulation
US20110044382A1 (en) Receiving apparatus and communication system
Ghassemlooy et al. MIMO free-space optical communication employing subcarrier intensity modulation in atmospheric turbulence channels
CN113411126B (zh) 一种基于oam跳模的无线光通信抗大气湍流方法
CN112187350B (zh) 一种混沌激光通信中自发辐射噪声引致失配的处理方法
Yuen et al. Radio over multimode fiber for wireless access
Cao et al. Free space optical MIMO system using PPM modulation and a single optical amplifier
Patnaik et al. Equalized Multiplexed IsOWC system using DP-QPSK modulation
Fuchs et al. Optical Transmitter Diversity With Phase-Division in Bit-Time
Belmonte et al. Field conjugation adaptive arrays in atmospheric coherent optical links

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant