CN110400813A - An X-ray digital image detector based on perovskite material - Google Patents
An X-ray digital image detector based on perovskite material Download PDFInfo
- Publication number
- CN110400813A CN110400813A CN201910696275.6A CN201910696275A CN110400813A CN 110400813 A CN110400813 A CN 110400813A CN 201910696275 A CN201910696275 A CN 201910696275A CN 110400813 A CN110400813 A CN 110400813A
- Authority
- CN
- China
- Prior art keywords
- layer
- digital image
- image detector
- ray digital
- perovskite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 88
- 238000001514 detection method Methods 0.000 claims abstract description 23
- 229910052737 gold Inorganic materials 0.000 claims abstract description 16
- 229910052745 lead Inorganic materials 0.000 claims abstract description 16
- 239000002131 composite material Substances 0.000 claims abstract description 11
- 239000010410 layer Substances 0.000 claims description 87
- 239000010409 thin film Substances 0.000 claims description 39
- 239000000758 substrate Substances 0.000 claims description 16
- 239000011241 protective layer Substances 0.000 claims description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 239000010703 silicon Substances 0.000 claims description 13
- 239000010408 film Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 230000001681 protective effect Effects 0.000 claims description 9
- -1 polyethylene Polymers 0.000 claims description 7
- 239000004698 Polyethylene Substances 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229920000728 polyester Polymers 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- 239000004793 Polystyrene Substances 0.000 claims description 3
- 239000011888 foil Substances 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 238000010521 absorption reaction Methods 0.000 abstract description 7
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 abstract description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052791 calcium Inorganic materials 0.000 abstract description 2
- 239000011575 calcium Substances 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract description 2
- 239000010936 titanium Substances 0.000 abstract description 2
- 229910052719 titanium Inorganic materials 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 2
- 239000010931 gold Substances 0.000 description 12
- MCVAAHQLXUXWLC-UHFFFAOYSA-N [O-2].[O-2].[S-2].[Gd+3].[Gd+3] Chemical compound [O-2].[O-2].[S-2].[Gd+3].[Gd+3] MCVAAHQLXUXWLC-UHFFFAOYSA-N 0.000 description 10
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 9
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical group [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000002159 nanocrystal Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical group C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005395 radioluminescence Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/80—Constructional details of image sensors
- H10F39/805—Coatings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/011—Manufacture or treatment of image sensors covered by group H10F39/12
- H10F39/024—Manufacture or treatment of image sensors covered by group H10F39/12 of coatings or optical elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
- H10F39/191—Photoconductor image sensors
- H10F39/195—X-ray, gamma-ray or corpuscular radiation imagers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/80—Constructional details of image sensors
- H10F39/803—Pixels having integrated switching, control, storage or amplification elements
- H10F39/8033—Photosensitive area
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Measurement Of Radiation (AREA)
Abstract
本发明公开一种基于钙钛矿材料的X射线数字图像探测器及其制备方法,其中,所述X射线数字探测器包括设置在探测单元上的闪烁层,所述闪烁层材料为含Pb或Au的无机钙钛矿材料。本发明通过将闪烁层中易吸湿潮解的CsI材料或易形成光拓展现象的GOS材料换成含Pb或Au的无机钙钛矿材料,使得使得其生产工艺更加简单,生产成本更加低廉,对环境、设备要求更低,且使用防水性更好的复合薄膜作为防水层,也使得X射线数字图像探测器不会因为空气中的水分而影响图像分辨率;并且所述含Pb或Au的无机钙钛矿材料对X射线有强烈的吸收,提高了X射线的转换效率,从而提高闪烁层的发光效率,进而提高图像质量。
The invention discloses an X-ray digital image detector based on a perovskite material and a preparation method thereof, wherein the X-ray digital detector includes a scintillation layer arranged on a detection unit, and the scintillation layer material is Pb or Inorganic perovskite materials of Au. The present invention replaces the CsI material that is easy to absorb moisture and deliquescence in the scintillation layer or the GOS material that is easy to form the light expansion phenomenon into an inorganic perovskite material containing Pb or Au, so that the production process is simpler, the production cost is lower, and the environment is environmentally friendly. , equipment requirements are lower, and a composite film with better water resistance is used as a waterproof layer, so that the X-ray digital image detector will not affect the image resolution due to moisture in the air; and the inorganic calcium containing Pb or Au The titanium ore material has a strong absorption of X-rays, which improves the conversion efficiency of X-rays, thereby improving the luminous efficiency of the scintillation layer, thereby improving image quality.
Description
技术领域technical field
本发明涉及光电探测器领域,尤其涉及一种基于钙钛矿材料的X射线数字图像探测器。The invention relates to the field of photodetectors, in particular to an X-ray digital image detector based on a perovskite material.
背景技术Background technique
自从于1985年发现X射线以来,X射线在医学、生物学、材料科学、工业以及安全检测等众多领域发挥了重要作用。since Since the discovery of X-rays in 1985, X-rays have played an important role in many fields such as medicine, biology, material science, industry and safety inspection.
X射线探测器是X射线机的关键部件,现在常用的X射线探测器是间接平板探测器(Flat Panel Detector,FPD)。X射线探测器主要包括基底,设置在基底上的多个探测单元,以及设置在探测单元上的闪烁层,每个探测单元由薄膜晶体管(TFT)和感光层组成。X射线探测器原理为闪烁层经过X射线照射后,会把X射线光子转变成可见光,然后由感光层将可见光变成图像电信号,再由具有门控作用的薄膜晶体管(TFT)收集电信号,并获得数字图像。The X-ray detector is a key component of the X-ray machine, and the commonly used X-ray detector is an indirect flat panel detector (Flat Panel Detector, FPD). The X-ray detector mainly includes a substrate, a plurality of detection units arranged on the substrate, and a scintillation layer arranged on the detection units, and each detection unit is composed of a thin film transistor (TFT) and a photosensitive layer. The principle of the X-ray detector is that after the scintillation layer is irradiated by X-rays, the X-ray photons will be converted into visible light, and then the photosensitive layer will convert the visible light into an image electrical signal, and then the electrical signal will be collected by a thin-film transistor (TFT) with a gating function. , and obtain a digital image.
目前闪烁层材料主要是碘化铯(CsI)和硫氧化钆(GOS)。CsI材料一般通过高温结晶方法做成晶柱屏来提高分辨率,但由于CsI材料为吸湿性材料,会吸收空气中的水分而潮解,使图像分辨率大大降低,并且现有X射线闪烁屏封装方法效率较低,操作复杂,而且效果不佳。GOS材料成本低,转换效率高,但由于GOS呈颗粒状,使得光拓展较严重,且GOS制作的闪烁层太薄,不然会降低分辨率At present, the scintillation layer materials are mainly cesium iodide (CsI) and gadolinium oxysulfide (GOS). CsI materials are generally made into crystal column screens by high-temperature crystallization methods to improve resolution, but because CsI materials are hygroscopic materials, they will absorb moisture in the air and deliquesce, greatly reducing image resolution, and the existing X-ray scintillation screen package The method has low efficiency, complex operation and poor effect. The cost of GOS material is low and the conversion efficiency is high. However, due to the granular shape of GOS, the light expansion is serious, and the scintillation layer made of GOS is too thin, otherwise the resolution will be reduced.
因此,现有技术还有待于改进和发展。Therefore, the prior art still needs to be improved and developed.
发明内容Contents of the invention
鉴于上述现有技术的不足,本发明的目的在于提供一种基于钙钛矿材料的X射线数字图像探测器,旨在解决现有X射线探测器中的闪烁体易吸湿潮解、易发生光拓展现象,导致X射线探测器的图像分辨率降低的问题。In view of the above-mentioned deficiencies in the prior art, the object of the present invention is to provide an X-ray digital image detector based on perovskite materials, aiming to solve the problems of scintillators in existing X-ray detectors that are prone to moisture absorption and deliquescence, and are prone to light expansion. Phenomenon, which leads to the problem that the image resolution of the X-ray detector is reduced.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种基于钙钛矿材料的X射线数字图像探测器,包括硅基基底、设置在硅基基底上的若干个探测单元,以及设置在所述探测单元上的闪烁层,其中,所述闪烁层材料为含Pb或Au的无机钙钛矿材料。An X-ray digital image detector based on a perovskite material, comprising a silicon-based substrate, several detection units arranged on the silicon-based substrate, and a scintillation layer arranged on the detection units, wherein the scintillation layer The material is an inorganic perovskite material containing Pb or Au.
所述基于钙钛矿材料的X射线数字图像探测器,其中,所述闪烁层材料为CsPbBr3、CsAuBr3、CsPbCl3、CsAuCl3、CsPbI3和CsAuI3中的一种或多种。In the X-ray digital image detector based on perovskite material, the scintillation layer material is one or more of CsPbBr 3 , CsAuBr 3 , CsPbCl 3 , CsAuCl 3 , CsPbI 3 and CsAuI 3 .
所述基于钙钛矿材料的X射线数字图像探测器,其中,所述闪烁层的厚度为100μm。In the X-ray digital image detector based on perovskite material, the thickness of the scintillation layer is 100 μm.
所述基于钙钛矿材料的X射线数字图像探测器,其中,所述闪烁层上设置有防水层,所述防水层上设置有保护盖板。In the X-ray digital image detector based on perovskite material, a waterproof layer is arranged on the scintillation layer, and a protective cover is arranged on the waterproof layer.
所述基于钙钛矿材料的X射线数字图像探测器,其中,所述防水层材料为复合薄膜。In the X-ray digital image detector based on perovskite material, the waterproof layer material is a composite film.
所述基于钙钛矿材料的X射线数字图像探测器,其中,所述复合膜材料为聚乙烯(PE),聚丙烯(PP),聚苯乙烯,聚氯乙烯(PVC),聚酯(PET),金属箔中的两种或多种。The X-ray digital image detector based on perovskite material, wherein, the composite film material is polyethylene (PE), polypropylene (PP), polystyrene, polyvinyl chloride (PVC), polyester (PET ), two or more of metal foils.
所述基于钙钛矿材料的X射线数字图像探测器,其中,所述探测单元和闪烁层之间还设置有一保护层,所述保护层为ITO薄膜。In the X-ray digital image detector based on perovskite material, a protection layer is further arranged between the detection unit and the scintillation layer, and the protection layer is an ITO thin film.
所述基于钙钛矿材料的X射线数字图像探测器,其中,所述探测单元包括薄膜晶体管、与所述薄膜晶体管电连接的感光结构。In the X-ray digital image detector based on perovskite material, the detection unit includes a thin film transistor and a photosensitive structure electrically connected to the thin film transistor.
所述基于钙钛矿材料的X射线数字图像探测器,其中,所述感光结构包括感测电极、光电二极管以及驱动电极,其中所述感测电极与所述驱动电极的连接线材料可以为Mo、Al、Ag,其中所述感测电极与所述驱动电极之间的绝缘材料可以为SiNx、SiO2或PI薄膜,其中所述感测电极与所述薄膜晶体管中的源极或漏极电连接。The X-ray digital image detector based on perovskite material, wherein the photosensitive structure includes a sensing electrode, a photodiode, and a driving electrode, wherein the connecting wire material between the sensing electrode and the driving electrode can be Mo , Al, Ag, wherein the insulating material between the sensing electrode and the driving electrode can be SiN x , SiO 2 or PI thin film, wherein the sensing electrode and the source or drain in the thin film transistor electrical connection.
一种基于钙钛矿材料的X射线数字图像探测器的制备方法,其中,包括步骤:A method for preparing an X-ray digital image detector based on a perovskite material, comprising the steps of:
在硅基基底上制备若干个探测单元,所述探测单元包括薄膜晶体管、与所述薄膜晶体管电连接的感光结构,以及设置在所述薄膜晶体管和感光结构上方的保护层,所述保护层是一层ITO薄膜;Several detection units are prepared on a silicon-based substrate, the detection units include a thin film transistor, a photosensitive structure electrically connected to the thin film transistor, and a protective layer arranged above the thin film transistor and the photosensitive structure, and the protective layer is A layer of ITO thin film;
在所述保护层表面制备一层闪烁层,所述闪烁层材料为含Pb或Au的无机钙钛矿材料;preparing a layer of scintillation layer on the surface of the protective layer, the material of the scintillation layer is an inorganic perovskite material containing Pb or Au;
在所述闪烁层表面制备一层防水层;preparing a waterproof layer on the surface of the scintillation layer;
在所述防水层表面设置一层保护盖板,制得所述基于钙钛矿材料的X射线数字图像探测器。A protective cover plate is arranged on the surface of the waterproof layer to obtain the X-ray digital image detector based on the perovskite material.
本发明的优点在于:本发明提供的基于钙钛矿材料的X射线数字图像探测器,通过将闪烁层中易吸湿潮解的CsI材料和光拓展严重的GOS材料换成含Pb或Au的无机钙钛矿材料,使得生产工艺更加简单,生产成本更加低廉,对设备、环境的要求更低,且使用防水性更好的复合薄膜作为防水层,使得X射线数字图像探测器不会因为空气中的水分而影响图像质量;并且所述含Pb或Au的无机钙钛矿材料对X射线有强烈的吸收,提高了X射线的转换效率,进而提高图像质量。The advantage of the present invention is: the X-ray digital image detector based on the perovskite material provided by the present invention, by changing the CsI material that is easy to absorb moisture and the GOS material with serious light expansion in the scintillation layer to the inorganic perovskite containing Pb or Au Mineral materials make the production process simpler, the production cost is lower, the requirements for equipment and the environment are lower, and the composite film with better waterproofness is used as the waterproof layer, so that the X-ray digital image detector will not be affected by the moisture in the air. and affect the image quality; and the inorganic perovskite material containing Pb or Au has a strong absorption of X-rays, which improves the conversion efficiency of X-rays, thereby improving the image quality.
附图说明Description of drawings
图1为本发明提供的一种基于钙钛矿材料的X射线数字图像探测器的简易结构示意图。Fig. 1 is a schematic structural diagram of an X-ray digital image detector based on a perovskite material provided by the present invention.
图2为本发明提供的一种基于钙钛矿材料的X射线数字图像探测器的具体结构示意图。FIG. 2 is a schematic structural diagram of an X-ray digital image detector based on a perovskite material provided by the present invention.
图3为本发明提供的一种基于钙钛矿材料的X射线数字图像探测器的制备方法较佳实施例的流程图。FIG. 3 is a flow chart of a preferred embodiment of a method for manufacturing an X-ray digital image detector based on a perovskite material provided by the present invention.
具体实施方式Detailed ways
本发明提供了一种基于钙钛矿材料的X射线数字图像探测器及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。The present invention provides an X-ray digital image detector based on a perovskite material and a preparation method thereof. In order to make the purpose, technical solution and effect of the present invention clearer and clearer, the present invention will be further described in detail below. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
请参阅图1和图2,本发明提供了一种基于钙钛矿材料的X射线数字图像探测器,如图所示,所述X射线数字探测器包括硅基基底11、设置在硅基基底11上的若干个探测单元10,以及设置在所述探测单元10上的闪烁层14,其中,所述闪烁层14材料为含Pb或Au的无机钙钛矿材料。Please refer to Fig. 1 and Fig. 2, the present invention provides a kind of X-ray digital image detector based on perovskite material, as shown in the figure, described X-ray digital detector comprises silicon-based substrate 11, is arranged on silicon-based substrate Several detection units 10 on 11, and a scintillation layer 14 disposed on the detection units 10, wherein the material of the scintillation layer 14 is an inorganic perovskite material containing Pb or Au.
具体来讲,传统X射线数字图像探测器中的闪烁层所采用的材料为CsI和GOS,CsI材料为吸湿性材料,会吸收空气中的水分而潮解,而GOS材料为颗粒状材料,其光拓展现象比较严重,两者都会使图像分辨率大大降低,而且现有X射线闪烁层封装方法效率较低,操作复杂。本实施例通过将闪烁层14中易吸湿潮解的CsI材料或易形成光拓展现象的GOS材料换成含Pb或Au的无机钙钛矿材料,由于所述无机钙钛矿可以在较低温环境中由液体中加工而成,使得其生产工艺更加简单,生产成本更加低廉,对环境、设备要求更低,且使用防水性更好的复合薄膜作为防水层,使得X射线数字图像探测器不会因为空气中的水分而影响图像质量;并且所述含Pb或Au的无机钙钛矿材料对X射线有强烈的吸收,提高了X射线的转换效率,从而提高闪烁层的发光效率,进而提高图像质量。Specifically, the materials used in the scintillation layer in traditional X-ray digital image detectors are CsI and GOS. The CsI material is a hygroscopic material that absorbs moisture in the air and deliquesces, while the GOS material is a granular material whose light The expansion phenomenon is relatively serious, both of which will greatly reduce the image resolution, and the existing X-ray scintillation layer packaging method has low efficiency and complicated operation. In this embodiment, the CsI material that is easy to absorb moisture or the GOS material that is easy to form the light expansion phenomenon in the scintillation layer 14 is replaced by an inorganic perovskite material containing Pb or Au, because the inorganic perovskite can be used in a lower temperature environment It is processed from liquid, which makes its production process simpler, lower production cost, lower requirements on the environment and equipment, and uses a composite film with better waterproof performance as the waterproof layer, so that the X-ray digital image detector will not be damaged due to Moisture in the air affects the image quality; and the inorganic perovskite material containing Pb or Au has a strong absorption of X-rays, which improves the conversion efficiency of X-rays, thereby improving the luminous efficiency of the scintillation layer, and then improving image quality .
在一种优选的实施方式中,所述闪烁层14材料为CsPbBr3、CsAuBr3、CsPbCl3、CsAuCl3、CsPbI3和CsAuI3中的一种或多种,但不限于此。所述包含铯和铅原子或者铯和金原子的无机钙钛矿纳米晶体闪烁体表现出很强的X射线吸收和强烈的辐射发光特性。与以前的闪烁体材料不同,无机钙钛矿材料可以在较低温环境中由液体加工而成,而且可以通过改变胶体中阴离子成分调节其发光光谱;进一步地,所述含Pb或Au的无机钙钛矿材料对X射线有强烈的吸收,提高了X射线的转换效率,从而提高闪烁体的发光效率;这些特性说明可以运用无机钙钛矿纳米晶体材料制造出灵活且高灵敏度的X射线数字图像探测器。In a preferred embodiment, the material of the scintillation layer 14 is one or more of CsPbBr 3 , CsAuBr 3 , CsPbCl 3 , CsAuCl 3 , CsPbI 3 and CsAuI 3 , but not limited thereto. The inorganic perovskite nanocrystal scintillator containing cesium and lead atoms or cesium and gold atoms exhibits strong X-ray absorption and strong radioluminescence properties. Unlike previous scintillator materials, inorganic perovskite materials can be processed from liquids in a lower temperature environment, and their luminescent spectra can be adjusted by changing the anion components in the colloid; further, the inorganic calcium containing Pb or Au Titanium materials have a strong absorption of X-rays, which improves the conversion efficiency of X-rays, thereby improving the luminous efficiency of scintillators; these characteristics indicate that flexible and highly sensitive X-ray digital images can be manufactured using inorganic perovskite nanocrystal materials detector.
在一种优选的实施方式中,如图2所示,包括设置在闪烁层14上的防水层15,以及设置在所述防水层15上的保护盖板16。通过在所述闪烁层上制备一层防水层,可防止空气中的水影响闪烁层的性质,进而影响图像分辨率。优选的,所述防水层材料为透明材料。更优选的,所述防水层为复合薄膜,所述复合膜材料为聚乙烯(PE),聚丙烯(PP),聚苯乙烯,聚氯乙烯(PVC),聚酯(PET),金属箔中的两种或多种。通过在所述防水层上设置一层保护盖板,可保护闪烁层不受损伤。优选的,所述保护盖板为碳纤维板或塑料板。In a preferred embodiment, as shown in FIG. 2 , it includes a waterproof layer 15 disposed on the scintillation layer 14 , and a protective cover 16 disposed on the waterproof layer 15 . By preparing a waterproof layer on the scintillating layer, water in the air can be prevented from affecting the properties of the scintillating layer, thereby affecting image resolution. Preferably, the material of the waterproof layer is a transparent material. More preferably, the waterproof layer is a composite film, and the composite film material is polyethylene (PE), polypropylene (PP), polystyrene, polyvinyl chloride (PVC), polyester (PET), metal foil two or more of. The scintillation layer can be protected from damage by arranging a protective cover plate on the waterproof layer. Preferably, the protective cover is a carbon fiber plate or a plastic plate.
在一种优选的实施方式中,如图2所示,所述探测单元10和闪烁层14之间还设置有一保护层29,所述保护层29为ITO薄膜。所述保护层主要用于保护光电转换器件内的电容和电路中的金属引线。In a preferred implementation manner, as shown in FIG. 2 , a protective layer 29 is further provided between the detection unit 10 and the scintillation layer 14 , and the protective layer 29 is an ITO thin film. The protective layer is mainly used to protect the capacitance in the photoelectric conversion device and the metal leads in the circuit.
在一种优选的实施方式中,如图2所述,所述探测单元10包括薄膜晶体管12、与所述薄膜晶体管12电连接的感光结构13。所述薄膜晶体管12包括栅极21、设置在所述栅极21上方的绝缘层25、设置在所述绝缘层25上方的有源层22、设置在所述有源层22上方的第一电极24和第二电极23;其中,所述第一电极24为源极或漏极,所述第二电极23与外部数据线相连,所述栅极21用于控制所述薄膜晶体管12的接通或关断;不同探测单元10的薄膜晶体管12通过第二电极23向外传输的电荷量与不同位置的X射线的剂量成正比,这样就能获取X射线的数字图像信号。In a preferred implementation manner, as shown in FIG. 2 , the detection unit 10 includes a thin film transistor 12 and a photosensitive structure 13 electrically connected to the thin film transistor 12 . The thin film transistor 12 includes a gate 21, an insulating layer 25 disposed above the gate 21, an active layer 22 disposed above the insulating layer 25, a first electrode disposed above the active layer 22 24 and a second electrode 23; wherein, the first electrode 24 is a source or a drain, the second electrode 23 is connected to an external data line, and the gate 21 is used to control the turning on of the thin film transistor 12 or off; the amount of charges transmitted by the thin film transistors 12 of different detection units 10 through the second electrode 23 is proportional to the dose of X-rays at different positions, so that digital image signals of X-rays can be acquired.
优选的,所述绝缘层25为PVX薄膜;所述有源层22为a-Si:H薄膜。Preferably, the insulating layer 25 is a PVX film; the active layer 22 is an a-Si:H film.
优选的,如图2所示,所述感光结构13包括感测电极26、光电二极管27以及驱动电极28,其中所述感测电极26与所述薄膜晶体管12中的源极或漏极电连接。优选的,所述驱动电极28和感测电极26的材料为氧化铟锡或者金属钼或者铝,通过磁控溅射法和溶液法制备而成。具体来讲,所述驱动电极28用于向光电二极管27中施加电压,在所述光电二极管27中形成电荷,电荷移动并被感测电极26接收。当闪烁层经过X射线照射后,会把X射线光子转变成可见光,然后由光电二极管将可见光变成图像电信号,再由具有门控作用的薄膜晶体管(TFT)收集电信号,并获得数字图像图像。Preferably, as shown in FIG. 2 , the photosensitive structure 13 includes a sensing electrode 26, a photodiode 27, and a driving electrode 28, wherein the sensing electrode 26 is electrically connected to the source or drain of the thin film transistor 12 . Preferably, the driving electrodes 28 and the sensing electrodes 26 are made of indium tin oxide or metal molybdenum or aluminum, which are prepared by magnetron sputtering and solution methods. Specifically, the driving electrode 28 is used to apply a voltage to the photodiode 27 , and charge is formed in the photodiode 27 , and the charge moves and is received by the sensing electrode 26 . When the scintillation layer is irradiated by X-rays, it will convert the X-ray photons into visible light, and then the photodiode will convert the visible light into an image electrical signal, and then collect the electrical signal by a thin-film transistor (TFT) with a gate control function, and obtain a digital image image.
进一步地,本发明还提供一种基于钙钛矿材料的X射线数字图像探测器的制备方法,其中,如图3所示,包括步骤:Further, the present invention also provides a method for preparing an X-ray digital image detector based on a perovskite material, wherein, as shown in Figure 3, the steps include:
S10、在硅基基底上制备若干个探测单元,所述探测单元包括探测单元包括薄膜晶体管、与所述薄膜晶体管电连接的感光结构,以及设置在所述薄膜晶体管和感光结构上方的保护层;S10. Prepare several detection units on a silicon-based substrate, the detection units include a thin film transistor, a photosensitive structure electrically connected to the thin film transistor, and a protective layer disposed above the thin film transistor and the photosensitive structure;
S20、在所述保护层表面制备一层闪烁层,所述闪烁层材料为含Pb或Au的无机钙钛矿材料;S20. Prepare a scintillator layer on the surface of the protective layer, and the material of the scintillator layer is an inorganic perovskite material containing Pb or Au;
S30、在所述闪烁层表面制备一层防水层;S30. Prepare a waterproof layer on the surface of the scintillation layer;
S40、在所述防水层表面设置一层保护盖板,制得所述基于钙钛矿材料的X射线数字图像探测器。S40, setting a layer of protective cover on the surface of the waterproof layer to manufacture the X-ray digital image detector based on perovskite material.
具体来讲,在硅基基板上用测控溅射的方法形成栅极21、驱动电极28和感测电极26,磁控溅射的靶材为Mo或Al,在形成栅极21、驱动电极28和感测电极26的硅基基板上形成介质薄膜,所述介质薄膜包括a-Si:H薄膜以及PVX薄膜,所述a-Si:H薄膜是有源层22的核心薄膜,是源漏电极24间的导电沟道;所述PVX薄膜的主要作用是作为栅极21与有源层22间的绝缘层25,以及源漏电极24金属与有源层22间的保护层;在生成介质薄膜的硅基基板上用磁控溅射工艺制备源、漏电极,在形成介质薄膜的硅基基板上添加光电二极管作为感光层;在形成的介质薄膜硅基基板上添加保护层29;在保护层29上通过匀胶工艺旋涂含Pb或Au的无机钙钛矿材料作为闪烁层;在所述闪烁层上溅射一层复合薄膜作为防水层;在所述防水层上加上一层保护盖板,即制得本发明所述基于钙钛材料的X射线数字图像探测器。Specifically, the grid 21, the driving electrode 28 and the sensing electrode 26 are formed on the silicon base substrate by the method of measurement and control sputtering, and the target material of the magnetron sputtering is Mo or Al. A dielectric thin film is formed on the silicon-based substrate of the sensing electrode 26, and the dielectric thin film includes a-Si:H thin film and PVX thin film, and the a-Si:H thin film is the core thin film of the active layer 22 and is the source-drain electrode Conductive channel between 24; The main effect of described PVX thin film is as the insulating layer 25 between gate 21 and active layer 22, and the protective layer between source drain electrode 24 metals and active layer 22; The source and drain electrodes are prepared by magnetron sputtering on the silicon-based substrate, and a photodiode is added as a photosensitive layer on the silicon-based substrate forming a dielectric thin film; a protective layer 29 is added on the formed dielectric thin-film silicon-based substrate; Spin-coat an inorganic perovskite material containing Pb or Au on the 29 as a scintillation layer through a uniform glue process; sputter a layer of composite film on the scintillation layer as a waterproof layer; add a layer of protective cover on the waterproof layer plate, that is, the X-ray digital image detector based on the perovskite material of the present invention is produced.
综上所述,本发明提供的基于钙钛矿材料的X射线数字图像探测器,通过将闪烁层中易吸湿潮解的CsI材料和光扩散较严重的GOS材料换成含Pb或Au的无机钙钛矿材料,使得生产工艺更加简单,成本更加低廉,对设备和环境的要求更低,且使用防水性更好的复合膜作为防水层,使得X射线数字图像探测器不会因为空气中的水分而影响图像分辨率;并且所述含Pb或Au的无机钙钛矿材料对X射线有强烈的吸收,提高了X射线的转换效率,从而提高闪烁层的发光效率,进而提高图像质量。In summary, the X-ray digital image detector based on the perovskite material provided by the present invention is replaced by the inorganic perovskite containing Pb or Au by replacing the CsI material which is easy to absorb moisture and deliquescence in the scintillation layer and the GOS material with serious light diffusion. Mineral materials make the production process simpler, the cost is lower, the requirements for equipment and the environment are lower, and the composite film with better waterproofness is used as the waterproof layer, so that the X-ray digital image detector will not be damaged by moisture in the air. affect the image resolution; and the inorganic perovskite material containing Pb or Au has a strong absorption of X-rays, which improves the conversion efficiency of X-rays, thereby improving the luminous efficiency of the scintillation layer, thereby improving image quality.
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。It should be understood that the application of the present invention is not limited to the above examples, and those skilled in the art can make improvements or transformations according to the above descriptions, and all these improvements and transformations should belong to the protection scope of the appended claims of the present invention.
Claims (8)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910696275.6A CN110400813A (en) | 2019-07-30 | 2019-07-30 | An X-ray digital image detector based on perovskite material |
PCT/CN2020/098686 WO2021017716A1 (en) | 2019-07-30 | 2020-06-29 | Perovskite material-based x-ray digital image detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910696275.6A CN110400813A (en) | 2019-07-30 | 2019-07-30 | An X-ray digital image detector based on perovskite material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110400813A true CN110400813A (en) | 2019-11-01 |
Family
ID=68326663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910696275.6A Pending CN110400813A (en) | 2019-07-30 | 2019-07-30 | An X-ray digital image detector based on perovskite material |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110400813A (en) |
WO (1) | WO2021017716A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021017716A1 (en) * | 2019-07-30 | 2021-02-04 | 深圳大学 | Perovskite material-based x-ray digital image detector |
CN113845909A (en) * | 2021-09-27 | 2021-12-28 | 中国科学院高能物理研究所 | A high-resolution scintillator film, preparation method, preparation equipment and application |
CN114122034A (en) * | 2021-04-19 | 2022-03-01 | 友达光电股份有限公司 | X-ray sensing device |
CN114252031A (en) * | 2021-11-19 | 2022-03-29 | 中国科学院深圳先进技术研究院 | Direct X-ray image detector and preparation method thereof |
CN114924302A (en) * | 2022-05-17 | 2022-08-19 | 吉林大学 | An X-ray detection device based on perovskite materials |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101471356A (en) * | 2007-12-28 | 2009-07-01 | 东部高科股份有限公司 | CMOS image sensor and method for manufacturing the sensor |
CN101627478A (en) * | 2007-02-16 | 2010-01-13 | 三菱重工业株式会社 | Photoelectric converter and method for fabricating the same |
CN102067325A (en) * | 2008-10-31 | 2011-05-18 | 三菱重工业株式会社 | Photoelectric conversion device and method for manufacturing photoelectric conversion device |
CN103337595A (en) * | 2013-07-04 | 2013-10-02 | 上海和辉光电有限公司 | Flexible packaging substrate, manufacturing method thereof, and packaging method of OLED using substrate |
CN103745982A (en) * | 2013-12-09 | 2014-04-23 | 江苏龙信电子科技有限公司 | Digital x-ray flat panel detector |
CN103975042A (en) * | 2011-09-22 | 2014-08-06 | 圣戈班晶体及检测公司 | Scintillation compound including a rare earth element and a process of forming the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014225541A1 (en) * | 2014-12-11 | 2016-06-16 | Siemens Healthcare Gmbh | Detection layer comprising perovskite crystals |
CN106847956B (en) * | 2017-03-08 | 2018-12-07 | 中国工程物理研究院材料研究所 | A kind of preparation method of the radiation detector based on full-inorganic perovskite monocrystalline |
CN109851510B (en) * | 2018-12-21 | 2021-09-28 | 东南大学 | Perovskite crystal/quantum dot composite scintillator and preparation method and application thereof |
CN110400813A (en) * | 2019-07-30 | 2019-11-01 | 深圳大学 | An X-ray digital image detector based on perovskite material |
-
2019
- 2019-07-30 CN CN201910696275.6A patent/CN110400813A/en active Pending
-
2020
- 2020-06-29 WO PCT/CN2020/098686 patent/WO2021017716A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101627478A (en) * | 2007-02-16 | 2010-01-13 | 三菱重工业株式会社 | Photoelectric converter and method for fabricating the same |
CN101471356A (en) * | 2007-12-28 | 2009-07-01 | 东部高科股份有限公司 | CMOS image sensor and method for manufacturing the sensor |
CN102067325A (en) * | 2008-10-31 | 2011-05-18 | 三菱重工业株式会社 | Photoelectric conversion device and method for manufacturing photoelectric conversion device |
CN103975042A (en) * | 2011-09-22 | 2014-08-06 | 圣戈班晶体及检测公司 | Scintillation compound including a rare earth element and a process of forming the same |
CN103337595A (en) * | 2013-07-04 | 2013-10-02 | 上海和辉光电有限公司 | Flexible packaging substrate, manufacturing method thereof, and packaging method of OLED using substrate |
CN103745982A (en) * | 2013-12-09 | 2014-04-23 | 江苏龙信电子科技有限公司 | Digital x-ray flat panel detector |
Non-Patent Citations (1)
Title |
---|
QIUSHUI CHEN ET AL: "All-inorganic perovskite nanocrystal scintillators", 《NATURE》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021017716A1 (en) * | 2019-07-30 | 2021-02-04 | 深圳大学 | Perovskite material-based x-ray digital image detector |
CN114122034A (en) * | 2021-04-19 | 2022-03-01 | 友达光电股份有限公司 | X-ray sensing device |
CN113845909A (en) * | 2021-09-27 | 2021-12-28 | 中国科学院高能物理研究所 | A high-resolution scintillator film, preparation method, preparation equipment and application |
CN114252031A (en) * | 2021-11-19 | 2022-03-29 | 中国科学院深圳先进技术研究院 | Direct X-ray image detector and preparation method thereof |
CN114924302A (en) * | 2022-05-17 | 2022-08-19 | 吉林大学 | An X-ray detection device based on perovskite materials |
Also Published As
Publication number | Publication date |
---|---|
WO2021017716A1 (en) | 2021-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110400813A (en) | An X-ray digital image detector based on perovskite material | |
CN111244119B (en) | A detection substrate, a manufacturing method thereof and a flat panel detector | |
US9869776B2 (en) | Ray detector | |
TWI452688B (en) | Flexible radiation sensor | |
CN109727968B (en) | Flat panel detector and manufacturing method | |
CN105514029B (en) | Dot structure of X-ray flat panel detector and preparation method thereof, camera system | |
JP2008215951A (en) | Radiation detector | |
CN103299212A (en) | Radiation image sensing device and method for manufacturing same | |
WO2020173241A1 (en) | Detection panel and manufacturing method thereof | |
CN104218045A (en) | Digital X-ray flat panel detector based on lead iodide photoconductive layer | |
CN103299211A (en) | Radiographic image detection device and manufacturing method for same | |
KR102669620B1 (en) | High-resolution Hybrid Radiation Detector | |
CN103715214A (en) | Manufacture method of high-definition digital X-ray flat panel detector | |
CN108010928A (en) | A kind of direct growth method of flexibility X ray sensor scintillator layers | |
WO2015146855A1 (en) | Radiation-detecting device and method for manufacturing radiation-detecting device | |
CN110137199A (en) | A kind of X-ray sensor and its manufacturing method | |
CN112673286B (en) | Dual sensor sub-pixel radiation detector | |
CN102466808A (en) | Amorphous silicon cesium iodide digital X-ray flat panel detector | |
WO2005109527A1 (en) | Radiation detector | |
CN103282968A (en) | Radiographic image conversion panel, manufacturing method for radiographic image conversion panel, and radiographic image detection device | |
CN210575956U (en) | Detection substrate and flat panel detector | |
CN113330567B (en) | Detection substrate, manufacturing method thereof and flat panel detector | |
CN201926763U (en) | Amorphous silicon cesium iodide digital X-ray flat panel detector | |
CN110698077B (en) | Cesium-lead halogen perovskite thick film and preparation and application thereof | |
CN103745982A (en) | Digital x-ray flat panel detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191101 |
|
RJ01 | Rejection of invention patent application after publication |