CN110387524B - 一种掺硅碳薄膜的固液超滑方法 - Google Patents

一种掺硅碳薄膜的固液超滑方法 Download PDF

Info

Publication number
CN110387524B
CN110387524B CN201910675967.2A CN201910675967A CN110387524B CN 110387524 B CN110387524 B CN 110387524B CN 201910675967 A CN201910675967 A CN 201910675967A CN 110387524 B CN110387524 B CN 110387524B
Authority
CN
China
Prior art keywords
silicon
carbon
containing film
film
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910675967.2A
Other languages
English (en)
Other versions
CN110387524A (zh
Inventor
王永富
张俊彦
杨兴
孙朝杰
侯德良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201910675967.2A priority Critical patent/CN110387524B/zh
Publication of CN110387524A publication Critical patent/CN110387524A/zh
Application granted granted Critical
Publication of CN110387524B publication Critical patent/CN110387524B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种掺硅碳薄膜的固液超滑方法,包括以下步骤:⑴制备硅含量介于10~35at.%之间、表面粗糙度≤5nm的含硅碳薄膜;⑵所述含硅碳薄膜在真空腔内于100~200℃恒温保持1h后冷却至室温;⑶将所述步骤⑵所得的含硅碳薄膜与对偶球组成摩擦配伍对,且使液体润滑剂存在于二者表面之间,在1~3N载荷、0.05~0.15m/s速度下对所述含硅碳薄膜进行摩擦即可。本发明方法简单,易于实现,可使滑动体系的摩擦系数降低至≤0.01,实现超滑,从而有效地减小摩擦、降低磨损和延长运动部件的工作寿命。

Description

一种掺硅碳薄膜的固液超滑方法
技术领域
本发明涉及真空镀膜及表面工程技术领域,尤其涉及一种掺硅碳薄膜的固液超滑方法。
背景技术
在机械运动系统中摩擦具有显著的科学和工程意义。据文献表明,三分之一的全球一次能源由摩擦消耗,导致五分之四的机械部件失效归咎为磨损。随着国家节能减排政策严苛规定、日益严格环保政策以及机械系统不断提升的高精度、高可靠性和长寿命要求,新一代的发动机需要新型表面强化与润滑技术。如何进一步减小摩擦、降低磨损和延长运动部件的工作寿命是新型表面强化与润滑技术的核心问题之一。
超滑指两个滑动接触表面之间摩擦系数达到10-3量级。一般而言,钢对钢的摩擦系数为1.0左右,油润滑的摩擦系数在0.05左右。因此,实现超滑不仅是日常生活的需要,也是摩擦学、物理学、化学和材料学等学科的长期研究领域。而开发超滑技术日益成为工业应用中节能减排主要途径和方向。
截止目前,超滑研究可以分为两类:液体超滑和固体超滑。液体超滑指在两个滑动接触表面之间通过液体润滑剂辅助实现的超滑现象,如陶瓷水润滑和醇润滑、以磷酸溶液为代表水合离子润滑等。固体超滑指在两个滑动接触表面之间直接接触实现的超滑现象。代表性案例有:以石墨烯和石墨等二维材料层间滑移的结构性超滑、以高度氢化无定形碳薄膜和碳纳米结构薄膜等碳基薄膜的基于无序固体界面的超滑。
虽然如此,通过碳基薄膜表面掺入元素或改性并且液体润滑剂加以辅助实现超滑现象仍然是空白。结合液体超滑和固体超滑的优势,将有利于回答新型表面强化与润滑技术的核心问题:如何进一步减小摩擦、降低磨损和延长运动部件的工作寿命的。
发明内容
本发明所要解决的技术问题是提供一种方法简单、易于实现的一种掺硅碳薄膜的固液超滑方法。
为解决上述问题,本发明所述的一种掺硅碳薄膜的固液超滑方法,包括以下步骤:
⑴制备硅含量介于10~35at.%之间、表面粗糙度≤5nm的含硅碳薄膜;
⑵所述含硅碳薄膜在真空腔内于100~200℃恒温保持1h后冷却至室温;
⑶将所述步骤⑵所得的含硅碳薄膜与对偶球组成摩擦配伍对,且使液体润滑剂存在于二者表面之间,在1~3N载荷、0.05~0.15m/s速度下对所述含硅碳薄膜进行摩擦即可。
所述步骤⑴中含硅碳薄膜是指无定型碳、类富勒烯碳、类石墨碳、洋葱碳中的任意一种纳米结构薄膜。
所述步骤⑶中对偶球是指Φ3mm的钢球、碳化硅球或氮化硅球中的任意一种。
所述步骤⑶中液体润滑剂是指多羟基醇类化合物。
所述多羟基醇类化合物是指乙二醇、丙三醇、环戊醇、硅油中的任意一种。
本发明与现有技术相比具有以下优点:
1、本发明通过结合液体超滑和固体超滑的优势,采用硅含量介于10~35at.%之间、表面粗糙度≤5nm的含硅碳薄膜与多羟基醇类化合物复合,此时含硅碳薄膜内硅原子受摩擦热和剪切应力的作用,与液体润滑剂发生化学反应,产生含硅产物(如硅脂或含硅水凝胶)。由于硅产物内存在很多氢键,在摩擦方向上导致低剪切强度,可使滑动体系的摩擦系数降低至≤0.01(参见图1),实现超滑,从而有效地减小摩擦、降低磨损和延长运动部件的工作寿命。
2、本发明方法简单,易于实现,在机械运动系统减摩的环境中具有潜在的应用前景。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1为本发明的掺硅碳基薄膜在各种溶剂中摩擦系数图。
具体实施方式
实施例1 一种掺硅碳薄膜的固液超滑方法,包括以下步骤:
⑴制备硅含量介于10~35at.%之间、表面粗糙度≤5nm的含硅碳薄膜。
其中:含硅碳薄膜是指无定型碳、类富勒烯碳、类石墨碳、洋葱碳中的任意一种纳米结构薄膜。
通过磁控溅射沉积技术在轴承钢表面上制备含硅碳薄膜,具体参数如下:
磁控溅射沉积条件是指纯度≥99.5%的甲烷与氩气按1:1~1:3体积比(L/L)混合而成的气体的流量为50~100sccm,沉积气压为1.0~5.0 Pa,沉积功率为1000 W,基底偏压为-200 V、频率为30 KHz,占空比为60%,样品盘与硅靶的距离为140 mm,沉积时间为40~120min。
⑵含硅碳薄膜在真空腔内于100℃恒温保持1h后冷却至室温。
⑶将步骤⑵所得的含硅碳薄膜与Φ3mm的钢球组成摩擦配伍对,且使乙二醇存在于二者表面之间,采用球-盘往复模式,在1N载荷、0.05m/s速度下对含硅碳薄膜进行摩擦即可。其摩擦系数为0.008。
实施例2 一种掺硅碳薄膜的固液超滑方法,包括以下步骤:
⑴制备硅含量介于10~35at.%之间、表面粗糙度≤5nm的含硅碳薄膜,方法同实施例1。
⑵含硅碳薄膜在真空腔内于200℃恒温保持1h后冷却至室温。
⑶将步骤⑵所得的含硅碳薄膜与Φ3mm的碳化硅球组成摩擦配伍对,且使丙三醇存在于二者表面之间,采用球-盘往复模式,在3N载荷、0.15m/s速度下对含硅碳薄膜进行摩擦即可。其摩擦系数为0.010。
实施例3 一种掺硅碳薄膜的固液超滑方法,包括以下步骤:
⑴制备硅含量介于10~35at.%之间、表面粗糙度≤5nm的含硅碳薄膜,方法同实施例1。
⑵含硅碳薄膜在真空腔内于150℃恒温保持1h后冷却至室温。
⑶将步骤⑵所得的含硅碳薄膜与Φ3mm的氮化硅球组成摩擦配伍对,且使环戊醇存在于二者表面之间,采用球-盘往复模式,在2N载荷、0.10m/s速度下对含硅碳薄膜进行摩擦即可。其摩擦系数为0.009。
实施例4 一种掺硅碳薄膜的固液超滑方法,包括以下步骤:
⑴制备硅含量介于10~35at.%之间、表面粗糙度≤5nm的含硅碳薄膜,方法同实施例1。
⑵含硅碳薄膜在真空腔内于120℃恒温保持1h后冷却至室温。
⑶将步骤⑵所得的含硅碳薄膜与Φ3mm的钢球组成摩擦配伍对,且使硅油存在于二者表面之间,采用球-盘往复模式,在2N载荷、0.15m/s速度下对含硅碳薄膜进行摩擦即可。其摩擦系数为0.006。

Claims (3)

1.一种掺硅碳薄膜的固液超滑方法,包括以下步骤:
⑴制备硅含量介于10~35at.%之间、表面粗糙度≤5nm的含硅碳薄膜;所述含硅碳薄膜是指无定型碳、类富勒烯碳、类石墨碳、洋葱碳中的任意一种纳米结构薄膜;
⑵所述含硅碳薄膜在真空腔内于100~200℃恒温保持1h后冷却至室温;
⑶将所述步骤⑵所得的含硅碳薄膜与对偶球组成摩擦配伍对,且使液体润滑剂存在于二者表面之间,在1~3N载荷、0.05~0.15m/s速度下对所述含硅碳薄膜进行摩擦,滑动体系的摩擦系数降低至≤0.01即可;所述液体润滑剂是指多羟基醇类化合物。
2.如权利要求1所述的一种掺硅碳薄膜的固液超滑方法,其特征在于:所述步骤⑶中对偶球是指Φ3mm的钢球、碳化硅球或氮化硅球中的任意一种。
3.如权利要求1所述的一种掺硅碳薄膜的固液超滑方法,其特征在于:所述步骤⑶中多羟基醇类化合物是指乙二醇、丙三醇、环戊醇、硅油中的任意一种。
CN201910675967.2A 2019-07-25 2019-07-25 一种掺硅碳薄膜的固液超滑方法 Active CN110387524B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910675967.2A CN110387524B (zh) 2019-07-25 2019-07-25 一种掺硅碳薄膜的固液超滑方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910675967.2A CN110387524B (zh) 2019-07-25 2019-07-25 一种掺硅碳薄膜的固液超滑方法

Publications (2)

Publication Number Publication Date
CN110387524A CN110387524A (zh) 2019-10-29
CN110387524B true CN110387524B (zh) 2021-07-20

Family

ID=68287280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910675967.2A Active CN110387524B (zh) 2019-07-25 2019-07-25 一种掺硅碳薄膜的固液超滑方法

Country Status (1)

Country Link
CN (1) CN110387524B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112209361A (zh) * 2020-10-21 2021-01-12 中国科学院兰州化学物理研究所 一种改善碳基薄膜耐磨性能的深冷处理工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101410640A (zh) * 2006-04-04 2009-04-15 日产自动车株式会社 低摩擦滑动机构
CN101469402B (zh) * 2007-12-25 2010-11-24 中国科学院兰州化学物理研究所 类富勒烯碳膜的制备方法
EP2568059B1 (en) * 2010-05-07 2016-07-06 Nikon Corporation Member formed from conductive sliding film
CN108220908B (zh) * 2017-12-18 2019-11-05 中国科学院兰州化学物理研究所 一种摩擦界面原位形成石墨烯和洋葱实现超滑的方法
CN108220909B (zh) * 2017-12-18 2019-11-05 中国科学院兰州化学物理研究所 一种碳基薄膜内不同碳纳米结构的调控设计方法
CN109627816B (zh) * 2019-01-07 2020-06-16 中国科学院兰州化学物理研究所 低摩擦碳基固体润滑涂层及其制备方法和应用

Also Published As

Publication number Publication date
CN110387524A (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
Zhou et al. Ionic liquid lubricants: designed chemistry for engineering applications
Fan et al. Carbon-based solid-liquid lubricating coatings for space applications-A review
Ge et al. Macroscale superlubricity achieved with various liquid molecules: A review
Zishan et al. Tribological behaviors of SiC/h-BN composite coating at elevated temperatures
Li et al. Enhanced lubrication effect of gallium-based liquid metal with laser textured surface
Vadiraj et al. Effect of nano oil additive proportions on friction and wear performance of automotive materials
Liu et al. A novel carbon-based solid–liquid duplex lubricating coating with super-high tribological performance for space applications
Jin et al. Improvement of the lubrication properties of grease with Mn 3 O 4/graphene (Mn 3 O 4# G) nanocomposite additive
CN110387524B (zh) 一种掺硅碳薄膜的固液超滑方法
Dhanola et al. A critical review on liquid superlubricitive technology for attaining ultra-low friction
Qi et al. The tribological performance of DLC-based coating under the solid–liquid lubrication system with sand-dust particles
Yang et al. Synergistic lubrication mechanisms of molybdenum disulfide film under graphene-oil lubricated conditions
CN1133818C (zh) 冷冻机用压缩机
Zhuang et al. Probing fretting performance of DLC and MoS2 films under fluid lubrication
Zhu et al. Nano-crystallization-driven high temperature self-lubricating properties of magnetron-sputtered WS 2 coatings
SG191408A1 (en) Piston assembly for alernative compressor
Meng et al. Effects of aviation lubrication on tribological performances of graphene/MoS2 composite coating
CN113355633A (zh) 一种齿轮副的表面处理方法
Arslan et al. Effect of surface texture on the tribological performance of DLC coating
CN113699498B (zh) 一种碳化VAlN硬质固体润滑涂层及其制备方法
Yan et al. Tribological behaviors of MoS 2/SiCH film composite lubrication system
CN100343372C (zh) 离子液体润滑薄膜的制备方法
CN114196913A (zh) 一种超低摩擦固液复合润滑涂层及其制备方法
Kumari et al. Nanostructured layered materials as novel lubricant additives for tribological applications
Yan et al. Synergistic effect and long-term lubricating mechanism of WS2/oil combinations determined via oil molecule structures in vacuum

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant