CN110378165B - 二维码识别方法、二维码定位识别模型建立方法及其装置 - Google Patents

二维码识别方法、二维码定位识别模型建立方法及其装置 Download PDF

Info

Publication number
CN110378165B
CN110378165B CN201910470176.6A CN201910470176A CN110378165B CN 110378165 B CN110378165 B CN 110378165B CN 201910470176 A CN201910470176 A CN 201910470176A CN 110378165 B CN110378165 B CN 110378165B
Authority
CN
China
Prior art keywords
dimensional code
recognized
image resolution
identified
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910470176.6A
Other languages
English (en)
Other versions
CN110378165A (zh
Inventor
梁明杰
陈家大
陈爽
王浦林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced New Technologies Co Ltd
Advantageous New Technologies Co Ltd
Original Assignee
Advanced New Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced New Technologies Co Ltd filed Critical Advanced New Technologies Co Ltd
Priority to CN201910470176.6A priority Critical patent/CN110378165B/zh
Priority to CN202210956653.1A priority patent/CN115456002A/zh
Publication of CN110378165A publication Critical patent/CN110378165A/zh
Priority to PCT/CN2020/071156 priority patent/WO2020238239A1/zh
Priority to US16/809,256 priority patent/US10956696B2/en
Priority to US17/208,448 priority patent/US11216629B2/en
Application granted granted Critical
Publication of CN110378165B publication Critical patent/CN110378165B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • G06K7/1404Methods for optical code recognition
    • G06K7/1408Methods for optical code recognition the method being specifically adapted for the type of code
    • G06K7/14172D bar codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10792Special measures in relation to the object to be scanned
    • G06K7/10801Multidistance reading
    • G06K7/10811Focalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

本发明提供一种二维码识别方法、二维码定位识别模型建立方法及其装置,该二维码识别方法包括:获取待识别二维码,通过预先建立的二维码定位识别模型对所述待识别二维码进行全局特征定位检测;根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理;对调焦处理后的待识别二维码进行解码。本发明可以提高复杂场景下拍摄的二维码的识别准确度。

Description

二维码识别方法、二维码定位识别模型建立方法及其装置
技术领域
本发明涉及信息技术领域,尤其涉及一种二维码识别方法、二维码定位识别模型建立方法及其装置。
背景技术
目前,QR(Quick Response Code,快速响应矩阵)码等二维码被广泛的应用于各行各业的不同场景,几乎涉及到生活的方方面面,例如,通过二维码进行移动支付、信息识别等等,极大地提升了日常生活的便利性。但是,对于一些需要远距离拍摄二维码的特定场景下,经常存在因码区域过小、对焦不准等问题导致无法快速解码。例如,在停车收费、高速路收费等需要进行远距离扫码支付的场景,经常存在因拍摄距离远导致拍摄的二维码分辨率较低而无法快速解码,影响付费效率造成通过收费口缓慢及排队问题。因此,对于远距离或其他难以清楚拍摄二维码的复杂场景中,如何提升二维码解码准确度是目前亟待解决的问题。
发明内容
本发明的一个目的是提供一种二维码识别方法、二维码定位识别模型建立方法及其装置,以解决现有对于复杂场景中二维码解码准确度低的问题。
根据本发明的第一方面,提供一种二维码识别方法,包括:
获取待识别二维码,通过预先建立的二维码定位识别模型对所述待识别二维码进行全局特征定位检测;
根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理;
对调焦处理后的待识别二维码进行解码。
进一步,本发明所述的方法,还包括:
基于预设的环境条件,采集对应的采样二维码;
对采样二维码的指定区域标注对应标识信息;
将采样二维码及标识信息作为深度学习的输入数据进行训练,以得到二维码定位识别模型。
进一步,本发明所述的方法,还包括:
确定所述待识别二维码的分辨率是否满足预设图像分辨率,若否,执行根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理的步骤。
进一步,根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理,包括:
根据自动对焦算法对待识别二维码进行对焦处理,以调节所述待识别二维码的图像分辨率。
进一步,根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理,包括:
按照所述预设图像分辨率,对待识别二维码进行变焦处理,以调节所述待识别二维码的图像分辨率。
进一步,本发明所述的方法,还包括:
检测采集所述待识别二维码的二维码扫描设备是否具有光学变焦功能;
若是,控制所述二维码扫描设备按照预设图像分辨率采集所述待识别二维码;否则,按照插值处理方式调节已采集的待识别二维码像素面积。
进一步,本发明所述的方法,还包括:
若所述二维码扫描设备具有光学变焦功能,在控制所述二维码扫描设备按照预设图像分辨率采集所述待识别二维码后,检测待识别二维码是否满足预设图像分辨率;
若否,按照插值处理方式调节已采集的待识别二维码像素面积。
根据本发明的第二方面,提供一种二维码定位识别模型建立方法,包括:
基于预设的环境条件,采集对应的采样二维码;
对采样二维码的指定区域标注对应标识信息;
将采样二维码及标识信息作为深度学习的输入数据进行训练,以得到二维码定位识别模型。
进一步,本发明所述的方法,所述指定区域包括所述采样二维码的角点。
根据本发明的第三方面,提供一种二维码识别装置,包括:
二维码定位模块,用于获取待识别二维码,通过预先建立的二维码定位识别模型对所述待识别二维码进行全局特征的定位检测;
调焦处理模块,用于根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理;
二维码解码模块,用于对调焦处理后的待识别二维码进行解码。
进一步,本发明所述的装置,还包括:
二维码采样模块,用于基于预设的环境条件,采集对应的采样二维码;
信息标识模块,用于对采样二维码的指定区域标注对应标识信息;
模型生成模块,用于将采样二维码及标识信息作为深度学习的输入数据进行训练,以得到二维码定位识别模型。
进一步,本发明所述的装置,还包括:
分辨率确定模块,用于确定所述待识别二维码的分辨率是否满足预设图像分辨率,若否,执行根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理的步骤。
进一步,调焦处理模块还包括:
对焦调节子模块,用于根据自动对焦算法对待识别二维码进行对焦处理,以调节所述待识别二维码的图像分辨率。
进一步,调焦处理模块还包括:
变焦调节子模块,用于按照所述预设图像分辨率,对待识别二维码进行变焦处理,以调节所述待识别二维码的图像分辨率。
进一步,变焦调节子模块,还用于:
检测采集所述待识别二维码的二维码扫描设备是否具有光学变焦功能;若是,控制所述二维码扫描设备按照预设图像分辨率采集所述待识别二维码;否则,按照插值处理方式调节已采集的待识别二维码像素面积。
进一步,变焦调节子模块,还用于:
若所述二维码扫描设备具有光学变焦功能,在控制所述二维码扫描设备按照预设图像分辨率采集所述待识别二维码后,检测待识别二维码是否满足预设图像分辨率;若否,按照插值处理方式调节已采集的待识别二维码像素面积。
根据本发明的第四方面,提供一种二维码定位识别模型构建装置,包括:
二维码采样模块,用于基于预设的环境条件,采集对应的采样二维码;
信息标识模块,用于对采样二维码的指定区域标注对应标识信息;
模型生成模块,用于将采样二维码及标识信息作为深度学习的输入数据进行训练,以得到二维码定位识别模型。
进一步,所述指定区域包括所述采样二维码的角点。
根据本发明的第五方面,提供一种存储介质,所述存储介质存储计算机程序指令,所述计算机程序指令根据本发明所述的方法进行执行。
根据本发明的第六方面,提供一种计算设备,包括:用于存储计算机程序指令的存储器和用于执行计算机程序指令的处理器,其中,当该计算机程序指令被该处理器执行时,触发所述计算设备执行本发明所述的方法。
本发明提供一种二维码识别方法以及装置,通过预先建立的二维码定位识别模型对获取的待识别二维码进行全局特征定位检测,并根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理,进而解码。一方面通过预先建立的二维码定位识别模型对获取的待识别二维码进行定位检测可以提高复杂场景下拍摄的模糊二维码的识别准确度,另一方面,通过预设图像分辨率对完成定位检测的待识别二维码进行调焦处理,可自动对模糊二维码进行分辨率调节,大幅提升用户体验。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明实施例一的二维码识别方法的流程示意图;
图2为本发明实施例二的二维码识别方法的流程示意图;
图3为本发明实施例中二维码标识信息示意图;
图4为本发明实施例三的二维码定位识别模型建立方法的流程示意图;
图5为本发明实施例的二维码识别装置的结构示意图;
图6为本发明实施例的二维码定位识别模型建立装置的结构示意图。
附图中相同或相似的附图标记代表相同或相似的部件。
具体实施方式
下面结合附图对本发明作进一步详细描述。
在本发明一个典型的配置中,终端、服务网络的设备均包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器 (RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的装置或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器 (DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
图1为本发明实施例一的二维码识别方法的流程示意图,该二维码识别方法可以应用于手机、pad、支付设备等具有图像采集功能的终端设备,如图1所示,本发明实施例一提供的二维码识别方法,包括步骤S101-步骤S103,其中:
步骤S101,获取待识别二维码,通过预先建立的二维码定位识别模型对所述待识别二维码进行定位检测;
步骤S102,根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理;
步骤S103,对调焦处理后的待识别二维码进行解码。
在步骤S101中,根据应用场景的不同,待识别二维码可以是用于开启车锁、门锁的解锁二维码,也可以是用于消费的收付款二维码,还可以是用于身份识别的二维码等等。二维码定位识别模型为预先对采样二维码及标注的标识信息等输入数据进行训练后建立的,将采集到的待识别二维码输入二维码定位识别模型,通过对待识别二维码的全局特征进行定位检测,以输出定位后的待识别二维码。
步骤S101中建立的二维码定位识别模型可以由服务器根据输入的各项参数预先建立,建立二维码定位识别模型可以包括:基于预设的环境条件,采集对应的采样二维码;对采样二维码的指定区域标注对应标识信息;将采样二维码及标识信息作为深度学习的输入数据进行训练,以得到二维码定位识别模型。具体而言:
根据当前应用场景,设定对应的二维码采样方式,如高速路收费等需要进行远距离扫码支付的场景中,设定的采样方式可以是分别基于与二维码显示设备的不同距离采集对应的多个采样二维码;如停车收费处设于弯道型的停车场出口的场景中,设定的采样方式可以是分别基于与二维码显示设备的不同角度采集对应的多个采样二维码等;另外还可以根据不同光照等条件,或者不同光照与上述距离、角度结合的方式采集采样二维码。该不同距离、不同角度、不同光照可以根据实际应用场景中对二维码采集设备的采集位置等条件测试而定,本发明对此不做限定。对采集的多个采样二维码的指定区域标注对应标识信息。该指定区域是对二维码在图像中的位置具有指示作用的区域,例如是二维码的四个角点,或者是二维码中的位置图形等。之后可以通过人工标注的方式或者自动识别该指定区域并标注的方式在指定区域添加对应的标识信息。将采样二维码及在指定区域添加的标识信息作为深度学习网络的输入数据进行训练,网络收敛后得到二维码定位识别模型,即网络结构及参数。该深度学习网络可以是深度卷积神经网络、Faster R-CNN、YOLO、SSD等。
本发明实施方式以当前应用场景为需要进行远距离扫码支付的场景举例,所设定的采样距离分别是基于与二维码显示设备1m,1.5m,1.8m,2m的不同距离所采集的对应的多个采样二维码,并记录不同距离拍摄的多个采样二维码的对应的分辨率大小;二维码定位识别模型中所标注的指定区域是采样二维码的四个角点,请参考图2所示,对指定区域所标注的标识信息分别是对应各个采样二维码四个角点的左上角、左下角、右上角、右下角。当获取用户在距二维码显示设备1.8m采集的待识别二维码后,确定该待识别二维码的分辨率大小,并查找二维码定位识别模型中分辨率大小与待识别二维码最为匹配的采样二维码,并根据该采样二维码及其标识信息“四个角点的左上角、左下角、右上角、右下角”对该待识别二维码的全局特征进行定位,进而输出定位后的待识别二维码。
在步骤S102中,根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理;
预设图像分辨率可以是满足识别二维码条件的最低标准,也可以是二维码扫描设备在拍摄图像时可以达到的最大分辨率,当然还可以是用户根据需求预设的其他值,本发明在此不做具体限定。
在停车收费、高速路收费等二维码获取条件较为复杂的场景下,二维码扫描设备采集的待识别二维码可能由于码区域过小导致分辨率较低等原因而不能被有效识别。为提升二维码识别准确性,本发明实施方式中,在对待识别二维码完成定位后,可以根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理,调焦处理可以包括对焦和/或变焦处理。具体地,可以根据自动对焦算法对待识别二维码进行对焦处理,以调节所述待识别二维码的图像分辨率。自动对焦算法可以是测距自动对焦、聚焦检测自动对焦等,例如具体可以是聚焦检测自动对焦的对比度检测自动对焦算法等。通过对焦算法对待识别二维码进行对焦后能够使得待识别二维码区域处于最清晰状态,避免因失焦模糊而导致无法解码。
图3为本发明实施例二的二维码识别方法的流程示意图。本发明实施例二的二维码识别方法中,在完成对焦之后,若待识别二维码的分辨率小于预设图像分辨率,按照所述预设图像分辨率,还可以对待识别二维码进一步进行变焦处理,以调节所述待识别二维码的图像分辨率。具体地,包括步骤S1021-步骤S1023,其中:
步骤S1021,检测采集所述待识别二维码的二维码扫描设备是否具有光学变焦功能;若是,执行步骤S1022;否则,执行步骤S1023。
步骤S1022,控制所述二维码扫描设备按照预设图像分辨率采集所述待识别二维码;
步骤S1023,按照插值处理方式调节已采集的待识别二维码像素面积。
在步骤S1021-步骤S1023中,对于支持光学变焦的二维码扫描设备,可以优先采用光学变焦方法,控制二维码扫描设备按照预设图像分辨率采集满足预设图像分辨率要求的待识别二维码,或者采集尽可能满足预设图像分辨率要求的待识别二维码,以实现无损放大;对不支持光学变焦的二维码扫描设备,可以采用数码变焦方法,通过二维码扫描设备内的处理器,把待识别二维码的每个像素面积增大,进而将待识别二维码区域尽可能放大到预设图像分辨率大小。
对于支持光学变焦的二维码扫描设备通过超远距采集的待识别二维码,采用光学变焦方法进行分辨率调节后,可能仍不能满足预设图像分辨率要求,因此,若确定二维码扫描设备具有光学变焦功能,在控制所述二维码扫描设备按照预设图像分辨率采集所述待识别二维码后,可以进一步检测待识别二维码是否满足预设图像分辨率;若不满足,可以再按照插值处理方式调节已采集的待识别二维码像素面积,即,把待识别二维码的每个像素面积增大,进而将待识别二维码区域放大到预设图像分辨率大小。
在步骤S103中,对调焦处理后的待识别二维码进行解码。
对待识别二维码进行调焦处理后,通过识读待识别二维码的符号图像、格式信息、版本信息,消除掩模,根据模块排列规则识读符号字符,恢复信息的数据与纠错码字,进而进行纠错、译码,得出数据字符并输出结果,以完成对待识别二维码的解码。由于对待识别二维码进行调焦处理后,待识别二维码的分辨率已满足或接近预设图像分辨率,因此在对待识别二维码进行解码时可以大幅提升二维码解码的成功率以及识别时间。
图4为本发明实施例三的二维码定位识别模型构建方法的流程示意图。本发明实施例三的二维码定位识别模型构建方法可以应用于服务器,由服务器完成二维码定位识别模型的构建。其中,本发明实施例三的二维码定位识别模型构建方法可以包括:
步骤S401,基于预设的环境条件,采集对应的采样二维码;
步骤S402,对采样二维码的指定区域标注对应标识信息;
步骤S403,将采样二维码及标识信息作为深度学习的输入数据进行训练,以得到二维码定位识别模型。
在步骤S401中,可以根据当前应用场景,设定对应的二维码采样方式,如高速路收费等需要进行远距离扫码支付的场景中,设定的采样方式可以是分别基于与二维码显示设备的不同距离采集对应的多个采样二维码;如停车收费处设于弯道型的停车场出口的场景中,设定的采样方式可以是分别基于与二维码显示设备的不同角度采集对应的多个采样二维码等;另外还可以根据不同光照等条件,或者不同光照与上述距离、角度结合的方式采集采样二维码。该不同距离、不同角度、不同光照可以根据实际应用场景中对二维码采集设备的采集位置等条件测试而定,本发明对此不做限定。
在步骤S402中,对采集的多个采样二维码的指定区域标注对应标识信息。该指定区域是对二维码在图像中的位置具有指示作用的区域,例如是二维码的至少一个角点,或者是二维码中的位置图形等。之后可以通过人工标注的方式或者自动识别该指定区域并标注的方式在指定区域添加对应的标识信息。
在步骤S403中,将采样二维码及在指定区域添加的标识信息作为深度学习网络的输入数据进行训练,网络收敛后得到二维码定位识别模型,即网络结构及参数。该深度学习网络可以是深度卷积神经网络、Faster R-CNN、YOLO、SSD等。
本发明实施方式以当前应用场景为需要进行远距离扫码支付的场景举例,所设定的采样距离分别是基于与二维码显示设备1m,1.5m,1.8m, 2m的不同距离所采集的对应的多个采样二维码,并记录不同距离拍摄的多个采样二维码的对应的分辨率大小;二维码定位识别模型中所标注的指定区域是采样二维码的四个角点,请参考图3所示,对指定区域所标注的标识信息分别是对应各个采样二维码四个角点的左上角、左下角、右上角、右下角。当获取用户在距二维码显示设备1.8m采集的待识别二维码后,确定该待识别二维码的分辨率大小,并查找二维码定位识别模型中分辨率大小与待识别二维码最为匹配的采样二维码,并根据该采样二维码及其标识信息“四个角点的左上角、左下角、右上角、右下角”对该待识别二维码的全局特征进行定位,进而输出定位后的待识别二维码。最后,将采样二维码及标识信息作为深度学习的输入数据进行训练,以完成二维码定位识别模型的建立。
图5为本发明实施例的二维码识别装置的结构示意图,如图5所示,本发明实施例的二维码识别装置,包括二维码定位模块501、调焦处理模块502以及二维码解码模块503,其中:
二维码定位模块501,用于获取待识别二维码,通过预先建立的二维码定位识别模型对所述待识别二维码进行全局特征的定位检测;
调焦处理模块502,用于根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理;
二维码解码模块503,用于对调焦处理后的待识别二维码进行解码。
进一步地,所述装置还包括:
二维码采样模块,用于基于预设的环境条件,采集对应的采样二维码;
信息标识模块,用于对采样二维码的指定区域标注对应标识信息;
模型生成模块,用于将采样二维码及标识信息作为深度学习的输入数据进行训练,以得到二维码定位识别模型。
进一步地,所述装置还包括:
分辨率确定模块,用于确定所述待识别二维码的分辨率是否满足预设图像分辨率,若否,执行根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理的步骤。
进一步地,调焦处理模块还包括:
对焦调节子模块,用于根据自动对焦算法对待识别二维码进行对焦处理,以调节所述待识别二维码的图像分辨率。
进一步地,调焦处理模块还包括:
变焦调节子模块,用于按照所述预设图像分辨率,对待识别二维码进行变焦处理,以调节所述待识别二维码的图像分辨率。
进一步地,变焦调节子模块,还用于:
检测采集所述待识别二维码的二维码扫描设备是否具有光学变焦功能;若是,控制所述二维码扫描设备按照预设图像分辨率采集所述待识别二维码;否则,按照插值处理方式调节已采集的待识别二维码像素面积。
进一步地,变焦调节子模块,还用于:
若所述二维码扫描设备具有光学变焦功能,在控制所述二维码扫描设备按照预设图像分辨率采集所述待识别二维码后,检测待识别二维码是否满足预设图像分辨率;若否,按照插值处理方式调节已采集的待识别二维码像素面积。
本发明实施例图5所示装置为本发明实施例图1、图2所示方法的实现装置,其具体原理与本发明实施例图1、图2所示方法相同,此处不再赘述。
图6为本发明实施例的二维码定位识别模型建立装置的结构示意图,如图5所示,本发明实施例的二维码定位识别模型建立装置,包括二维码采样模块601、信息标识模块602以及模型生成模块603,其中:
二维码采样模块601,用于基于预设的环境条件,采集对应的采样二维码;
信息标识模块602,用于对采样二维码的指定区域标注对应标识信息;
模型生成模块603,用于将采样二维码及标识信息作为深度学习的输入数据进行训练,以得到二维码定位识别模型。
进一步地,所述指定区域包括所述采样二维码的角点。
本发明实施例图6所示装置为本发明实施例图4所示方法的实现装置,其具体原理与本发明实施例图4所示方法相同,此处不再赘述。本发明实施例还提供一种存储设备,所述存储设备存储计算机程序指令,所述计算机程序指令根据本发明图1、图2、图4所示的方法进行执行。
本发明实施例还提供一种计算设备,包括:用于存储计算机程序指令的存储器和用于执行计算机程序指令的处理器,其中,当该计算机程序指令被该处理器执行时,触发所述计算设备执行本发明图1、图2、图4所示的方法。
此外,本发明的一些实施例还提供了一种计算机可读介质,其上存储有计算机程序指令,所述计算机可读指令可被处理器执行以实现前述本发明的多个实施例的方法和/或技术方案。
需要注意的是,本发明可在软件和/或软件与硬件的组合体中被实施,例如,可采用专用集成电路(ASIC)、通用目的计算机或任何其他类似硬件设备来实现。在一些实施例中,本发明的软件程序可以通过处理器执行以实现上文步骤或功能。同样地,本发明的软件程序(包括相关的数据结构)可以被存储到计算机可读记录介质中,例如,RAM存储器,磁或光驱动器或软磁盘及类似设备。另外,本发明的一些步骤或功能可采用硬件来实现,例如,作为与处理器配合从而执行各个步骤或功能的电路。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述的多个单元或装置也可以由一个单元或装置通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。

Claims (8)

1.一种二维码识别方法,其特征在于,所述方法包括:
基于预设的环境条件,根据当前应用场景,设定对应的二维码采样方式,采集对应的采样二维码;所述采样方式包括:根据与二维码的不同距离、不同角度或不同光照多次采样;
对采样二维码的指定区域标注对应标识信息;所述指定区域是对所述采样二维码在图像中的位置具有指示作用的区域,为二维码的至少一个角点,或者为二维码中的位置图形;
将采样二维码及标识信息作为深度学习的输入数据进行训练,以得到二维码定位检测模型;
获取待识别二维码,通过预先建立的二维码定位检测模型对所述待识别二维码进行全局特征定位检测;
根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理,具体包括:对完成定位检测的所述待识别二维码进行对焦处理,若对焦后的所述待识别二维码的分辨率小于预设图像分辨率,则检测采集所述待识别二维码的二维码扫描设备是否具有光学变焦功能;若所述二维码扫描设备具有光学变焦功能,在控制所述二维码扫描设备光学变焦以按照预设图像分辨率采集所述待识别二维码后,检测待识别二维码是否满足预设图像分辨率;若是,控制所述二维码扫描设备进行光学变焦以按照预设图像分辨率采集所述待识别二维码;否则,按照插值处理方式调节已采集的待识别二维码像素面积;若二维码扫描设备不具有光学变焦功能,按照插值处理方式调节已采集的待识别二维码像素面积;所述预设图像分辨率为满足识别二维码条件的最小分辨率;
对调焦处理后的待识别二维码进行解码。
2.如权利要求1所述的方法,其特征在于,根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理之前,所述方法还包括:
确定所述待识别二维码的分辨率是否满足预设图像分辨率,若否,执行根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理的步骤。
3.如权利要求1所述的方法,其特征在于,根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理,包括:
根据自动对焦算法对待识别二维码进行对焦处理,以调节所述待识别二维码的图像分辨率。
4.一种二维码识别装置,其特征在于,所述装置包括:
二维码定位模块,用于获取待识别二维码,通过预先建立的二维码定位检测模型对所述待识别二维码进行全局特征的定位检测;
调焦处理模块,用于根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理;
二维码解码模块,用于对调焦处理后的待识别二维码进行解码;
二维码采样模块,用于基于预设的环境条件,根据当前应用场景,设定对应的二维码采样方式,采集对应的采样二维码;所述采样方式包括:根据与二维码的不同角度多次采样;
信息标识模块,用于对采样二维码的指定区域标注对应标识信息;所述指定区域是对所述采样二维码在图像中的位置具有指示作用的区域,为二维码的至少一个角点,或者为二维码中的位置图形;
模型生成模块,用于将采样二维码及标识信息作为深度学习的输入数据进行训练,以得到二维码定位检测模型;
调焦处理模块还包括:
对焦调节子模块,用于对完成定位检测的待识别二维码进行对焦处理,以调节所述待识别二维码的图像分辨率;
变焦调节子模块,用于:
若对焦后的所述待识别二维码的分辨率小于预设图像分辨率,则检测采集所述待识别二维码的二维码扫描设备是否具有光学变焦功能;若所述二维码扫描设备具有光学变焦功能,在控制所述二维码扫描设备光学变焦以按照预设图像分辨率采集所述待识别二维码后,检测待识别二维码是否满足预设图像分辨率;若是,控制所述二维码扫描设备进行光学变焦以按照预设图像分辨率采集所述待识别二维码;否则,按照插值处理方式调节已采集的待识别二维码像素面积;若二维码扫描设备不具有光学变焦功能,按照插值处理方式调节已采集的待识别二维码像素面积;所述预设图像分辨率为满足识别二维码条件的最小分辨率。
5.如权利要求4所述的装置,其特征在于,所述装置还包括:
分辨率确定模块,用于确定所述待识别二维码的分辨率是否满足预设图像分辨率,若否,执行根据预设图像分辨率对完成定位检测的待识别二维码进行调焦处理的步骤。
6.如权利要求4所述的装置,其特征在于,调焦处理模块还包括:
对焦调节子模块,用于根据自动对焦算法对待识别二维码进行对焦处理,以调节所述待识别二维码的图像分辨率。
7.一种存储介质,其特征在于,所述存储介质存储计算机程序指令,所述计算机程序指令根据权利要求1至3中任一项所述的方法进行执行。
8.一种计算设备,其特征在于,包括:用于存储计算机程序指令的存储器和用于执行计算机程序指令的处理器,其中,当该计算机程序指令被该处理器执行时,触发所述计算设备执行权利要求1至3中任一项所述的方法。
CN201910470176.6A 2019-05-31 2019-05-31 二维码识别方法、二维码定位识别模型建立方法及其装置 Active CN110378165B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201910470176.6A CN110378165B (zh) 2019-05-31 2019-05-31 二维码识别方法、二维码定位识别模型建立方法及其装置
CN202210956653.1A CN115456002A (zh) 2019-05-31 2019-05-31 二维码识别方法、二维码定位识别模型建立方法及其装置
PCT/CN2020/071156 WO2020238239A1 (zh) 2019-05-31 2020-01-09 二维码识别方法、二维码定位识别模型建立方法及其装置
US16/809,256 US10956696B2 (en) 2019-05-31 2020-03-04 Two-dimensional code identification and positioning
US17/208,448 US11216629B2 (en) 2019-05-31 2021-03-22 Two-dimensional code identification and positioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910470176.6A CN110378165B (zh) 2019-05-31 2019-05-31 二维码识别方法、二维码定位识别模型建立方法及其装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202210956653.1A Division CN115456002A (zh) 2019-05-31 2019-05-31 二维码识别方法、二维码定位识别模型建立方法及其装置

Publications (2)

Publication Number Publication Date
CN110378165A CN110378165A (zh) 2019-10-25
CN110378165B true CN110378165B (zh) 2022-06-24

Family

ID=68249587

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210956653.1A Pending CN115456002A (zh) 2019-05-31 2019-05-31 二维码识别方法、二维码定位识别模型建立方法及其装置
CN201910470176.6A Active CN110378165B (zh) 2019-05-31 2019-05-31 二维码识别方法、二维码定位识别模型建立方法及其装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202210956653.1A Pending CN115456002A (zh) 2019-05-31 2019-05-31 二维码识别方法、二维码定位识别模型建立方法及其装置

Country Status (2)

Country Link
CN (2) CN115456002A (zh)
WO (1) WO2020238239A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10956696B2 (en) 2019-05-31 2021-03-23 Advanced New Technologies Co., Ltd. Two-dimensional code identification and positioning
CN115456002A (zh) * 2019-05-31 2022-12-09 创新先进技术有限公司 二维码识别方法、二维码定位识别模型建立方法及其装置
CN111008540B (zh) * 2019-11-29 2021-10-22 联想(北京)有限公司 一种条码识别方法及设备、计算机存储介质
CN113496133B (zh) * 2020-04-07 2024-03-29 深圳爱根斯通科技有限公司 二维码识别方法、装置、电子设备及存储介质
CN111860027B (zh) * 2020-06-11 2024-06-18 贝壳技术有限公司 二维码的识别方法及装置
CN111767754B (zh) * 2020-06-30 2024-05-07 创新奇智(北京)科技有限公司 一种识别码的识别方法、装置、电子设备及存储介质
CN112417918B (zh) * 2020-11-13 2022-03-18 珠海格力电器股份有限公司 二维码识别方法、装置、存储介质及电子设备
CN112464687A (zh) * 2020-11-19 2021-03-09 苏州摩比信通智能系统有限公司 图形码处理方法、装置以及终端设备
CN114754810B (zh) * 2021-01-08 2024-06-25 中国石油天然气集团有限公司 获取防腐补口数据的系统
CN112989863B (zh) * 2021-03-10 2024-08-20 北京骑胜科技有限公司 二维码状态识别方法及装置
CN113919382B (zh) * 2021-04-29 2023-04-28 荣耀终端有限公司 一种扫码的方法及装置
CN115706854A (zh) * 2021-08-06 2023-02-17 北京小米移动软件有限公司 足式机器人的相机控制方法、装置及足式机器人
CN114021595B (zh) * 2021-09-22 2024-08-02 厦门华联电子股份有限公司 一种二维码识别方法及装置
CN114021596B (zh) * 2021-09-22 2024-08-27 厦门华联电子股份有限公司 一种基于深度学习的条码识别方法及装置
CN114862427B (zh) * 2022-07-06 2022-11-22 一物一码数据(广州)实业有限公司 基于二维码的质量检测跟踪的方法
CN115086381B (zh) * 2022-07-25 2022-11-11 东集技术股份有限公司 标签数据采集方法、装置、采集设备及标签数据采集系统
CN116451720A (zh) * 2023-06-09 2023-07-18 陕西西煤云商信息科技有限公司 一种仓储物资扫描识别方法及其识别系统
CN116882433B (zh) * 2023-09-07 2023-12-08 无锡维凯科技有限公司 一种基于机器视觉的扫码识别方法和系统
CN117576617B (zh) * 2024-01-16 2024-04-16 杭州长河智信科技有限公司 一种基于不同环境自动调节的解码系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244737A (zh) * 2008-03-28 2011-11-16 三洋电机株式会社 摄像装置
CN106056027A (zh) * 2016-05-25 2016-10-26 努比亚技术有限公司 一种实现远距离扫描二维码的终端、系统和方法
CN107358135A (zh) * 2017-08-28 2017-11-17 北京奇艺世纪科技有限公司 一种二维码扫码方法及装置
CN109815765A (zh) * 2019-01-21 2019-05-28 东南大学 一种提取含有二维码的营业执照信息的方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8050502B2 (en) * 2006-06-21 2011-11-01 Namco Bandai Games Inc. Two-Dimensional code generation method, two-dimensional code, two-dimensional code recognition method, and image recognition device
US10625426B2 (en) * 2016-05-19 2020-04-21 Simbe Robotics, Inc. Method for automatically generating planograms of shelving structures within a store
CN107220577A (zh) * 2017-05-12 2017-09-29 广州智慧城市发展研究院 一种基于机器学习的二维码定位方法及系统
CN108629220A (zh) * 2018-03-23 2018-10-09 阿里巴巴集团控股有限公司 一种二维码识读方法、装置及设备
CN108596003B (zh) * 2018-04-11 2021-07-16 中山大学 一种基于机器学习的污损二维码修复方法及系统
CN115456002A (zh) * 2019-05-31 2022-12-09 创新先进技术有限公司 二维码识别方法、二维码定位识别模型建立方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244737A (zh) * 2008-03-28 2011-11-16 三洋电机株式会社 摄像装置
CN106056027A (zh) * 2016-05-25 2016-10-26 努比亚技术有限公司 一种实现远距离扫描二维码的终端、系统和方法
CN107358135A (zh) * 2017-08-28 2017-11-17 北京奇艺世纪科技有限公司 一种二维码扫码方法及装置
CN109815765A (zh) * 2019-01-21 2019-05-28 东南大学 一种提取含有二维码的营业执照信息的方法及装置

Also Published As

Publication number Publication date
WO2020238239A1 (zh) 2020-12-03
CN115456002A (zh) 2022-12-09
CN110378165A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
CN110378165B (zh) 二维码识别方法、二维码定位识别模型建立方法及其装置
US11216629B2 (en) Two-dimensional code identification and positioning
CN110827247B (zh) 一种识别标签的方法及设备
CN109766890B (zh) 信息识别方法、设备和系统
US20190325205A1 (en) Method and apparatus for human behavior recognition, and storage medium
CN110765795B (zh) 二维码识别方法、装置及电子设备
CN110348392B (zh) 车辆匹配方法及设备
CN107862235B (zh) 二维码的位置定位方法、装置及终端设备
CN113065374A (zh) 一种二维码识别方法、装置及设备
CN103608838A (zh) 用于对所输入的条形码图像去模糊的方法以及能够被终端设备和计算机读取的记录介质
CN111291619A (zh) 一种在线识别理赔单据中文字的方法、装置及客户端
CN109871744A (zh) 一种增值税发票图像配准方法及系统
CN112308018A (zh) 一种图像识别方法、系统、电子设备及存储介质
CN112749694B (zh) 用于识别图像方向、识别铭牌文字的方法及装置
CN114998962A (zh) 一种活体检测以及模型训练方法及装置
CN113450575B (zh) 一种路侧停车的管理方法及装置
JP6930389B2 (ja) 画像収集装置、プログラム、及び方法
CN111929688B (zh) 一种用于确定雷达回波预测帧序列的方法与设备
CN111860122B (zh) 一种现实场景下的阅读综合行为的识别方法及系统
CN115311495A (zh) 一种基于可更新复合特征的图片状态变化识别方法及系统
US20220121833A1 (en) Methods and systems of harvesting data for training machine learning (ml) model
JP2014071818A (ja) 二次元コード読取装置および二次元コード読取方法
CN114494486A (zh) 户型图生成方法、设备及存储介质
CN115393247A (zh) 一种图像处理方法、基站馈线检测方法及相关装置
CN112883973A (zh) 车牌识别方法、装置、电子设备和计算机存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40016313

Country of ref document: HK

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200923

Address after: Cayman Enterprise Centre, 27 Hospital Road, George Town, Grand Cayman Islands

Applicant after: Innovative advanced technology Co.,Ltd.

Address before: Cayman Enterprise Centre, 27 Hospital Road, George Town, Grand Cayman Islands

Applicant before: Advanced innovation technology Co.,Ltd.

Effective date of registration: 20200923

Address after: Cayman Enterprise Centre, 27 Hospital Road, George Town, Grand Cayman Islands

Applicant after: Advanced innovation technology Co.,Ltd.

Address before: A four-storey 847 mailbox in Grand Cayman Capital Building, British Cayman Islands

Applicant before: Alibaba Group Holding Ltd.

GR01 Patent grant
GR01 Patent grant