CN110378050A - 一种输电塔顺风向气动阻尼比计算方法 - Google Patents

一种输电塔顺风向气动阻尼比计算方法 Download PDF

Info

Publication number
CN110378050A
CN110378050A CN201910674705.4A CN201910674705A CN110378050A CN 110378050 A CN110378050 A CN 110378050A CN 201910674705 A CN201910674705 A CN 201910674705A CN 110378050 A CN110378050 A CN 110378050A
Authority
CN
China
Prior art keywords
formula
height
wind
tower
air damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910674705.4A
Other languages
English (en)
Other versions
CN110378050B (zh
Inventor
晏致涛
谭彪
杨小刚
刘欣鹏
孙毅
钟永力
王灵芝
聂小春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Science and Technology
Original Assignee
Chongqing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Science and Technology filed Critical Chongqing University of Science and Technology
Priority to CN201910674705.4A priority Critical patent/CN110378050B/zh
Publication of CN110378050A publication Critical patent/CN110378050A/zh
Application granted granted Critical
Publication of CN110378050B publication Critical patent/CN110378050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

本发明公开了一种简单、高效的输电塔顺风向气动阻尼比计算方法。一种输电塔顺风向气动阻尼比计算方法,包括以下步骤:S1、设定计算条件;S2、构建阻尼比解析模型,求得结构的顺风向一阶气动阻尼比。

Description

一种输电塔顺风向气动阻尼比计算方法
技术领域
本发明涉及输电塔技术领域,特别是涉及一种输电塔顺风向气动阻尼比计算方法。
背景技术
特高压输电线路中的输电塔结构是典型的风敏感结构;相较于其较小的结构阻尼,气动阻尼对输电塔的风振响应具有较大影响,气动阻尼效应不可忽略。输电塔气动阻尼比计算通常依赖于对风洞试验或者现场实测数据的识别,往往计算比较复杂。现有技术中仅有的给出气动阻尼比的计算方法又没有考虑横担的影响。
发明内容
本发明的目的在于克服现有技术的不足,提供一种简单、高效的输电塔顺风向气动阻尼比计算方法。
本发明的目的是这样实现的:
一种输电塔顺风向气动阻尼比计算方法,包括以下步骤:
S1、设定计算条件
设输电塔为自立式横担塔,水平面内垂直于导线的方向为x方向,水平面内沿导线的方向为y方向,高度方向为z方向;
横担宽度恒为wc,塔身宽度w(z)随高度z线性变化,塔身宽度与高度z的关系式:
式中,wb为塔底宽度,wt为塔顶宽度,h为塔身总高,hc为横担高度;
全塔的填充系数沿高度方向恒为δ,阻力系数沿高度方向恒为Cd
根据输电塔主材截面随高度z的变化规律,拟合得到输电塔各高度处的单位高度质量m(z):
式中,m0为塔底的单位高度质量,k和γ为拟合系数,m1为横担处的单位高度质量,
忽略高阶振型对风振响应的影响,只考虑一阶振型对风振响应的影响;
输电塔结构的一阶振型μ1(z)随高度z指数变化:
式中,βy为结构沿y方向的一阶振型系数;
平均风剖面u(z)采用指数率,并取塔顶高度为参考高度,得到:
u(z)=uh(z/h)α (4)
式中,uh为参考高度处的风速,α为地面粗糙度指数;
S2、构建阻尼比解析模型
将输电塔视为竖向一维悬臂结构,其结构的质量和刚度分布随高度发生变化,将结构随高度离散为n个自由度的多自由度体系,则其在随机风荷载的作用下的运动方程如下式:
式中,M为结构的刚度矩阵,C为结构的阻尼矩阵,K为结构的刚度矩阵,x(t)为位移响应,D(t)为由随机风荷载作用;
采用Morison公式计算单位高度处的瞬时风阻力D(z,t)为:
式中,ρ为空气密度,u(z,t)为z高度处的瞬时风速,为结构在z高度处的速度响应,A(z)为z高度处的单位高度面积;
将z高度处的瞬时风速u(z,t)视为由该高度处的平均风速和脉动风速u’(z,t)的叠加,即:
将式(7)代入式(6)中,得:
将式(8)的平方项展开,得:
忽略式(9)中的高阶小量项,此时,作用在结构上的荷载近似为:
上式的第一项为平均风荷载,为静荷载,第二项即为脉动风速引起的抖振力,第三项则为考虑风与结构耦合作用时产生的阻力项,即气动阻尼力项,由于结构单位高度的气动阻尼力与结构运动速度成正比,比例系数即为单位高度的气动阻尼系数c(z):
单位高度面积A(z)由结构的z高度处的宽度w(z)和填充系数δ相乘得到,代入式(11),得:
在结构随高度离散的多自由度系统中,取zi高度处的离散段长度为dzi;将其按照与粘性阻尼系数在一个周期内能量损耗相等的原则,折算成等效粘性阻尼系数C1
取离散度长度的最大值dz,当dz趋近于零时,n将趋近与无穷大,此时系统可以看作一个无限自由度体系,将式(13)表示为积分形式:
将式(1)、式(3)、式(4)代入式(14),得到结构沿导线方向的一阶气动阻尼系数C1,y
结构自身的一阶临界阻尼系数Cc1按下式求得:
Cc1=4πn1M* (16)
式中,n1为结构的一阶自振频率,M*为结构的一阶模态质量,将式(2)带入式(17),求得结构沿导线方向的一阶模态质量:
将式(18)带入式(16),得到结构的一阶临界阻尼系数:
式中,Cc1,y为结构沿导线方向的一阶临界阻尼系数,n1,y为结构沿导线方向的一阶频率;
求得结构的顺风向一阶气动阻尼比:
ξa=C1/Cc1 (20)
将式(14)和式(19)代入式(20),求得结构沿导线方向的一阶气动阻尼比ξa,y
同理,得到结构在垂直于导线方向的一阶气动阻尼比ξa,x
其中,
由于采用了上述技术方案,本发明具有如下有益效果:
本发明基于准定常理论所计算的气动阻尼比和试验结果及实测结果都比较吻合,基于准定常理论构建输电塔的气动阻尼比方法相比现有的计算方法更加简单、高效;
输电塔结构的塔头形式通常比较固定,给出考虑横担影响的气动阻尼比公式对工程应用有实际的意义,为工程设计提供指导。
附图说明
图1为自立式横担塔示意图;
图2为沿导线方向一阶振型图;
图3为塔顶的脉动风速时程图;
图4a为塔顶位移响应时程图(不考虑气动阻尼效应);
图4b为塔顶位移响应时程图(以相对风速方式考虑气动阻尼效应);
图4c为塔顶位移响应时程图(以总阻尼比方式考虑气动阻尼效应);
图5为风速对杆塔结构气动阻尼比的影响示意图;
图6为塔高对杆塔结构气动阻尼比的影响示意图。
具体实施方式
一种输电塔顺风向气动阻尼比计算方法,包括以下步骤:
S1基本假定
设定输电塔为自立式横担塔,如图1所示,取水平面内沿导线的方向为y方向,水平面内垂直于导线的方向为x方向,高度方向为z方向。根据杆塔的几何特征、动力特性等可作如下假定:
假定1:横担宽度随高度变化不大,因此假定为恒宽wc,塔身宽度w(z)沿着高度方向线性变化,塔身宽度与高度的关系式:
式中,wb为塔底宽度,wt为塔顶宽度,h为塔身总高,hc为横担高度。
假定2:全塔的填充系数(实度)δ(塔架沿风向的投影面积与塔架沿风向的轮廓面积之比)随高度不变,因此,阻力系数Cd取为随高度不变的常数。
假定3:根据输电塔主材截面随高度的变化规律,假定各高度处的单位高度质量m(z)满足下式:
式中,m0为塔底的单位高度质量,k和γ为拟合系数,m1为横担处的单位高度质量。
假定4:忽略高阶振型对风振响应的影响,只考虑一阶振型。
假定5:结构的一阶振型u1(z)随高度按指数变化,如下式:
式中,βy为结构沿导线方向的一阶振型系数。
假定6:平均风剖面u(z)采用指数率,并取塔顶高度为参考高度,
u(z)=uh(z/h)α (4)
式中,uh为参考高度处的风速,α为地面粗糙度指数。
S2构建阻尼比解析模型
输电塔的宽度和厚度远小于高度,将其看作竖向一维悬臂结构。这类结构的质量和刚度分布随高度发生变化,将其随高度离散为n个自由度的多自由度体系,则其在随机风荷载的作用下的运动方程如下式所示:
式中,M为结构的刚度矩阵,C为结构的阻尼矩阵,K为结构的刚度矩阵,x(t)为位移响应,D(t)为由随机风荷载作用。
为了考虑风与结构之间的耦合作用,可以根据Morison公式,采用风与结构的相对速度来计算抖振力,在准定常假设下,单位高度处的瞬时风阻力为:
式中,ρ为空气密度,u(z,t)为z高度处的瞬时风速,为结构在z高度处的速度响应,A(z)为z高度处的单位高度面积。z高度处的来流瞬时风速u(z,t)可以看作由该高度处的平均风速和脉动风速u’(z,t)的叠加,即:
将上式代入式(6)中可得:
将式(8)的平方项展开,可得
由于脉动风速u’(z,t)和结构运动速度远小于平均风速因此可以忽略上式中的高阶小量项,即脉动风速和结构运动速度的平方项以及二者的乘积项。此时,作用在结构上的荷载可以近似为:
上式的第一项为平均风荷载,为静荷载;第二项即为脉动风速引起的抖振力;第三项则为考虑风与结构耦合作用时产生的阻力项,即气动阻尼力项。显然,结构单位高度的气动阻尼力与结构运动速度成正比,比例系数即为单位高度的气动阻尼系数c(z):
单位高度面积A(z)可由结构的z高度处的宽度w(z)和填充系数δ相乘得到,代入上式可得:
由上式可知,根据准定常理论计算的顺风向的气动阻尼系数与来流平均风速成正比。
在建立结构运动方程时,将结构随高度离散为n个自由度的多自由度系统,现取zi高度处的离散段长度为dzi;根据假定4只考虑一阶振型μ1(z)对结构响应的贡献,因此只考虑结构的一阶气动阻尼系数,并将其按照与粘性阻尼系数在一个周期内能量损耗相等的原则,折算成等效粘性阻尼系数C1
取离散度长度的最大值为dz,当dz趋近于零时,n将趋近与无穷大,此时体系可以看作一个无限自由度体系,上式可表示为积分形式:
将假定1、假定5、假定6的条件代入式(14),可以得到结构沿导线方向的一阶气动阻尼系数C1,y
结构自身的一阶临界阻尼系数Cc1按下式求得:
Cc1=4πn1M* (16)
式中,n1为结构的一阶自振频率,M*为结构的一阶模态质量。引入质量分布假定(假定3),可以根据式(17)求得结构沿导线方向的一阶模态质量。
将结构的一阶模态质量带入式(16),则可以得到结构的一阶临界阻尼系数。
式中,Cc1,y为结构沿导线方向的一阶临界阻尼系数,n1,y为结构沿导线方向的一阶频率。
在得到结构的一阶气动阻尼系数和结构自身的一阶临界阻尼系数之后,便可以求得结构的顺风向一阶气动阻尼比。
ξa=C1/Cc1 (20)
将式(14)和式(19)代入式,便可以求得结构沿导线方向的一阶气动阻尼比ξa,y
同理,可以得到结构在垂直于导线方向的一阶气动阻尼和气动阻尼比ξa,x
其中,
S3解析模型验证
以塔身高81.4m,总高84.8m的输电塔为例,通过前文构建的解析模型计算其一阶气动阻尼比。该塔是特高压输电线路中常用的一种直线塔,如图1所示;全塔均为角钢材质,结构自身阻尼比取为1%。
塔型的基本参数如下:塔底宽度wb=16.2m,塔顶宽度wt=3.9m,横担宽度wc=37.1m,横担高度hc=3.4m,塔身总高h=81.4m;塔底单位高度处的质量m0=562.4kg,横担处的单位高度质量m1=2812.4kg,拟合系数k=0.510、γ=2.136;结构的填充系数δ=0.109,根据文献(楼文娟,孙炳楠.风与结构的耦合作用及风振响应分析[J].工程力学,2000,17(5)),阻力系数Cd可以取为1.5。计算时,取10m高度处的平均风速v10=30m/s,则参考高度处的平均风速vh=41.1m/s,空气密度ρ=1.205kg/m3;取中国规范中的B类地貌,地面粗糙度指数α=0.15,10m高度处的湍流强度I10=0.14。通过动力特性分析,可以得到结构的一阶振型以及各高度处的振型位移,采用最小二乘法拟合得到结构沿导线方向和垂直于导线方向的一阶振型系数,分别为βy=2.637,如图2所示。
从图2可以看出,基于假定5拟合的振型与结构的规格化振型位移非常吻合,这说明假定5是符合杆塔结构的动力特性的。将以上参数带入式(21)中可以求得结构的一阶气动阻尼比ξa,y=1.89%,结构的总阻尼比可按下式计算。
ξ=ξa,ys=1.89%+1%=2.89% (24)
在得到结构的总阻尼比之后,代入运动方程,便可计算结构在随机风荷载作用下的响应。并将结果与以相对风速方式考虑气动阻尼效应的时程分析的结果进行对比,以此验证本发明所构建的解析模型的正确性。为了进行结构在随机风荷载作用下的动力时程分析,本发明采用谐波合成法模拟了随机风速时程,限于篇幅本发明只给出了塔顶高度处的风速时程,如图3所示。图4a-图4c给出了结构在只考虑自身阻尼比,考虑总阻尼比(包含气动阻尼比),以及直接在时程分析时考虑相对风速三种情况下的塔顶的位移响应时程。由塔顶的位移响应时程可以得到更具有一般性的统计特征,如表1所示。
表1塔顶位移响应统计值
由图4a-图4c和表1可以看出,使用总阻尼比和通过在结构上施加相对风速来考虑气动阻尼效应两种方式所计算的位移均方根值比较吻合,前者略微大于后者,说明通过本发明构建的气动阻尼比解析模型可以较准确地计算结构的气动阻尼比。在不考虑气动阻尼效应时,结构的位移响应均方根值最大,比考虑气动阻尼效应时计算的结果大10%以上。显然,结构的气动阻尼效应不可忽略,它将影响结构在脉动风荷载作用下的动力响应。
S4.模型参数分析
由前文构建的解析模型可知,质量分布和刚度分布将会影响结构的动力特性,也即是改变结构的振型系数和频率,从而改变结构的气动阻尼比;风速将直接影响结构的气动阻尼比,不同的风速将会引起结构不同的动力响应,因而实际作用在结构上的相对风速也有所不同。通过该模型可以定性的分析各因素对结构气动阻尼比的影响,但由于在建模时忽略了高阶振型的影响以及脉动风速和结构运动速度的高阶项,因而并不能反应结构气动阻尼效应的全部特征。因此,本发明基于以相对风速考虑气动阻尼效应所得到的动力响应信号,联合HHT和MRDT方法,识别出了结构的气动阻尼比;并将识别得到的气动阻尼比与模型计算的理论值进行对比。此外,为了分析风速、塔高等因素对输电塔气动阻尼比的影响,分别计算了输电塔在平均风速为10m/s、20m/s、30m/s、40m/s以及50m/s的时的气动阻尼比,计算结果如图5所示;另外,也计算了高度为48.8m、66.8m和84.8m的三个塔型在平均风速为30m/s的风场作用下的气动阻尼比,计算结果如图6所示。
由图5可知,风速对杆塔结构气动阻尼比有着明显的影响,随着风速增大杆塔结构的气动阻尼比也相应的增大;识别结果表明两者存在一定非线性关系,这与段成荫、邓洪州在文献(段成荫,邓洪洲.基于特征系统实现算法的输电塔气动阻尼风洞试验研究[J].振动与冲击,2014,21:131-136+147)中的实验结果是相吻合的;而理论值则只能反应出气动阻尼比与风速之间的线性关系。由图6可知,随着塔高的增加杆塔结构的气动阻尼比也会增加,同样识别值呈现出一定的非线性;在理论值计算时,由于塔高将会影响结构的动力特性,因此难以定性的判断塔高与结构气动阻尼比之间的线性相关性。
此外,从图5和图6中都可以看出由解析模型计算的理论值与基于结构响应的识别值吻合较好;总体来说,理论值略小于识别值,在计算结构响应时更偏于安全,本发明构建的输电塔气动阻尼比解析模型是准确的和有实用价值的。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (1)

1.一种输电塔顺风向气动阻尼比计算方法,其特征在于,包括以下步骤:
S1、设定计算条件
设输电塔为自立式横担塔,水平面内垂直于导线的方向为x方向,水平面内沿导线的方向为y方向,高度方向为z方向;
横担宽度恒为wc,塔身宽度w(z)随高度z线性变化,塔身宽度与高度z的关系式:
式中,wb为塔底宽度,wt为塔顶宽度,h为塔身总高,hc为横担高度;
全塔的填充系数沿高度方向恒为δ,阻力系数沿高度方向恒为Cd
根据输电塔主材截面随高度z的变化规律,拟合得到输电塔各高度处的单位高度质量m(z):
式中,m0为塔底的单位高度质量,k和γ为拟合系数,m1为横担处的单位高度质量,
忽略高阶振型对风振响应的影响,只考虑一阶振型对风振响应的影响;
输电塔结构的一阶振型μ1(z)随高度z指数变化:
式中,βy为结构沿y方向的一阶振型系数;
平均风剖面u(z)采用指数率,并取塔顶高度为参考高度,得到:
u(z)=uh(z/h)α (4)
式中,uh为参考高度处的风速,α为地面粗糙度指数;
S2、构建阻尼比解析模型
将输电塔视为竖向一维悬臂结构,其结构的质量和刚度分布随高度发生变化,将结构随高度离散为n个自由度的多自由度体系,则其在随机风荷载的作用下的运动方程如下式:
式中,M为结构的刚度矩阵,C为结构的阻尼矩阵,K为结构的刚度矩阵,x(t)为位移响应,D(t)为由随机风荷载作用;
采用Morison公式计算单位高度处的瞬时风阻力D(z,t)为:
式中,ρ为空气密度,u(z,t)为z高度处的瞬时风速,为结构在z高度处的速度响应,A(z)为z高度处的单位高度面积;
将z高度处的瞬时风速u(z,t)视为由该高度处的平均风速和脉动风速u’(z,t)的叠加,即:
将式(7)代入式(6)中,得:
将式(8)的平方项展开,得:
忽略式(9)中的高阶小量项,此时,作用在结构上的荷载近似为:
上式的第一项为平均风荷载,为静荷载,第二项即为脉动风速引起的抖振力,第三项则为考虑风与结构耦合作用时产生的阻力项,即气动阻尼力项,由于结构单位高度的气动阻尼力与结构运动速度成正比,比例系数即为单位高度的气动阻尼系数c(z):
单位高度面积A(z)由结构的z高度处的宽度w(z)和填充系数δ相乘得到,代入式(11),得:
在结构随高度离散的多自由度系统中,取zi高度处的离散段长度为dzi;将其按照与粘性阻尼系数在一个周期内能量损耗相等的原则,折算成等效粘性阻尼系数C1
取离散度长度的最大值dz,当dz趋近于零时,n将趋近与无穷大,此时系统可以看作一个无限自由度体系,将式(13)表示为积分形式:
将式(1)、式(3)、式(4)代入式(14),得到结构沿导线方向的一阶气动阻尼系数C1,y
结构自身的一阶临界阻尼系数Cc1按下式求得:
Cc1=4πn1M* (16)
式中,n1为结构的一阶自振频率,M*为结构的一阶模态质量,将式(2)带入式(17),求得结构沿导线方向的一阶模态质量:
将式(18)带入式(16),得到结构的一阶临界阻尼系数:
式中,Cc1,y为结构沿导线方向的一阶临界阻尼系数,n1,y为结构沿导线方向的一阶频率;
求得结构的顺风向一阶气动阻尼比:
ξa=C1/Cc1 (20)
将式(14)和式(19)代入式(20),求得结构沿导线方向的一阶气动阻尼比ξa,y
同理,得到结构在垂直于导线方向的一阶气动阻尼和气动阻尼比比ξa,x
其中,
CN201910674705.4A 2019-07-25 2019-07-25 一种输电塔顺风向气动阻尼比计算方法 Active CN110378050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910674705.4A CN110378050B (zh) 2019-07-25 2019-07-25 一种输电塔顺风向气动阻尼比计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910674705.4A CN110378050B (zh) 2019-07-25 2019-07-25 一种输电塔顺风向气动阻尼比计算方法

Publications (2)

Publication Number Publication Date
CN110378050A true CN110378050A (zh) 2019-10-25
CN110378050B CN110378050B (zh) 2022-03-22

Family

ID=68255787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910674705.4A Active CN110378050B (zh) 2019-07-25 2019-07-25 一种输电塔顺风向气动阻尼比计算方法

Country Status (1)

Country Link
CN (1) CN110378050B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110909512A (zh) * 2019-11-26 2020-03-24 国网新疆电力有限公司电力科学研究院 一种基于非定常方法的双分裂背风子导线气动荷载仿真方法
CN111506945A (zh) * 2020-03-31 2020-08-07 重庆科技学院 基于塔线耦合影响因子的输电塔共振响应的等效阻尼系数计算方法
CN111651804A (zh) * 2020-03-31 2020-09-11 重庆科技学院 基于惯性力法和塔线分离法考虑塔线耦合影响的常规输电塔、线设计风载荷的计算方法
CN111651920A (zh) * 2020-06-02 2020-09-11 重庆科技学院 塔线体系下大跨越输电塔风致机械能的传递分析方法
CN111985019A (zh) * 2020-03-31 2020-11-24 重庆科技学院 带悬挑横担常规单塔基于有效荷载法的风振系数简化计算方法
CN114575653A (zh) * 2021-11-04 2022-06-03 浙江德宝通讯科技股份有限公司 一种带有阻尼器的通信杆塔
CN115144173A (zh) * 2022-09-05 2022-10-04 济南百顿机械设备有限公司 一种基于智能压电阻尼器的输电塔监测方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015086024A1 (en) * 2013-12-09 2015-06-18 Vestas Wind Systems A/S Operating method for a wind turbine
CN107977492A (zh) * 2017-11-14 2018-05-01 国网新疆电力有限公司电力科学研究院 基于蒙特卡洛绝缘子串非线性风偏可靠度计算方法
CN108959742A (zh) * 2018-06-20 2018-12-07 重庆科技学院 大跨越输电塔线体系气动弹性模型设计方法
CN109271751A (zh) * 2018-11-16 2019-01-25 重庆科技学院 一种悬垂绝缘子串的最大动态风偏角确定方法
CN109902404A (zh) * 2019-03-06 2019-06-18 中国工程物理研究院总体工程研究所 不同阻尼形式的结构时程响应积分的统一递推计算方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015086024A1 (en) * 2013-12-09 2015-06-18 Vestas Wind Systems A/S Operating method for a wind turbine
CN107977492A (zh) * 2017-11-14 2018-05-01 国网新疆电力有限公司电力科学研究院 基于蒙特卡洛绝缘子串非线性风偏可靠度计算方法
CN108959742A (zh) * 2018-06-20 2018-12-07 重庆科技学院 大跨越输电塔线体系气动弹性模型设计方法
CN109271751A (zh) * 2018-11-16 2019-01-25 重庆科技学院 一种悬垂绝缘子串的最大动态风偏角确定方法
CN109902404A (zh) * 2019-03-06 2019-06-18 中国工程物理研究院总体工程研究所 不同阻尼形式的结构时程响应积分的统一递推计算方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN BO 等: "Dynamic Responses and Vibration Control of the Transmission Tower-Line System: A State-of-the-Art Review", 《THE SCIENTIFIC WORLD JOURNAL》 *
谭彪 等: "输电塔顺风向气动阻尼比经验解析模型及参数分析", 《第十八届全国结构风工程学术会议暨第四届全国风工程研究生论坛》 *
谭彪: "风谱对输电塔响应影响及气动阻尼研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110909512A (zh) * 2019-11-26 2020-03-24 国网新疆电力有限公司电力科学研究院 一种基于非定常方法的双分裂背风子导线气动荷载仿真方法
CN111506945A (zh) * 2020-03-31 2020-08-07 重庆科技学院 基于塔线耦合影响因子的输电塔共振响应的等效阻尼系数计算方法
CN111651804A (zh) * 2020-03-31 2020-09-11 重庆科技学院 基于惯性力法和塔线分离法考虑塔线耦合影响的常规输电塔、线设计风载荷的计算方法
CN111985019A (zh) * 2020-03-31 2020-11-24 重庆科技学院 带悬挑横担常规单塔基于有效荷载法的风振系数简化计算方法
CN111506945B (zh) * 2020-03-31 2022-05-17 重庆科技学院 基于塔线耦合影响因子的输电塔共振响应的等效阻尼系数计算方法
CN111985019B (zh) * 2020-03-31 2022-05-20 重庆科技学院 带悬挑横担常规单塔基于有效荷载法的风振系数简化计算方法
CN111651920A (zh) * 2020-06-02 2020-09-11 重庆科技学院 塔线体系下大跨越输电塔风致机械能的传递分析方法
CN111651920B (zh) * 2020-06-02 2023-03-21 重庆科技学院 塔线体系下大跨越输电塔风致机械能的传递分析方法
CN114575653A (zh) * 2021-11-04 2022-06-03 浙江德宝通讯科技股份有限公司 一种带有阻尼器的通信杆塔
CN114575653B (zh) * 2021-11-04 2023-11-07 浙江德宝通讯科技股份有限公司 一种带有阻尼器的通信杆塔
CN115144173A (zh) * 2022-09-05 2022-10-04 济南百顿机械设备有限公司 一种基于智能压电阻尼器的输电塔监测方法及设备
CN115144173B (zh) * 2022-09-05 2022-11-25 济南百顿机械设备有限公司 一种基于智能压电阻尼器的输电塔监测方法及设备

Also Published As

Publication number Publication date
CN110378050B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
CN110378050A (zh) 一种输电塔顺风向气动阻尼比计算方法
Elshaer et al. LES evaluation of wind-induced responses for an isolated and a surrounded tall building
Sengupta et al. Transient loads on buildings in microburst and tornado winds
Sun et al. Investigation on wind tunnel tests of the Kilometer skyscraper
Kim et al. POD analysis of aerodynamic correlations and wind-induced responses of two tall linked buildings
Liu et al. Investigation on aerodynamic force nonlinear evolution for a central-slotted box girder under torsional vortex-induced vibration
Zhang et al. An experimental study on wind loads acting on a high-rise building model induced by microburst-like winds
CN106875488A (zh) 一种反射面天线面板风压系数数值模拟方法
Kavrakov et al. A synergistic study of a CFD and semi-analytical models for aeroelastic analysis of bridges in turbulent wind conditions
Sun et al. Wind field reconstruction using inverse process with optimal sensor placement
Belloli et al. Wind loads on a high slender tower: Numerical and experimental comparison
Sarkar et al. Laboratory simulation of tornado and microburst to assess wind loads on buildings
Zou et al. Characteristics of wind-induced displacement of super-large cooling tower based-on continuous medium model wind tunnel test
Mengistu et al. Wind and structural response monitoring of a lighting pole for the study of downburst effects on structures
Antoniou et al. Influence of wind characteristics on turbine performance
Huang et al. Theoretical model and numerical simulation of tower-wake-induced vibration of a flexible suspender
Zhou et al. Wind loads and responses of two neighboring dry coal sheds
Ma et al. Numerical simulation of fluctuating wind effects on an offshore deck structure
Lopez-Nuñez et al. Effect of wind barriers on the aeroelastic instabilities of a hinged-deck cross-section cable-stayed bridge
Zou et al. Wind-induced response and pedestal internal force analysis of a Trough Solar Collector
Lobriglio et al. Uncertainty quantification of aerodynamic and aeroelastic responses of a short-gap twin-box deck depending on the wind angle of attack
Sun et al. Safety and serviceability assessment for high-rise tower crane to turbulent winds
Kaltenbach The effect of sweep-angle variation on the turbulence structure in a separated, three-dimensional flow
Martinez-Vazquez Wind design spectra for generalisation
Feng et al. Analysis of Wind-Induced Vibration Response of High-Rise Structure of Heat Sink Tower Based on Large Eddy Simulation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant