CN110372721A - 以3,4-二硫烷基噻吩为π桥的光伏小分子受体及其制备方法和应用 - Google Patents

以3,4-二硫烷基噻吩为π桥的光伏小分子受体及其制备方法和应用 Download PDF

Info

Publication number
CN110372721A
CN110372721A CN201910783392.6A CN201910783392A CN110372721A CN 110372721 A CN110372721 A CN 110372721A CN 201910783392 A CN201910783392 A CN 201910783392A CN 110372721 A CN110372721 A CN 110372721A
Authority
CN
China
Prior art keywords
formula
small molecule
compound shown
idt2st
molecule receptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910783392.6A
Other languages
English (en)
Inventor
张倩
邱化玉
王兆龙
徐欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Normal University
Original Assignee
Hangzhou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Normal University filed Critical Hangzhou Normal University
Priority to CN201910783392.6A priority Critical patent/CN110372721A/zh
Publication of CN110372721A publication Critical patent/CN110372721A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

本发明公开了一种以3,4‑二硫烷基噻吩为π桥的光伏小分子受体,所述光伏小分子受体的结构式为:本发明公开的光伏小分子受体在600‑900nm范围内有较强的吸收,具有较低的HOMO和LUMO能级;应用在太阳能器件中作为活性层中的电子受体材料,可以进一步提高太阳能器件的光伏性能。本发明还公开了一种以3,4‑二硫烷基噻吩为π桥的光伏小分子受体的方法:将式Ⅰ和式Ⅱ所示化合物溶于有机溶剂中,在钯类催化剂条件下,加热搅拌回流,发生Stille偶联反应,经后处理去制得式Ⅲ所示化合物;将式Ⅲ所示化合物与式Ⅳ或式Ⅴ所示化合物溶于有机溶剂中,在催化剂作用下搅拌发生Knoevenagel缩合反应,经后处理制得终产物IDT2ST‑4F或IDT2ST‑4Cl。

Description

以3,4-二硫烷基噻吩为π桥的光伏小分子受体及其制备方法 和应用
技术领域
本发明涉及有机光伏小分子受体材料的技术领域,特别涉及一种以引达省并二噻吩为核、以3,4-二硫烷基噻吩为π桥的A-π-D-π-A型光伏小分子受体及其制备方法和应用。
背景技术
在过去的二十年里,有机太阳能电池得到了快速的发展和进步,这主要得益于众多新型有机光伏给体材料结构的不断更新和器件工艺的持续优化。过去很长时间内富勒烯衍生物(PC61BM和PC71BM)在有机光伏电池受体材料中占有主导地位,原因在于其拥有良好的电子传输能力以及易于和给体材料形成纳米尺度相分离等优点。不过,富勒烯衍生物作为受体材料也有着致命的缺陷,比如较窄的吸收光谱,能级不易调节,提纯困难,成本过高等,因此,新型非富勒烯受体材料的研究开发越来越受到科学家们的重视。
近年来,非富勒烯受体材料得到快速发展,成为有机光伏领域一个新的研究热点。非富勒烯有机小分子受体材料的优势十分明显,例如,在可见光-近红外波段的吸收较强,稳定性好,合成简单,能级容易调控。目前,在基于相同的给体材料的情况下,使用非富勒烯受体材料往往相比于富勒烯及其衍生物受体能获得更好的器件性能,能量转化效率(PCE)已经超过了13%。
在不同类型的非富勒烯受体中,含稠环芳核的受体-给体-受体(A-D-A)型或A-π-D-π-A型小分子受体材料表现出了优异的性能,包含一个富电子单元D作为供电子核以及两个吸电子较强的单元A作为端基,是一种调节吸收光谱和分子能级的有效策略。文献报道表明在苯环对位单键连接两个噻吩,然后分别通过sp3碳桥联形成平面性极强的刚性大共轭稠环结构,即引达省并二噻吩(IDT)结构是一个构筑非富勒烯小分子受体非常有效的单元。
因此,开发一种以引达省并二噻吩(IDT)为核的小分子受体材料是本领域的一个研究热点。
发明内容
本发明的目的在于提供一种以3,4-二硫烷基噻吩为π桥的光伏小分子受体,在600-900nm范围内有较强的吸收,具有较低的HOMO和LUMO能级;应用在太阳能器件中作为活性层中的电子受体材料,可以进一步提高太阳能器件的光伏性能。
本发明提供如下技术方案:
一种以3,4-二硫烷基噻吩为π桥的光伏小分子受体,所述光伏小分子受体的结构式为:
本发明提供的光伏小分子受体以3,4-二硫烷基噻吩为π桥、以IDT为核和以双氟取代的3-(二氰基亚甲基)靛酮(IC-F)或者双氯取代的3-(二氰基亚甲基)靛酮(IC-Cl)作为封端基团的A-π-D-π-A型光伏小分子受体。
在本发明提供的光伏小分子受体中:IDT单元的平面共轭结构有利于π电子的离域和电荷迁移率的提高,是构建有机太阳能电池中高效率非富勒烯受体材料的非常具有前景的结构单元。通过在给体和受体单元中引入π桥,可以有效增加分子的共轭长度,调节分子的能级。硫原子比氧原子半径大,具有较弱的给电子能力,分子间可以通过S…S弱相互作用力堆积更强,硫烷基链被广泛用于光伏材料的构建中。
本发明还公开了一种以3,4-二硫烷基噻吩为π桥的光伏小分子受体的方法,所述制备方法包括以下步骤:
(1)将式Ⅰ和式Ⅱ所示化合物溶于有机溶剂中,在钯类催化剂条件下,加热搅拌回流,发生Stille偶联反应,经后处理去制得式Ⅲ所示化合物;
(2)将式Ⅲ所示化合物与式Ⅳ或式Ⅴ所示化合物溶于有机溶剂中,在催化剂作用下搅拌发生Knoevenagel缩合反应,经后处理制得终产物IDT2ST-4F或IDT2ST-4Cl;
上述结构式中的式Ⅰ、Ⅱ、Ⅳ和Ⅴ分别为:双边带三甲基锡的4,4,9,9-四(4-己基苯基)-2,7-(三甲基锡烷基)-4,9-二氢对称引达省并[1,2-b:5,6-b]二噻吩、双硫辛基取代的噻吩溴醛、双氟取代的3-(二氰基亚甲基)靛酮(IC-F)和双氯取代的3-(二氰基亚甲基)靛酮(IC-Cl)。
在步骤(1)中,所述钯类催化剂、式Ⅰ与式Ⅱ的物质的量之比为0.5~0.7:1~2:5~7。
优选的,三者的物质的量之比为0.5~0.6:1~1.5:5~6。进一步优选的,三者的物质的量之比为0.5:1:5。充分过量的式Ⅱ参与反应可以避免单边产物的生成,保证合成中间产物式Ⅲ的产率。
在步骤(2)中,所述式Ⅲ所示化合物与式Ⅳ或式Ⅴ所示化合物的物质的量之比为1:4~5。
优选的,所述的中间产物与式Ⅳ或式Ⅴ,二者的物质的量之比为1:5。式Ⅳ或式Ⅴ相比于中间产物式Ⅲ所示化合物充分过量,可以避免单边副产物的生成,保证反应较高的产率。
优选,所述制备方法包括以下步骤:
(1)将式Ⅰ和式Ⅱ所示化合物溶于超干甲苯中,在四三苯基膦钯的作用下110℃搅拌回流24小时,经后处理制得式Ⅲ所示化合物;
(2)将式Ⅲ所示化合物与式Ⅳ或式Ⅴ所示化合物溶于有机溶剂B中,在吡啶作用下常温搅拌回流12小时,经后处理制得终产物IDT2ST-4F或IDT2ST-4Cl。
使用四三苯基膦钯作为钯类催化剂的条件下反应速率快和制备的中间产物的产率高。
在本发明提供的制备方法中:在步骤(1)中,所述后处理为:停止加热,待反应体系冷却后加入氯化铵溶液淬灭,将反应液用三氯甲烷萃取,取下层有机相,水相萃取多次,合并有机相,有机相用水洗涤后,用无水Na2SO4干燥,过滤,蒸发除去滤液的溶剂,得到粗产物,该粗产物用柱层析色谱分离提纯,200-300目硅胶,洗脱剂为石油醚/二氯甲烷的体积比2:1的混合液。在步骤(2)中,所述后处理为加入氯化铵溶液淬灭,反应液用二氯甲烷萃取,其余步骤同步骤(1)中的后处理。
本发明还提供了一种光伏小分子受体在制备太阳能器件中的应用,所述太阳能器件包括阳极、阳极修饰层、活性层、阴极修饰层和阴极,所述活性层中的电子给体材料为PBDB-T、电子受体材料为IDT2ST-4F或IDT2ST-4Cl。
所述太阳能器件的结构为:ITO/PEDOT:PSS/PBDB-T:受体/PDINO/Al。在所述太阳能器件中:ITO为透明导电玻璃(氧化铟锡,阳极);PEDOT:PSS为空穴注入层,PEDOT是EDOT(3,4-乙烯二氧噻吩单体)的聚合物,PSS是聚苯乙烯磺酸盐;PBDB-T:acceptor为活性层,PBDB-T为聚合物给体材料;PDINO为阴极修饰层,为酰亚胺衍生物;Al为铝,为阴极。
本发明提供的光伏小分子受体可用于可溶液处理的本体异质结有机太阳能电池,应用在太阳能器件中作为活性层中的电子受体材料,可以进一步提高太阳能器件的光伏性能。本发明提供的光伏小分子受体在600-900nm范围内有较强的吸收,光学带隙分别为1.43eV和1.40eV。相比于基于IC-F端基的分子,基于IC-Cl端基的分子具有较低的HOMO和LUMO能级。基于PBDB-T:IDT2ST-4F的器件的能量转换效率(PCE)为11.43%,开路电压(Voc)为0.849V,短路电流密度(Jsc)为19.44mA cm-2,填充因子(FF)为69.24%。而基于PBDB-T:IDT2ST-4Cl的器件的PCE为10.49%,Voc为0.828V,Jsc为19.49mA cm-2,FF为65.05%。
附图说明
图1为实施例1制备A-π-D-π-A型光伏小分子受体的反应路线图;
图2为实施例1制备的A-π-D-π-A型光伏小分子受体在氯仿溶液中和薄膜状态下的紫外-可见吸收光谱;
图3为实施例1制备的A-π-D-π-A型光伏小分子受体在二氯甲烷溶液中的循环伏安曲线;
图4为应用例1中最优器件的J-V曲线(a)和外量子效率曲线(b)。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不限定本发明的保护范围。
本发明通过三电极体系电解池测试了两个化合物IDT2ST-4F和IDT2ST-4Cl的循环伏安特性曲线,研究了不同的端基对于化合物的电化学性质(前线轨道能级以及带隙)的影响。利用紫外-可见光谱仪测试了两个化合物IDT2ST-4F和IDT2ST-4Cl在氯仿溶液中(20μM)以及薄膜的吸收光谱,研究了不同的端基对化合物的光学性质的影响。本发明分别以聚合物PBDB-T为活性层体材料,以IDT2ST-4F和IDT2ST-4Cl为受体材料制备了结构为ITO/PEDOT:PSS/PBDB-T:受体/ETL-1/Al的光伏器件,测试其电流密度-电压(J-V)曲线,获得开路电压、短路电流密度、填充因子和能量转换效率等参数,研究了化合物光伏性能。
实施例1
在本发明中,制备A-π-D-π-A型光伏小分子受体的五个原料分别为双边三甲基锡取代的4,4,9,9-四(4-己基苯基)-2,7-(三甲基锡烷基)-4,9-二氢对称引达省并[1,2-b:5,6-b]二噻吩(式Ⅰ),双硫辛基取代的噻吩溴醛(式Ⅱ)、双氯取代的3-(二氰基亚甲基)靛酮(IC-Cl)(式Ⅳ)、双氟取代的3-(二氰基亚甲基)靛酮(IC-F)(式Ⅴ),均直接从苏州纳凯公司购买。本发明提供的光伏小分子受体的制备路线图如图1所示。
(1)式Ⅲ所示化合物的制备:
氩气保护下,在做过无水无氧预处理的100mL双颈瓶中加入式Ⅰ所示化合物(2g,1.6mmol)与式Ⅱ所示化合物(3.8g,8mmol)和溶剂甲苯(60mL),溶解完全后加入四三苯基膦钯(0.9g,0.8mmol),加热到110℃回流搅拌24h,冷却至室温。
后处理:将冷却后的反应液倒入水(100mL)中并用二氯甲烷(100mL×2)萃取,有机相水洗两次后用无水MgSO4干燥,过滤后的滤液利用旋转蒸发仪除去溶剂得到粗产物。粗产物以二氯甲烷/石油醚(体积比为1:10)为洗脱剂通过硅胶色谱柱(硅胶有效长度为30cm)进行分离提纯,得到中间产物,为红色固体化合物(1.90g,70%)。
对中间产物进行核磁共振和质谱表征:1H NMR(500MHz,CDCl3)δ10.12(s,2H),7.51(s,2H),7.43(s,2H),7.10(d,J=8.3Hz,9H),7.01(d,J=8.3Hz,9H),2.92(t,J=7.4Hz,4H),2.80–2.75(m,5H),2.52–2.47(m,9H),1.55–1.44(m,21H),1.35–1.10(m,86H),0.83–0.73(m,28H).13C NMR(126MHz,CDCl3)δ183.91,155.90,154.10,149.47,147.80,145.50,141.85,141.31,140.46,137.33,135.59,131.61,128.49,127.82,124.36,118.03,62.99,37.30,36.93,35.59,31.75,31.37,29.64,29.27,28.88,28.62,22.62,14.10.MS(MALDI-TOF):calcd for C106H142O2S8[M+]1703.8809;found:1703.8848。
(2)化合物IDT2ST-4F的制备:
氩气保护下,在100mL双颈瓶中加入式Ⅲ所示化合物(0.57g,0.3mmol)、式Ⅴ所示化合物(0.21g,0.9mmol)和重蒸三氯甲烷(30mL),溶解完全后加入三滴吡啶,常温搅拌12h。
后处理:将反应液倒入水(100mL)中并用三氯甲烷(50ml×2)萃取,有机相水洗两次后用无水Na2SO4干燥,过滤后的滤液利用旋转蒸发仪除去溶剂得到粗产物。粗产物以二氯甲烷/石油醚(体积比为1:10)为洗脱剂通过硅胶色谱柱(硅胶有效长度为20cm)进行分离提纯,再用二氯甲烷和甲醇的混合溶剂(体积比为1:10)重结晶,得到化合物IDT2ST-4F,为黑色固体化合物(0.59g,83%)。
对本实施例制备的化合物IDT2ST-4F进行核磁共振和质谱表征:1H NMR(500MHz,CDCl3)δ9.44(s,2H),8.49(dd,J=9.9,6.5Hz,2H),7.72(s,2H),7.61(t,J=7.5Hz,2H),7.48(s,2H),7.13(d,J=8.3Hz,8H),7.04(d,J=8.4Hz,8H),2.98–2.93(m,4H),2.83–2.79(m,4H),2.54–2.49(m,9H),1.57–1.47(m,21H),1.33–1.20(m,40H),1.19–1.10(m,39H),0.78(dq,J=8.5,6.9Hz,29H).13C NMR(126MHz,CDCl3)δ186.02,158.61,156.96,154.87,153.98,148.10,142.02,140.98,137.80,136.63,135.98,134.74,133.56,128.60,127.92,125.53,122.35,118.36,114.88,114.51,113.88,112.73,112.57,70.65,63.07,35.62,31.80,31.75,31.41,29.20,29.17,29.16,29.16,29.12,29.11,28.92,28.80,22.65,22.62,22.61,14.13,14.10.MS(MALDI-TOF):calcd for C130H146F4N4O2S8[M+]2129.0976;found:2128.9212。
(3)化合物IDT2ST-4Cl的制备:
氩气保护下,在100mL双颈瓶中加入式Ⅲ所示化合物(0.30g,0.2mmol)、式Ⅳ所示化合物和重蒸三氯甲烷(30mL),溶解完全后加入三滴吡啶,常温搅拌12h。
后处理:将反应液倒入水(100mL)中并用三氯甲烷(50ml×2)萃取,有机相水洗两次后用无水Na2SO4干燥,过滤后的滤液利用旋转蒸发仪除去溶剂得到粗产物。粗产物以二氯甲烷/石油醚(体积比为1:10)为洗脱剂通过硅胶色谱柱(硅胶有效长度为20cm)进行分离提纯,再用二氯甲烷和甲醇的混合溶剂(体积比为1:10)重结晶,得到化合物IDT2ST-4Cl,为黑色固体化合物(0.29g,75%)。
对本实施例制备的化合物IDT2ST-4Cl进行核磁共振和质谱表征:1H NMR(500MHz,CDCl3)δ9.46(s,2H),8.72(s,2H),7.87(s,2H),7.73(s,2H),7.49(s,2H),7.14(d,J=8.2Hz,8H),7.05(d,J=8.3Hz,8H),2.96(t,J=7.5Hz,4H),2.82(t,J=7.5Hz,4H),2.54–2.48(m,10H),1.57–1.46(m,22H),1.33–1.10(m,83H),0.78(dt,J=15.9,6.8Hz,30H).13CNMR(126MHz,CDCl3)δ186.13,158.95,158.74,157.03,154.91,154.31,148.31,142.04,140.96,139.91,139.39,138.82,137.83,137.19,135.99,134.97,133.69,128.61,127.91,126.95,125.25,122.33,118.39,114.51,113.97,70.69,63.07,35.62,31.81,31.75,31.41,29.65,29.60,29.21,29.17,29.16,29.12,29.11,28.92,28.80,22.66,22.61,14.13,14.11.MS(MALDI-TOF):calcd for C130H146Cl4N4O2S8[M+]2194.9078;found:2194.8082。
对实施例1制备的化合物IDT2ST-4F和IDT2ST-4Cl进行紫外-可见吸收光谱分析:
通过紫外-可见光谱仪对实施例1中化合物IDT2ST-4F和IDT2ST-4Cl在氯仿溶液及薄膜状态下的吸收光谱进行了表征。前者溶液测量溶液紫外吸收,后者溶液于1200rpm在石英片上用旋涂机旋涂得到薄膜,测量膜的紫外吸收,扫描范围均为300-1000纳米,测量仪器为Jasco V-570UV/VIS/NIR光谱仪,紫外可见吸收光谱如图2所示。化合物在氯仿中的紫外-可见吸收曲线如图2a所示,最大吸收峰波长分别为738nm和751nm,最大摩尔吸光系数分别为1.25×105M-1cm-1和1.40×105M-1cm-1。图2b为薄膜的紫外-可见吸收曲线,化合物IDT2ST-4F和IDT2ST-4Cl的最大吸收波长分别为782nm和804nm,这些红移现象表明两个化合物在固体的状态下都有着良好的分子堆积。另外,如表1所示,通过薄膜的吸收曲线中的截止波长可以估算出两个化合物的光学带隙分别为1.43eV和1.40eV。
对实施例1制备的化合物IDT2ST-4F和IDT2ST-4Cl进行电化学分析:
通过滴膜法测试化合物的电化学性质,电解池选用三电极体系(以玻碳电极作为工作电极,铂丝电极作为辅助电极,饱和甘汞电极作为参比电极),利用电化学工作站测试化合物的循环伏安特性曲线。以二茂铁(Ferrocene,Fc/Fc+)作为内标,以二氯甲烷作为溶剂,0.1M的四丁基六氟磷酸铵(n-Bu4NPF6)为支持电解质,以100mV s-1扫描速度测试了两个化合物的电化学性质,循环伏安特性曲线如图3所示。电化学能级的计算公式如下:EHOMO=-e(E,onset VS Fc/Fc+ ox+4.8)(eV),ELUMO=-e(Eonset VS Fc/Fc+ red+4.8)(eV),分别利用曲线中的氧化起始电势或还原起始电势,计算得到IDT2ST-4F的HOMO和LUMO能级分别为-5.36eV和-3.71eV,IDT2ST-4Cl的HOMO和LUMO能级分别为-5.41eV和-3.95eV,基于氯取代的端基分子具有更低的HOMO和LUMO能级,这可能是由于其具有更大的诱导偶极。IDT2ST-4F和IDT2ST-4Cl的电化学带隙分别为1.65eV和1.54eV,IDT2ST-4Cl具有较窄的带隙。
表1 IDT2ST-4F和IDT2ST-4Cl的光学和电化学参数。
应用例1以实施例1中的化合物为电子受体材料的有机太阳能电池的制备和测试
分别以实施例1中合成的IDT2ST-4F和IDT2ST-4Cl为活性层受体材料,PBDB-T为给体材料制备了结构为玻璃/ITO/PEDOT:PSS(40nm)/PBDB-T:受体/PDINO/Al(100nm)的光伏器件,ITO(氧化铟锡,阳极)透明导电玻璃,PEDOT是EDOT(3,4-乙烯二氧噻吩单体)的聚合物,PSS是聚苯乙烯磺酸盐,PDINO为阴极修饰层苝酰亚胺衍生物,Al为铝。
具体步骤如下:首先将ITO玻璃依次用洗洁精、去离子水、丙酮、异丙醇溶剂超声清洗各15分钟,取出后用氮气枪吹干,紫外臭氧(UV-Ozone)处理20min。然后在预处理过的ITO上旋涂PEDOT:PSS水溶液(型号为Clevios P VP AI 4083,0.45μm水系薄膜过滤,转速为3000rpm),于150℃加热20分钟后将基片转移到充满氩气的手套箱中,自然冷却后将质量比为1:1的给体与受体的氯苯溶液(给体浓度为10mg/mL)旋涂到在此基底上,然后把0.5mg·mL-1的PDINO甲醇溶液以3000rpm的转速旋涂在基片上。最后,将基片放置在真空度小于2×10-4Pa的真空室内,蒸镀80nm的铝层,于此,器件制备完毕。活性层的有效厚度通过台阶仪测试,器件的有效面积约为4.00mm2
在标准太阳光(AM 1.5G,光强为100mW cm-2)的辐照条件下,使用计算机控制的Keithley 2400数字源表对器件性能进行测试得到器件的电流密度-电压(J-V)曲线如附图4a所示,使用外量子效率测试装置(EQE,北京赛凡光电测试系统)测试其EQE曲线如附图4b所示。
基于PBDB-T:IDT2ST-4F的器件的能量转换效率(PCE)为11.43%,开路电压(Voc)为0.849V,短路电流密度(Jsc)为19.44mA cm-2,填充因子(FF)为69.24%。而基于PBDB-T:IDT2ST-4Cl的器件的PCE为10.49%,Voc为0.828V,Jsc为19.49mA cm-2,FF为65.05%。最优器件的外量子效率(EQE)光谱如附图4b所示。器件在300nm至900nm的波长范围内显示出较宽的光谱响应,通过EQE曲线积分获得的基于IDT2ST-4F和IDT2ST-4Cl的器件的Jsc值分别为18.64mA cm-2和18.72mA cm-2,这与从J-V曲线测量的Jsc值很好地吻合,误差在5%以内。
以上所述的具体实施方式对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的最优选实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种以3,4-二硫烷基噻吩为π桥的光伏小分子受体,其特征在于,所述光伏小分子受体的结构式为:
2.一种制备权利要求1所述的以3,4-二硫烷基噻吩为π桥的光伏小分子受体的方法,其特征在于,所述制备方法包括以下步骤:
(1)将式Ⅰ和式Ⅱ所示化合物溶于有机溶剂中,在钯类催化剂条件下,加热搅拌回流,发生Stille偶联反应,经后处理去制得式Ⅲ所示化合物;
(2)将式Ⅲ所示化合物与式Ⅳ或式Ⅴ所示化合物溶于有机溶剂中,在催化剂作用下搅拌发生Knoevenagel缩合反应,经后处理制得终产物IDT2ST-4F或IDT2ST-4Cl;
3.根据权利要求2所述的以3,4-二硫烷基噻吩为π桥的光伏小分子受体的制备方法,在步骤(1)中,所述钯类催化剂、式Ⅰ与式Ⅱ的物质的量之比为0.5~0.7:1~2:5~7。
4.根据权利要求2所述的以3,4-二硫烷基噻吩为π桥的光伏小分子受体的制备方法,在步骤(2)中,所述式Ⅲ所示化合物与式Ⅳ或式Ⅴ所示化合物的物质的量之比为1:4~5。
5.根据权利要求2所述的以3,4-二硫烷基噻吩为π桥的光伏小分子受体的制备方法,所述制备方法包括以下步骤:
(1)将式Ⅰ和式Ⅱ所示化合物溶于超干甲苯中,在四三苯基膦钯的作用下110℃搅拌回流24小时,经后处理制得式Ⅲ所示化合物;
(2)将式Ⅲ所示化合物与式Ⅳ或式Ⅴ所示化合物溶于有机溶剂B中,在吡啶作用下常温搅拌回流12小时,经后处理制得终产物IDT2ST-4F或IDT2ST-4Cl。
6.根据权利要求5所述的光伏小分子受体在制备太阳能器件中的应用,其特征在于,所述太阳能器件包括阳极、阳极修饰层、活性层、阴极修饰层和阴极,所述活性层中的电子给体材料为PBDB-T、电子受体材料为IDT2ST-4F或IDT2ST-4Cl。
7.根据权利要求6所述的光伏小分子受体在制备太阳能器件中的应用,其特征在于,所述太阳能器件的结构为:ITO/PEDOT:PSS/PBDB-T:受体/PDINO/Al。
CN201910783392.6A 2019-08-23 2019-08-23 以3,4-二硫烷基噻吩为π桥的光伏小分子受体及其制备方法和应用 Pending CN110372721A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910783392.6A CN110372721A (zh) 2019-08-23 2019-08-23 以3,4-二硫烷基噻吩为π桥的光伏小分子受体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910783392.6A CN110372721A (zh) 2019-08-23 2019-08-23 以3,4-二硫烷基噻吩为π桥的光伏小分子受体及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110372721A true CN110372721A (zh) 2019-10-25

Family

ID=68260491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910783392.6A Pending CN110372721A (zh) 2019-08-23 2019-08-23 以3,4-二硫烷基噻吩为π桥的光伏小分子受体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110372721A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111499624A (zh) * 2020-04-21 2020-08-07 西南大学 一种低聚噻吩光伏材料及其制备方法和应用
CN113185557A (zh) * 2021-05-12 2021-07-30 南京工业大学 一类铱配合物有机光伏材料及其制备方法与应用
CN114591349A (zh) * 2022-03-07 2022-06-07 中国科学院上海微系统与信息技术研究所 一种荧光化合物、其应用及三甲胺气体的检测方法
CN116063321A (zh) * 2023-03-30 2023-05-05 南方科技大学 一种受体材料及其合成方法和应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111499624A (zh) * 2020-04-21 2020-08-07 西南大学 一种低聚噻吩光伏材料及其制备方法和应用
CN113185557A (zh) * 2021-05-12 2021-07-30 南京工业大学 一类铱配合物有机光伏材料及其制备方法与应用
CN113185557B (zh) * 2021-05-12 2022-08-30 南京工业大学 一类铱配合物有机光伏材料及其制备方法与应用
CN114591349A (zh) * 2022-03-07 2022-06-07 中国科学院上海微系统与信息技术研究所 一种荧光化合物、其应用及三甲胺气体的检测方法
CN116063321A (zh) * 2023-03-30 2023-05-05 南方科技大学 一种受体材料及其合成方法和应用
CN116063321B (zh) * 2023-03-30 2023-06-13 南方科技大学 一种受体材料及其合成方法和应用

Similar Documents

Publication Publication Date Title
Ripaud et al. Structure–properties relationships in conjugated molecules based on diketopyrrolopyrrole for organic photovoltaics
CN110372721A (zh) 以3,4-二硫烷基噻吩为π桥的光伏小分子受体及其制备方法和应用
Zhu et al. Insight into benzothiadiazole acceptor in D–A− π–A configuration on photovoltaic performances of dye-sensitized solar cells
Wang et al. Theoretical studies on organoimido-substituted hexamolybdates dyes for dye-sensitized solar cells (DSSC)
He et al. Impact of dye end groups on acceptor–donor–acceptor type molecules for solution-processed photovoltaic cells
Yin et al. Theoretical design of perylene diimide dimers with different linkers and bridged positions as promising non-fullerene acceptors for organic photovoltaic cells
CN108912140A (zh) 一种不对称a-d-a型共轭小分子及其中间体和应用
Kumar et al. Solvent annealing control of bulk heterojunction organic solar cells with 6.6% efficiency based on a benzodithiophene donor core and dicyano acceptor units
Qian et al. New efficient organic dyes employing indeno [1, 2-b] indole as the donor moiety for dye-sensitized solar cells
Semire et al. Electronic properties’ modulation of D–A–A via fluorination of 2-cyano-2-pyran-4-ylidene-acetic acid acceptor unit for efficient DSSCs: DFT-TDDFT approach
Zhao et al. Isomers of dialkyl diketo-pyrrolo-pyrrole: Electron-deficient units for organic semiconductors
CN109134525A (zh) 一种a-d-a型光伏小分子及其制备方法与应用
CN109180637A (zh) 基于茚并[1,2-b]芴的A-D-A型光伏小分子受体及其制备方法和应用
Fu et al. Selenium-containing D− A− D-type dopant-free hole transport materials for perovskite solar cells
Ma et al. Impact of π-conjugation configurations on the photovoltaic performance of the quinoxaline-based organic dyes
CN109096312A (zh) 一种a-d-a型有机小分子及其制备与应用
Vartanian et al. Low energy loss of 0.57 eV and high efficiency of 8.80% in porphyrin-based BHJ solar cells
Cuesta et al. Gold (III) porphyrin was used as an electron acceptor for efficient organic solar cells
Park et al. Effect of regioisomeric substitution patterns on the performance of quinoxaline-based dye-sensitized solar cells
Yu et al. Synthesis and photovoltaic performance of DPP-based small molecules with tunable energy levels by altering the molecular terminals
Tian et al. Novel polymeric metal complexes of salicylaldehyde schiff base derivative being used for dye sensitizer
Yang et al. Near-Infrared Electron Acceptors with Cyano-Substituted 2-(3-Oxo-2, 3-dihydroinden-1-ylidene) malononitrile End-Groups for Organic Solar Cells
Feng et al. Fuller-rylenes: paving the way for promising acceptors
Gao et al. Palladium (II) and Platinum (II) Porphyrin Donors for Organic Photovoltaics
Zaier et al. Effect of Benzothiadiazole-Based π-Spacers on Fine-Tuning of Optoelectronic Properties of Oligothiophene-Core Donor Materials for Efficient Organic Solar Cells: A DFT Study

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191025

RJ01 Rejection of invention patent application after publication