CN110367981A - 一种弱视脑电客观定量检测方法 - Google Patents

一种弱视脑电客观定量检测方法 Download PDF

Info

Publication number
CN110367981A
CN110367981A CN201910619593.2A CN201910619593A CN110367981A CN 110367981 A CN110367981 A CN 110367981A CN 201910619593 A CN201910619593 A CN 201910619593A CN 110367981 A CN110367981 A CN 110367981A
Authority
CN
China
Prior art keywords
amblyopia
normal form
ssmvep
eyes
brain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910619593.2A
Other languages
English (en)
Other versions
CN110367981B (zh
Inventor
徐光华
郑小伟
王云云
韩丞丞
吴永程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201910619593.2A priority Critical patent/CN110367981B/zh
Publication of CN110367981A publication Critical patent/CN110367981A/zh
Priority to US17/626,114 priority patent/US11723580B2/en
Priority to PCT/CN2019/128987 priority patent/WO2021004029A2/zh
Application granted granted Critical
Publication of CN110367981B publication Critical patent/CN110367981B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • A61B5/378Visual stimuli
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/161Flicker fusion testing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4005Detecting, measuring or recording for evaluating the nervous system for evaluating the sensory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Business, Economics & Management (AREA)
  • Child & Adolescent Psychology (AREA)
  • Databases & Information Systems (AREA)
  • General Business, Economics & Management (AREA)
  • Social Psychology (AREA)
  • Data Mining & Analysis (AREA)
  • Hospice & Palliative Care (AREA)
  • Educational Technology (AREA)
  • Neurosurgery (AREA)
  • Developmental Disabilities (AREA)
  • Neurology (AREA)
  • Fuzzy Systems (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Eye Examination Apparatus (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种弱视脑电客观定量检测方法,先进行双眼分视实现,然后设计视觉诱发刺激范式,再进行脑机接口平台搭建,再测试交互界面,然后确定弱视脑电定量指标,使用抑制系数SI来描述双眼抑制关系,进而定量弱视的程度,最后进行弱视检测结果反馈,计算机交互界面模块将最终弱视检测结果呈现出来,实现对使用者的反馈;本发明操作简单快捷,适用性强,且指标客观定量。

Description

一种弱视脑电客观定量检测方法
技术领域
本发明涉及脑机接口及中枢视觉功能检查技术领域,具体涉及一种弱视脑电客观定量检测方法。
背景技术
全球弱视的发病率高达3%-5%,其主要症状表现为矫正后的最佳视力低于正常值。弱视是由视觉中枢发育缺陷造成的,双眼间不正常的竞争关系,尤其是双眼抑制关系是造成弱视缺陷根本原因。现有的主观心理物理学弱视检测方法繁杂多样,且不能从根本的视觉中枢直接进行检测,容易错失弱视治疗的关键修复期。
脑机接口是一种新型的人机交互方式,由于不依赖人体肌肉组织和外周神经通路,而使大脑与外界环境之间直接进行信息交流与有效交互,因而在医疗康复和脑功能检测中得到了广泛应用。其中,稳态视觉诱发脑机接口是一种通过注视特定频率的视觉刺激来诱发大脑响应的方法,具有抗干扰能力强、信息传输率高以及普通使用者无需训练即可诱发的优点,因而是常用脑机接口中最具实用价值的信号类型。现有技术存在的主观心理物理学弱视检测指标多样且手段繁杂的缺点。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种弱视脑电客观定量检测方法,操作简单快捷,适用性强,且指标客观定量。
为了达到上述目的,本发明采用的技术方案是:
一种弱视脑电客观定量检测方法,包括以下步骤:
1)双眼分视实现:采用3D显示器与偏振眼镜实现双眼分视技术,实现双眼输入信息的不同;
2)视觉诱发刺激范式:采用基于稳态视觉运动诱发电位SSMVEP方法,通过刺激目标物的周期性收缩-扩张运动刺激诱发SSMVEP,在人脑运动视觉敏感频率范围优化选择刺激频率,刺激频率为8Hz和12Hz;
3)脑机接口平台:在使用者头部视觉枕区安放测量电极,在其单侧耳垂位置安放参考电极,在其头部前额处位置安放地电极,电极与脑电采集模块的输入连接,经过放大、滤波与数模转化处理,脑电采集模块输出脑电信号数据,与数据处理模块的输入连接,数据处理模块提取脑电信号数据的特征,并控制结果输出,与计算机交互界面模块的输入连接;
4)测试交互界面:计算机交互界面呈现第一步范式图案,为左眼输入8Hz闪烁范式和右眼12Hz闪烁范式,刺激一段时间后,停顿两秒,再进行下次刺激,总共刺激5次;第二步,改变左右眼刺激范式时间频率,即左眼12Hz闪烁范式和右眼8Hz闪烁范式,其余相同;
5)弱视脑电定量指标:使用抑制系数SI来描述双眼抑制关系,进而定量弱视的程度;
式中:
SI——双眼间抑制系数;
RRE——右眼刺激范式SSMVEP响应幅值;
RLE——左眼刺激范式SSMVEP响应幅值;
SI的值从-1至1范围内变动,0代表双眼间的平衡,即最正常的双眼关系;绝对值越接近于1,代表双眼间的抑制关系越强,弱视越严重;负值表示右眼SSMVEP的幅值小于左眼SSMVEP的幅值,即左眼抑制右眼;正值表示右眼SSMVEP的幅值大于左眼SSMVEP的幅值,即右眼抑制左眼;
6)弱视检测结果反馈:计算机交互界面模块将最终弱视检测结果呈现出来,实现对使用者的反馈。
所述的步骤1)中应用相应的偏振显示器和偏振3D眼镜实现双眼分视显示,使左右眼同时显示时间频率不同的刺激范式。
本发明针对现有的主观心理物理学弱视检测指标多样且手段繁杂的缺点,提出了一种弱视脑电客观定量检测方法,操作简单快捷,适用性强,且指标客观定量,为弱视检测与早期筛查提供了一种有效的方法,显示了如下优越性:
(1)设计从弱视形成的根本原因出发,提出了基于脑电的客观弱视检测方法,方便快捷。
(2)提出了可量化弱视程度的脑电指标,可实现基于脑电的弱视程度量化。
(3)选用的基于稳态视觉诱发电位的脑机接口刺激范式具有不易引起被试者视觉疲劳,诱发脑电信号强,无需大量训练的优点。
附图说明
图1为本发明脑机接口平台示意图。
图2为SI指数与双眼视敏度差值关系图。
具体实施方式
下面结合附图对本发明做详细描述。
一种弱视脑电客观定量检测方法,包括以下步骤:
1)双眼分视设计实现:采用3D显示器与偏振眼镜实现双眼分视技术,实现双眼输入信息的不同。3D显示器可实现左右格式的3D显示,结合偏振眼镜,可使左眼接收到的视觉信息和右眼接收到的视觉信息不同;
2)视觉诱发刺激范式:采用基于稳态视觉运动诱发电位(SSMVEP)方法,通过MATLAB使用Psychophysics Toolbox编程绘制范式图案纹理的周期性收缩扩张运动,能够稳定刺激诱发SSMVEP,用户使用时不易视觉疲劳,刺激频率为8Hz和12Hz,响应信号具有较高的信噪比;
3)脑电数据采集处理平台:实验前按照10/20系统法布置电极,将参考电极放置于受试者左耳垂A1,地电极放置于受试者前额Fpz,六块测量电极布置在头部枕区(PO3,PO4,POz,O1,O2和Oz),给各个测量电极注入导电膏,保证电极与头皮的良好接触;参照图1,电极与脑电采集模块连接,经放大、滤波、数模转换后输出脑电数据,与数据处理模块的输入连接,数据处理模块采用典型相关分析方法提取脑电信号数据的特征;
4)测试交互界面:计算机交互界面呈现第一步范式图案,为左眼输入8Hz闪烁范式和右眼12Hz闪烁范式,刺激一段时间后,停顿两秒,再进行下次刺激,总共刺激5次,产生SSMVEP响应,经脑电采集与数据处理得到脑电信号特征;第二步,改变左右眼刺激范式时间频率,即左眼12Hz闪烁范式和右眼8Hz闪烁范式,刺激一段时间后,产生SSMVEP响应,经脑电采集与数据处理得到第二步的脑电信号特征;
5)弱视脑电定量指标:使用抑制系数(SI)来描述双眼抑制关系,进而定量弱视的程度。
式中:
SI——双眼间抑制系数;
RRE——右眼刺激范式SSMVEP响应幅值;
RLE——左眼刺激范式SSMVEP响应幅值;
SI的值从-1至1范围内变动,0代表双眼间的平衡,即最正常的双眼关系。绝对值越接近于1,代表双眼间的抑制关系越强,弱视越严重。负值表示右眼SSMVEP的幅值小于左眼SSMVEP的幅值,即左眼抑制右眼。正值表示右眼SSMVEP的幅值大于左眼SSMVEP的幅值,即右眼抑制左眼;
6)弱视检测结果反馈:计算机交互界面模块将最终弱视检测结果呈现出来,实现对使用者的反馈。
下面再结合实例对本发明进行说明。
采用本方法对11名弱视被试及12名正常被试进行实验,按照上述步骤3)对被试安放电极并搭建脑机接口平台,使用者头部距离计算机屏幕150cm。按照上述步骤4)进行实验范式显示及数据特征提取。按照上述步骤5)得出各个被试的SI指数,并按照上述步骤6)反馈各个被试的弱视检测结果,其脑电弱视检查结果与被试主观左右眼视敏度差值如图2所示,其线性相关系数r=-0.959,线性相关效果好。
本发明能够从视觉中枢神经出发,应用脑机接口技术,实现弱视客观定量检测,为弱视的快捷定量检测与早期筛查提供了有效的手段。

Claims (2)

1.一种弱视脑电客观定量检测方法,其特征在于,包括以下步骤:
1)双眼分视实现:采用3D显示器与偏振眼镜实现双眼分视技术,实现双眼输入信息的不同;
2)视觉诱发刺激范式:采用基于稳态视觉运动诱发电位SSMVEP方法,通过刺激目标物的周期性收缩-扩张运动刺激诱发SSMVEP,在人脑运动视觉敏感频率范围优化选择刺激频率,刺激频率为8Hz和12Hz;
3)脑机接口平台:在使用者头部视觉枕区安放测量电极,在其单侧耳垂位置安放参考电极,在其头部前额处位置安放地电极,电极与脑电采集模块的输入连接,经过放大、滤波与数模转化处理,脑电采集模块输出脑电信号数据,与数据处理模块的输入连接,数据处理模块提取脑电信号数据的特征,并控制结果输出,与计算机交互界面模块的输入连接;
4)测试交互界面:计算机交互界面呈现第一步范式图案,为左眼输入8Hz闪烁范式和右眼12Hz闪烁范式,刺激一段时间后,停顿两秒,再进行下次刺激,总共刺激5次;第二步,改变左右眼刺激范式时间频率,即左眼12Hz闪烁范式和右眼8Hz闪烁范式,其余相同;
5)弱视脑电定量指标:使用抑制系数SI来描述双眼抑制关系,进而定量弱视的程度;
式中:
SI——双眼间抑制系数;
RRE——右眼刺激范式SSMVEP响应幅值;
RLE——左眼刺激范式SSMVEP响应幅值;
SI的值从-1至1范围内变动,0代表双眼间的平衡,即最正常的双眼关系;绝对值越接近于1,代表双眼间的抑制关系越强,弱视越严重;负值表示右眼SSMVEP的幅值小于左眼SSMVEP的幅值,即左眼抑制右眼;正值表示右眼SSMVEP的幅值大于左眼SSMVEP的幅值,即右眼抑制左眼;
6)弱视检测结果反馈:计算机交互界面模块将最终弱视检测结果呈现出来,实现对使用者的反馈。
2.根据权利要求1所述的一种弱视脑电客观定量检测方法,其特征在于:所述的步骤1)中应用相应的偏振显示器和偏振3D眼镜实现双眼分视显示,使左右眼同时显示时间频率不同的刺激范式。
CN201910619593.2A 2019-07-10 2019-07-10 一种弱视脑电客观定量检测装置 Active CN110367981B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910619593.2A CN110367981B (zh) 2019-07-10 2019-07-10 一种弱视脑电客观定量检测装置
US17/626,114 US11723580B2 (en) 2019-07-10 2019-12-27 Objective EEG quantitative measurement method for amblyopia
PCT/CN2019/128987 WO2021004029A2 (zh) 2019-07-10 2019-12-27 一种弱视脑电客观定量检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910619593.2A CN110367981B (zh) 2019-07-10 2019-07-10 一种弱视脑电客观定量检测装置

Publications (2)

Publication Number Publication Date
CN110367981A true CN110367981A (zh) 2019-10-25
CN110367981B CN110367981B (zh) 2021-02-09

Family

ID=68250881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910619593.2A Active CN110367981B (zh) 2019-07-10 2019-07-10 一种弱视脑电客观定量检测装置

Country Status (3)

Country Link
US (1) US11723580B2 (zh)
CN (1) CN110367981B (zh)
WO (1) WO2021004029A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116421202B (zh) * 2023-02-13 2024-04-02 华南师范大学 基于脑电快速周期性视觉刺激奇异范式的大脑视觉功能快速检测方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101019760A (zh) * 2007-03-20 2007-08-22 重庆大学 一种用于分离双眼视觉诱发电位的系统及其方法
CN105938397A (zh) * 2016-06-21 2016-09-14 西安交通大学 基于稳态运动视觉诱发电位与缺省刺激响应的混合脑-机接口方法
CN106725278A (zh) * 2016-11-25 2017-05-31 温州医科大学眼视光研究院 一种抑制定量检测仪及采用该抑制定量检测仪的抑制定量检测方法
CN108803873A (zh) * 2018-05-22 2018-11-13 西安交通大学 一种基于高刷新率呈现的运动视觉诱发电位脑机接口方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9179858B2 (en) * 2008-03-05 2015-11-10 New York University Computer-accessible medium, system and method for assessing effect of a stimulus using intersubject correlation
US20130100402A1 (en) * 2011-10-12 2013-04-25 Salus University Systems and methods for reducing sensory eye dominance
KR20160145131A (ko) * 2014-04-17 2016-12-19 더 리전트 오브 더 유니버시티 오브 캘리포니아 시야 결함들의 평가를 위한 휴대용 뇌 활동 감지 플랫폼
WO2015179539A1 (en) * 2014-05-20 2015-11-26 The Schepens Eye Research Institute, Inc. Quantification of inter-ocular suppression in binocular vision impairment
WO2019108911A1 (en) * 2017-12-01 2019-06-06 Massachusetts Institute Of Technology Techniques for analyzing non-verbal markers of conditions using electrophysiological data

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101019760A (zh) * 2007-03-20 2007-08-22 重庆大学 一种用于分离双眼视觉诱发电位的系统及其方法
CN105938397A (zh) * 2016-06-21 2016-09-14 西安交通大学 基于稳态运动视觉诱发电位与缺省刺激响应的混合脑-机接口方法
CN106725278A (zh) * 2016-11-25 2017-05-31 温州医科大学眼视光研究院 一种抑制定量检测仪及采用该抑制定量检测仪的抑制定量检测方法
CN108803873A (zh) * 2018-05-22 2018-11-13 西安交通大学 一种基于高刷新率呈现的运动视觉诱发电位脑机接口方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANA RITA TUNA等: "Interocular suppression", 《THIRD INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS》 *
DANIEL H. BAKER等: "Steady-State Contrast Response Functions Provide a Sensitive and Objective Index of Amblyopic Deficits", 《INVESTIGATIVE OPHTHALMOLOGY AND VISUAL SCIENCE》 *

Also Published As

Publication number Publication date
US20220287617A1 (en) 2022-09-15
WO2021004029A2 (zh) 2021-01-14
CN110367981B (zh) 2021-02-09
US11723580B2 (en) 2023-08-15

Similar Documents

Publication Publication Date Title
CN110801237B (zh) 一种基于眼动和脑电特征的认知能力评估系统
US20210052182A1 (en) Portable brain activity sensing platform for assessment of visual field deficits
EP2906115B1 (en) Configuration and spatial placement of frontal electrode sensors to detect physiological signals
Frankó et al. Dissociable neural effects of long-term stimulus–reward pairing in macaque visual cortex
US20060282008A1 (en) System and method for vision examination utilizing fault detection
KR20150082322A (ko) 신경병리 평가를 위한 시스템 및 방법
US6475162B1 (en) System and method for vision examination using interrupt signals for synchronizing visual evoked potential sampling rate with visual stimulus
CN112569093B (zh) 一种视力提升训练装置
CN106725281A (zh) 一种基于心电信号分析的三维显示视疲劳评测方法
Plant Transient visually evoked potentials to sinusoidal gratings in optic neuritis.
US20170296089A1 (en) Vision examination system with improved visually evoked potential waveforms
CN112842360B (zh) 一种判断优势眼和非优势眼的方法及系统
CN110367981A (zh) 一种弱视脑电客观定量检测方法
US20110105909A1 (en) Near-infrared light brain computer interface vision driven control device and its method
CN107296586A (zh) 视觉误差检测设备/方法及基于该设备的书写系统/方法
Bradnam et al. Objective detection of hemifield and quadrantic field defects by visual evoked cortical potentials.
Tsuru et al. A new stimulation for steady-state visually evoked potentials based brain-computer interface using semi-transmissive patterns with smartglasses
CN112000223B (zh) 可抗个体差异的运动想象布尔决策型脑机接口方法
O'Reilly An electric circuit model of central auditory processing that replicates low-level features of the mouse mismatch response
Lebid Optical non-invasive brain-computer interface system
RU2381738C1 (ru) Способ диагностики нарушений бинокулярного зрения и способ восстановления бинокулярного зрения
Kalindu et al. BRAINWAVE: EEG Based Brain and Voice Controlled Hybrid Smart Multi-Plug
Du et al. Study of objective parameters of 3D visual fatigue based on analysis of salient area
Haba et al. Improvement of SSVEP Detection Accuracy via Additive Averaging of Binaural Peripheral Electrodes
Campopiano Blocking Top-down awareness of Kanizsa Figures: An ERP Investigation into Bottom-up Processing of Illusory Contours

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant