CN110364583B - TiO2薄膜的制备方法、光电探测器件及其制备方法 - Google Patents

TiO2薄膜的制备方法、光电探测器件及其制备方法 Download PDF

Info

Publication number
CN110364583B
CN110364583B CN201910611294.4A CN201910611294A CN110364583B CN 110364583 B CN110364583 B CN 110364583B CN 201910611294 A CN201910611294 A CN 201910611294A CN 110364583 B CN110364583 B CN 110364583B
Authority
CN
China
Prior art keywords
tio
substrate
film
preparation
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910611294.4A
Other languages
English (en)
Other versions
CN110364583A (zh
Inventor
季涛
胡俊青
胡鑫
余利
张昊
艾福金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Technology University
Original Assignee
Shenzhen Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Technology University filed Critical Shenzhen Technology University
Priority to CN201910611294.4A priority Critical patent/CN110364583B/zh
Publication of CN110364583A publication Critical patent/CN110364583A/zh
Application granted granted Critical
Publication of CN110364583B publication Critical patent/CN110364583B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种TiO2薄膜的制备方法、光电探测器件及其制备方法,涉及光电检测技术领域。本发明利用在含氧环境下煅烧ALD(原子层逐层沉积的方法)制得的TiO2薄膜,一方面使得TiO2薄膜由非晶向局部单晶转变,形成鱼鳞状的外貌;另一方面减少氧缺陷,降低了材料中电子的浓度,降低光生载流子的复合,利于形成光电流,同时还降低了暗电流的大小;由此材料制得的光电探测器件使得器件提升了光电探测的性能;让器件具备了栅极电压调控光谱响应的能力。

Description

TiO2薄膜的制备方法、光电探测器件及其制备方法
技术领域
本发明涉及光电检测技术领域,尤其涉及一种TiO2薄膜的制备方法、光电探测器件及其制备方法。
背景技术
在现代光电探测技术中,光电探测器可以在很多领域可以找到相关应用,其中包括环境安全、信息技术、医疗、天文观测和军事应用以及卫星通讯等。成为继激光探测技术和红外探测技术之后,紫外波段也越来越受到人们的关注,发展起来的又一种极其重要的光电探测技术。国外已开始紫外技术的军用研究,并己经取得一定的进展,比如紫外制导、紫外预警、紫外干扰以及紫外通讯等。金属的氮化物和氧化物常被用来作为宽禁带半导体,如TiO2等宽禁带半导体材料,化学性质稳定,而且在紫光和近紫外区有很好吸收,对可见光透明,是光电检测中紫外检测理想的半导体,尤其是在宽光谱响应方面可作为顶层材料而不影响底层材料对可见光、红外光的检测。目前已经报道了通过化学气相沉积,脉冲激光沉积,溅射和水热法等方法制备了金属氧化物的各种纳米结构,已有很多文献报道了金属氧化物、氮化物、硫化物在光电探测中的应用。
氧化钛(TiO2)由于其高折射率,优异的电性能和良好的化学稳定性,在太阳能电池、光催化反应、LED、光电探测器等领域引起了广泛关注。同时也是光电检测中紫外检测理想的半导体。目前通过化学气相沉积,脉冲激光沉积,溅射和水热法等方法可制备TiO2的各种纳米结构。金红石相的TiO2具有3.0eV的直接光学带隙,而TiO2的锐钛矿相具有3.2eV的间接光学带隙。未掺杂TiO2纳米材料由于存在氧空位的浅施主,而显示为n型掺杂。
基于绝缘栅型金属-半导体-金属(MSM)结构的探测器具有量子效率高、开关比大、热稳定性高等优点。半导体纳米线、纳米管薄膜型绝缘栅场效应 (MOSFET)晶体管在光电探测领域的应用更是得到了拓展。通过栅极电压可调控TiO2的沟道载流子分布以及耗尽层特性,提升器件对紫外光探测能力。
然而,使用现有的制备方法制得的TiO2薄膜材料多是非晶材料或者是多晶材料,难以获得TiO2单晶薄膜,因此制备的光电探测器件性能较弱,不能具备调控光谱响应的能力。
发明内容
本发明所要解决的技术问题是背景技术中提到的问题,通过制备出TiO2单晶薄膜材料,降低材料中电子浓度,以提升光电器件的探测性能。
为了解决上述问题,本发明提出以下技术方案:
第一方面,本发明提出一种TiO2薄膜的制备方法,包括以下步骤:
S1,以氮气作为负载气体,交替通入钛源和水蒸气,在衬底的氧化层上得到反应生成的原子层级别的TiO2,反应温度为220~300℃,反应压强为10~20帕;
S2,将S1得到的有TiO2的衬底在含氧气氛下煅烧,煅烧温度为400~800℃,即在衬底上制得TiO2薄膜;
其中,所述钛源为异氧丙醇钛,钛源的温度为70~80℃;
所述衬底为一面含有氧化硅层,另一面为Si的P型Si。
其进一步的技术方案为,所述步骤S1中,还包括去除前驱体的步骤,所述前驱体为异氧丙醇钛和水蒸气。
其进一步的技术方案为,所述步骤S1中,所述通入氮气作为负载气体的钛源和水蒸气的具体步骤为,
依次将通入钛源和水蒸气,分别去除前驱体作为一个循环,重复200~300个循环。
其进一步的技术方案为,每次循环氮气作为负载气体的钛源通入时间为0.1~0.5s,流速为5.0~10.0sccm。
其进一步的技术方案为,每次循环氮气作为负载气体的水蒸气通入时间为 0.1~0.5s,流速为5.0~10.0sccm。
其进一步的技术方案为,每次循环去除前驱体时间为20~40s。
其进一步的技术方案为,还包括对衬底的预处理步骤,所述预处理步骤为将衬底表面的有机物、金属离子及洗涤残留物洗净,干燥。
第二方面,本发明提出一种光电探测器件,包括TiO2薄膜,所述TiO2薄膜由第一方面所述的TiO2薄膜的制备方法制得。
第三方面,本发明提出一种如第二方面所述的光电探测器件的制备方法,包括以下步骤:
在所述衬底含有TiO2薄膜的一面制备场效应晶体管的源极和漏级,所述源极和漏级之间的沟道宽度为10~75微米;
去除衬底另一面因步骤S2煅烧产生的氧化硅,制备栅极,即得所述光电探测器件。
与现有技术相比,本发明所能达到的技术效果包括:
本发明利用在含氧环境下煅烧ALD(原子层逐层沉积的方法)制得的TiO2薄膜,一方面使得TiO2薄膜由非晶向局部单晶转变,形成鱼鳞状的外貌;另一方面减少氧缺陷,降低了材料中电子的浓度,降低光生载流子的复合,利于形成光电流;由此材料制得的光电探测器件使得器件提升了光电探测的性能;让器件具备了栅极电压调控光谱响应的能力。
附图介绍
图1为基于本发明实施例制得的TiO2薄膜材料的MOSFET结构光电检测器件结构的模型;
图2为本发明一实施例制得的光电探测器件上表面的光学照片;
图3为本发明一实施例制备步骤S2煅烧后,制得的结晶化鱼鳞状TiO2薄膜材料的表现出来的鱼鳞结构;
图4为步骤S2煅烧前后的TiO2薄膜材料的XRD表征;
图5为比较例的光电器件在不同栅压下光电流的光谱响应;
图6为实施例的光电器件在不同栅压下光电流的光谱响应。
具体实施方式
下面将通过以下实施例进行清楚、完整地描述本发明的技术方案中显然,以下将描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本发明实施例说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本发明实施例。如在本发明实施例说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
本发明实施例提出一种结晶化TiO2薄膜的制备方法,包括以下步骤:
S1,以氮气作为负载气体,交替通入钛源和水蒸气,在衬底的氧化层上得到反应生成的原子层级别的TiO2,反应温度为220~300℃,反应压强为10~20帕;
S2,将S1得到的有TiO2的衬底在含氧气氛下煅烧,煅烧温度为400~800℃,即在衬底上制得结晶化鱼鳞状的TiO2薄膜,如图3所示;
其中,所述钛源为异氧丙醇钛(Ti{OCH(CH3)2}4),钛源的温度为70~80℃;
所述衬底为一面含有氧化硅层,另一面为Si的P型Si。
在一实施例中,以氩气作为负载气体,引入钛源和水蒸气。
参见图3,未退火之前,衬底上得到的TiO2受基底的影响为非晶态,经煅烧退火后,由非晶态转为局部单晶态,形成了类似鱼鳞一样的形貌,其光电探测性能也得到提升。
参见图4,其为步骤S2煅烧前后的TiO2薄膜材料的XPS表征。其中a为步骤S2煅烧前的TiO2薄膜材料的XPS表征;b为步骤S2煅烧后的TiO2薄膜材料的XPS表征。
由图可知,步骤S2煅烧前无明显的氧化钛的特征峰说明氧化钛为非晶态,经过步骤S2煅烧后氧化钛的特征峰出现,说明氧化钛薄膜已结晶化。
在一实施例中,步骤S1还包括去除前驱体的步骤,所述前驱体为异氧丙醇钛和水蒸气。通过及时去除前驱体,促使反应不断进行,使得在衬底上得到原子层级别的TiO2
在一实施例中,所述步骤S1中,所述通入氮气作为负载气体的钛源和水蒸气的具体步骤为,依次将通入钛源和水蒸气,分别去除前驱体作为一个循环,重复200~300个循环。
具体地,反应时,先交替通入氮气作为负载气体的钛源和水蒸气,使其充分在衬底的氧化层上进行反应,接着去除未反应的异氧丙醇钛和水蒸气,再交替通入氮气作为负载气体的钛源和水蒸气……,由此重复循环,通过重复通入钛源和水蒸气、去除前驱体的循环,使得在衬底上逐层累计,不断得到反应生成的TiO2
每次循环氮气作为负载气体的钛源通入时间为0.1~0.5s,流速为 5.0~10.0sccm。
每次循环氮气作为负载气体的水蒸气通入时间为0.1~0.5s,流速为 5.0~10.0sccm。
每次循环去除前驱体时间为20~40s。
在一实施例中,步骤S2煅烧时,通过升温200~400分钟,将温度升至 400~800℃,保温200~400分钟。
例如,在一实施例中,将衬底有SiO2层面朝上,放入原子层沉积反应腔体中,使用氮气为负载气体,将异氧丙醇钛Ti{OCH(CH3)2}4作为钛源,在腔体里交替通入钛源和水蒸气0.1~0.5s,去除前驱体20~40s,后再交替通入钛源和水蒸气0.1~0.5s,去除前驱体20~40s……以此循环,200~300个循环,得到在衬底 SiO2/P-Si上生长的TiO2;将有TiO2的SiO2/P-Si衬底,放在马弗炉中,在空气环境下煅烧,煅烧温度为400~800℃,即制得TiO2薄膜。
本实施例利用在含氧环境下煅烧ALD(原子层逐层沉积的方法)制得的TiO2薄膜,一方面使得TiO2薄膜由非晶向局部单晶转变,形成鱼鳞状的外貌;另一方面减少氧缺陷,降低了材料中电子的浓度,降低光生载流子的复合,利于形成光电流。
在一实施例中,还包括对衬底的预处理步骤,所述预处理步骤为将衬底表面的有机物、金属离子及洗涤残留物洗净,干燥。
例如,首先利用电子清洗剂稀释液、乙醇、去离子水对衬底进行初步煮洗;
然后用氨水、双氧水和去离子水混合溶液超声清洗衬底表面的有机物,其中,氨水、双氧水和去离子水的体积比值为1:1:5;
用去离子水多次超声清洗去除洗涤残留物;
接着用浓盐酸、双氧水、去离子水溶液超声清除衬底表面的金属离子,其中,浓盐酸、双氧水、去离子水的体积比值为1:1:5;
利用去离子水反复超声清洗去除洗涤残留物;
最后将衬底用氮气吹干后放入真空保温箱保存待用。
需要说明的是,衬底使用超声清洗时间为20~30分钟,水温为60℃,超声清洗可以提高清洗效率。
如上述实施例所述的结晶化TiO2薄膜的制备方法制得的结晶化鱼鳞状TiO2薄膜的应用,所述结晶化鱼鳞状TiO2薄膜可用于制备光电器件。
一种使用上述实施例制得的结晶化鱼鳞状TiO2薄膜制备光电探测器件的方法,包括以下步骤:
在所述衬底含有TiO2薄膜的一面制备场效应晶体管的源极和漏级,所述源极和漏级之间的沟道宽度为10~75微米;电极材料为Au/Cr合金,Au,Ag或 Cu;
去除衬底另一面因步骤S2煅烧产生的氧化硅,镀Au/Cr合金,Au,Ag或 Cu作为栅极,即得所述光电探测器件。
参见图1其为基于本发明实施例制得的TiO2材料的MOSFET结构光电检测器件结构的模型。
参见图2,本发明另一实施例制得的光电探测器件表面的光学照片,由图可知源极(左边区域)、漏极(右边区域)的宽度为1000微米,中间是长度50微米的沟道区。
在一实施例中,利用化学腐蚀法去除衬底另一面因步骤S2煅烧产生的氧化硅。
本发明实施例由制得的结晶化鱼鳞状TiO2薄膜来制备光电器件,使得器件提升了光电探测的性能;让器件具备了栅极电压调控光谱响应的能力。
比较实验
比较例1:衬底的预处理:先对衬底SiO2/P-Si准备和清洗。首先利用电子清洗剂稀释液、乙醇、去离子水进行初步煮洗;然后用氨水、双氧水和去离子水按照1:1:5的比率形成混合溶液,将硅片放入混合液中进行超声清洗15分钟,之后用去离子水多次超声清洗去除洗涤残留物,直至洗完后的洗涤液用PH试纸检测为中性为止;接着用浓盐酸、双氧水、去离子水按照1:1:5的比率形成混合溶液,将硅片放入混合液中进行超声清洗15分钟,之后用去离子水多次超声清洗去除洗涤残留物,直至洗完后的洗涤液用PH试纸检测为中性为止;最后氮气吹干后放入真空保温箱保存待用。
将准备好的衬底有氧化层面朝上,放入原子层沉积反应腔体中,反应腔体中的温度维持在250℃,压强维持在11帕之间。使用氮气为负载气体,将异氧丙醇钛Ti{OCH(CH3)2}4加热至80℃,作为钛源。每一循环腔体里交替引入钛源和水蒸气各0.3秒,再去除前驱体30秒,由此进行不断循环,圈数为300圈,得到在衬底SiO2/P-Si上生长的TiO2,放入低于400℃的马弗炉中煅烧,在衬底表面制得非晶态的TiO2
将制得非晶态的TiO2的衬底,利用沟道为50微米掩膜板覆盖放入热蒸发炉中,在TiO2表面制备场效应晶体管的源极和漏级,电极材料采用厚度为100纳米的Au/Cr合金,利用化学腐蚀法去除衬底背面P-Si上因煅烧产生的薄层SiO2,在背面镀Ag材料作为栅极,从而制备成功绝缘栅调节型TiO2薄膜的紫外光电探测器件。光电流响应特性如图5所示,源极和漏级之间加的电压为3伏;栅极从-8V变化至8V,间隔为4V;光电流随光谱的响应。器件明显响应于紫外波段,但无明显栅压调控能力,电流的数量级在纳安量级不利于实际应用。
实验例:衬底的预处理:先对衬底SiO2/P-Si准备和清洗。首先利用电子清洗剂稀释液、乙醇、去离子水进行初步煮洗;然后用氨水、双氧水和去离子水按照1:1:5的比率形成混合溶液,将硅片放入混合液中进行超声清洗15分钟,之后用去离子水多次超声清洗去除洗涤残留物,直至洗完后的洗涤液用PH试纸检测为中性为止;接着用浓盐酸、双氧水、去离子水按照1:1:5的比率形成混合溶液,将硅片放入混合液中进行超声清洗15分钟,之后用去离子水多次超声清洗去除洗涤残留物,直至洗完后的洗涤液用PH试纸检测为中性为止;最后氮气吹干后放入真空保温箱保存待用。
将准备好的衬底有氧化层面朝上,放入原子层沉积反应腔体中,反应腔体中的温度维持在250℃,压强维持在11帕之间。使用氮气为负载气体,将异氧丙醇钛Ti{OCH(CH3)2}4加热至80℃,作为钛源。每一循环腔体里交替引入钛源和水蒸气各0.3秒,再去除前驱体30秒,由此进行不断循环,圈数为300圈,得到在衬底SiO2/P-Si上生长的TiO2
将生长有TiO2的SiO2/P-Si衬底,放在马弗炉中,在空气环境下煅烧,升温速度为每小时200℃,煅烧温度为700℃,保温时间为4小时,后自然冷却至室温,制得结晶化的TiO2薄膜;
将煅烧退火后的TiO2薄膜的衬底,利用沟道为50微米掩膜板覆盖放入热蒸发炉中,在TiO2薄膜表面制备场效应晶体管的源极和漏级,电极材料采用厚度为100纳米的Au/Cr合金,利用化学腐蚀法去除衬底背面P-Si上因煅烧产生的薄层SiO2,在背面镀Ag材料作为栅极,从而制备成功绝缘栅调节型TiO2薄膜的紫外光电探测器件。
光电流响应特性如图6所示,源极和漏级之间加的电压为3伏;栅极从-8V 变化至8V,间隔为4V;光电流随光谱的响应。器件明显响应于紫外波段(<350 纳米);且明显表现出栅压调控能力,在正的栅压调控下器件的探测能力得到了加强;电流的数量级在微安量级,对辅助电路的要求不高,利于小型化、可穿戴设备的制备。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
以上所述,为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (8)

1.一种光电探测器件的制备方法,其特征在于,所述光电探测器件含有TiO2薄膜,所述光电探测器件的制备方法包括以下步骤:
将煅烧退火后的TiO2薄膜的衬底,利用沟道为50微米掩膜板覆盖放入热蒸发炉中,在衬底含有TiO2薄膜的一面制备场效应晶体管的源极和漏级,所述源极和漏级之间的沟道宽度为50微米;电极材料为Au/Cr合金;
去除衬底另一面产生的氧化硅,再镀制栅极,即得所述光电探测器件;
所述TiO2薄膜的制备方法,包括以下步骤:
S1,以氮气作为负载气体,交替通入钛源和水蒸气,在衬底的氧化层上得到反应生成的原子层级别的TiO2,反应温度为250~300℃,反应压强为11帕;
S2,将S1得到的有TiO2的衬底在含氧气氛下煅烧,煅烧温度为700~800℃,即在衬底上制得结晶化鱼鳞状的TiO2薄膜;
其中,所述钛源为异氧丙醇钛,钛源的温度为80℃;
所述衬底为一面含有氧化硅层,另一面为Si的P型Si。
2.如权利要求1所述的光电探测器件的制备方法,其特征在于,所述步骤S1中,还包括去除前驱体的步骤,所述前驱体为异氧丙醇钛和水蒸气。
3.如权利要求2所述的光电探测器件的制备方法,其特征在于,所述步骤S1中,所述通入氮气作为负载气体的钛源和水蒸气的具体步骤为,
依次将通入钛源和水蒸气,分别去除前驱体作为一个循环,重复200~300个循环。
4.如权利要求3所述的光电探测器件的制备方法,其特征在于,每次循环氮气作为负载气体的钛源通入时间为0.1~0.5s,流速为5.0~10.0sccm。
5.如权利要求3所述的光电探测器件的制备方法,其特征在于,每次循环氮气作为负载气体的水蒸气通入时间为0.1~0.5s,流速为5.0~10.0sccm。
6.如权利要求3所述的光电探测器件的制备方法,其特征在于,每次循环去除前驱体时间为20~40s。
7.如权利要求1所述的光电探测器件的制备方法,其特征在于,还包括对衬底的预处理步骤,所述预处理步骤为将衬底表面的有机物、金属离子及洗涤残留物洗净,干燥。
8.一种光电探测器件,其特征在于,由权利要求1-7任一项所述的光电探测器件的制备方法制得。
CN201910611294.4A 2019-07-08 2019-07-08 TiO2薄膜的制备方法、光电探测器件及其制备方法 Active CN110364583B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910611294.4A CN110364583B (zh) 2019-07-08 2019-07-08 TiO2薄膜的制备方法、光电探测器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910611294.4A CN110364583B (zh) 2019-07-08 2019-07-08 TiO2薄膜的制备方法、光电探测器件及其制备方法

Publications (2)

Publication Number Publication Date
CN110364583A CN110364583A (zh) 2019-10-22
CN110364583B true CN110364583B (zh) 2021-04-09

Family

ID=68218606

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910611294.4A Active CN110364583B (zh) 2019-07-08 2019-07-08 TiO2薄膜的制备方法、光电探测器件及其制备方法

Country Status (1)

Country Link
CN (1) CN110364583B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220316044A1 (en) * 2021-03-24 2022-10-06 Kenichi Ohno Interfacial layer for optical film performance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103638915A (zh) * 2013-12-16 2014-03-19 复旦大学 一种高催化性质TiO2纳米粉末/多孔材料及其制备方法和应用
CN105118919A (zh) * 2015-07-23 2015-12-02 苏州大学 利用有序排列的二氧化钛小球构成的钙钛矿太阳能电池及其制备方法
CN105575964A (zh) * 2015-12-22 2016-05-11 苏州大学 结合太阳能电池和光探测器的自驱动光电探测体系及其制备方法
CN106268903A (zh) * 2016-07-22 2017-01-04 南京大学 一种基于ald技术的表面氮改性二氧化钛纳米颗粒的可见光催化剂的制备方法
CN109148640A (zh) * 2018-09-28 2019-01-04 河南大学 一种多孔有源层场效应紫外探测器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9331293B2 (en) * 2013-03-14 2016-05-03 Nutech Ventures Floating-gate transistor photodetector with light absorbing layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103638915A (zh) * 2013-12-16 2014-03-19 复旦大学 一种高催化性质TiO2纳米粉末/多孔材料及其制备方法和应用
CN105118919A (zh) * 2015-07-23 2015-12-02 苏州大学 利用有序排列的二氧化钛小球构成的钙钛矿太阳能电池及其制备方法
CN105575964A (zh) * 2015-12-22 2016-05-11 苏州大学 结合太阳能电池和光探测器的自驱动光电探测体系及其制备方法
CN106268903A (zh) * 2016-07-22 2017-01-04 南京大学 一种基于ald技术的表面氮改性二氧化钛纳米颗粒的可见光催化剂的制备方法
CN109148640A (zh) * 2018-09-28 2019-01-04 河南大学 一种多孔有源层场效应紫外探测器及其制备方法

Also Published As

Publication number Publication date
CN110364583A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
Dhanasekaran et al. Structural and optical properties of electrosynthesized ZnSe thin films
Selman et al. Fabrication and characterization of metal–semiconductor–metal ultraviolet photodetector based on rutile TiO2 nanorod
CN110299430B (zh) 一种半导体薄膜光电探测器及其制备方法
EP2517269A2 (en) A thin film photovoltaic cell, a method for manufacturing, and use
CN108461556A (zh) 制备高效czts太阳能电池的前驱体溶液及其电池制备与应用
Rosas-Laverde et al. Performance of graphene oxide-modified electrodeposited ZnO/Cu2O heterojunction solar cells
CN110364583B (zh) TiO2薄膜的制备方法、光电探测器件及其制备方法
KR101322681B1 (ko) 정전분무법에 의하여 제조된 czts 박막 및 그의 제조방법
Hussain et al. Length dependent performance of Cu2O/ZnO nanorods solar cells
Ramakrishnan et al. Oxygen partial pressure dependent sputtered copper oxide films for visible photodetectors
Lakhe et al. Development of CuInTe2 thin film solar cells by electrochemical route with low temperature (80° C) heat treatment procedure
Kathalingam et al. Studies on electrochemically deposited ZnO thin films
Chandran et al. A comparative study of physical and optical properties of CdZnS and CdNiS nanocrystalline films deposited by chemical bath method
Valdés et al. Low-cost 3D nanocomposite solar cells obtained by electrodeposition of CuInSe2
Pei et al. Low-temperature-crystallized Ga2O3 thin films and their TFT-type solar-blind photodetectors
CN113913794B (zh) 一种AgBiS2薄膜及其制备方法和应用
Mei et al. Fabrication and photoelectric properties of n-V2O5/p-GaAs heterojunction
KR20200099634A (ko) 육방정계 질화붕소 박막의 제조방법 및 그로부터 제조된 박막을 구비하는 광전소자
Zubia et al. Ordered CdTe/CdS arrays for high-performance solar cells
CN114959635A (zh) 一种硫化锡/二硫化钼混合维度范德华异质结的制备方法
Morris et al. Chemical bath deposition of thin film CdSe layers for use in Se alloyed CdTe solar cells
Juška et al. Transient absorption of copper selenide nanowires of different stoichiometry
RU2575972C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОПРЕОБРАЗОВАТЕЛЯ НА ОСНОВЕ GaSb
CN114262911A (zh) 一种用于光解水的全空间梯度掺杂光电极及制备方法
Cruz et al. Microstructural and optical properties of CSS and CBD-CdS thin films for photovoltaic solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant