CN110362116A - 基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法 - Google Patents

基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法 Download PDF

Info

Publication number
CN110362116A
CN110362116A CN201910723996.1A CN201910723996A CN110362116A CN 110362116 A CN110362116 A CN 110362116A CN 201910723996 A CN201910723996 A CN 201910723996A CN 110362116 A CN110362116 A CN 110362116A
Authority
CN
China
Prior art keywords
transformer
grid
bionic fish
minitype bionic
ant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910723996.1A
Other languages
English (en)
Inventor
王伟
张弛
刘力卿
张鑫
李隆基
何金
冯军基
马昊
季洪鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
State Grid Corp of China SGCC
State Grid Tianjin Electric Power Co Ltd
Electric Power Research Institute of State Grid Tianjin Electric Power Co Ltd
Original Assignee
Tsinghua University
State Grid Corp of China SGCC
State Grid Tianjin Electric Power Co Ltd
Electric Power Research Institute of State Grid Tianjin Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, State Grid Corp of China SGCC, State Grid Tianjin Electric Power Co Ltd, Electric Power Research Institute of State Grid Tianjin Electric Power Co Ltd filed Critical Tsinghua University
Priority to CN201910723996.1A priority Critical patent/CN110362116A/zh
Publication of CN110362116A publication Critical patent/CN110362116A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

本发明涉及一种基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法,其技术特点在于:包括以下步骤:步骤1、建立变压器内部环境三维栅格地图,将变压器三维环境地图信息进行初始化;步骤2、计算变压器栅格模型中的微型仿生鱼所占栅格的势场合力和变压器微型仿生鱼的运动方向与势场合力的角度差;步骤3、计算变压器微型仿生鱼下一步栅格的概率选择移动方向;步骤4、判断该当前栅格是否落入陷阱,若没有则将该当前栅格加入禁忌表,否则将蚂蚁重新放入起始点重新开始;步骤5、判读变压器微型机器鱼移动的当前位置是否到达步骤1中所述的目标位置。本发明使变压器微型仿生鱼不再盲目进行搜索,提高了算法搜索速度和全局寻优能力。

Description

基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法
技术领域
本发明属于机器人运动轨迹规划技术领域,涉及微型仿生鱼路径规划方法,尤其是一种基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法。
背景技术
变压器微型仿生鱼需要在大型变压器油中进行巡视,大型变压器体积巨大,仿生鱼在其内部游动的距离和时间较长,要求变压器仿生鱼在尽可能消耗较少能量的前提下游动至目标点,因此,如何在变压器中规划一条较短的无碰撞的路径,对微型仿生鱼的任务完成具有重要的意义。目前,国内外机器人运动轨迹规划策略多是基于二维空间,虽然部分二维规划策略可应用于三维空间,但对于三维空间的轨迹规划,存在占有存储空间大、计算复杂性等方面特有的难题,简单地将二维轨迹规划策略直接推广至三维空间并不可行。因此,如何制定一种存储空间小、计算简单的三维空间的运动轨迹规划方法是本领域技术人员亟欲解决的技术难题。
发明内容
本发明的目的在于克服现有技术的不足,提出一种设计合理、存储空间小、计算简单的基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法。
本发明解决其现实问题是采取以下技术方案实现的:
一种基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法,包括以下步骤:
步骤1、建立变压器内部环境三维栅格地图,将变压器三维环境地图信息进行初始化,包括变压器微型仿生鱼运动的起始位置和目标位置、人工势场法的初始化和改进蚁群算法的初始化;
步骤2、采用人工势场法计算变压器栅格模型中的微型仿生鱼所占栅格的势场合力,并计算变压器微型仿生鱼的运动方向与势场合力的角度差;
步骤3、采用改进蚁群算法结合当前栅格处势场力的方向和仿生鱼邻近栅格相关的信息素,计算变压器微型仿生鱼下一步栅格的概率选择移动方向;
步骤4、蚁群中的蚂蚁依据步骤3获得的概率选择移动方向移动至下一个栅格,并判断该当前栅格是否落入陷阱,若没有则将该当前栅格加入禁忌表,否则将蚂蚁重新放入起始点重新开始;
步骤5、判读变压器微型机器鱼移动的当前位置是否到达步骤1中所述的目标位置,如没有到达指定目标点的位置,则跳转至步骤2直至找到目标点,结束。
而且,所述步骤1获得的变压器内部环境三维栅格地图上,当变压器中的元件占用不满一个栅格时,可按照占用一个栅格来计算;
所述人工势场法的初始化包括:引力系数、斥力系数;
所述改进蚁群算法的初始化包括:蚁群中蚂蚁的数量、启发因子、期望启发因子、迭代次数、信息素挥发系数和禁忌表。
而且,所述步骤2采用人工势场法计算变压器栅格模型中的微型仿生鱼所占栅格的势场合力Fto(Pf)为:
其中,Fat(Pf)为目标点对微型仿生鱼所占栅格处产生的引力,Frej(Pf)为第j个障碍物栅格对微型仿生鱼所占栅格处产生的斥力,j=1,2,3….m,表示障碍物所占栅格的序列;
其中,引力Fat(Pf)、斥力Frej(Pf)为:
其中,(xg,yg,zg)是目标点Pg的三维坐标,(x,y,z)是微型仿生鱼位置Pf的三维坐标;分别是三维坐标系X轴、Y轴、Z轴的单位矢量;(xoj,yoj,zoj)是障碍物位置Poj的三维坐标;(x,y,z)是微型仿生鱼位置Pf的三维坐标;ρ0为障碍物的最大影响距离。
而且,所述步骤3中改进的蚁群算法为:依据步骤2中获得的人工势场合力Fto(Pf),参照蚁群算法的状态转移概率公式,改进蚁群算法,蚂蚁按照以下的公式选择下一个节点:
ηj=5/(dg-dj)
其中,表示单个蚂蚁从第i个栅格运动到相邻第j个栅格的概率;φij表示人工势场合力与栅格j方向的夹角;C表示栅格i周围的邻近栅格集合;ηj是改进的启发程度。
本发明的优点和有益效果:
本发明提供了一种基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法,利用人工势场法为本发明的蚁群算法路径寻优提高了“方向性”,使变压器微型仿生鱼不再盲目进行搜索,提高了算法搜索速度和全局寻优能力。
2、本发明将栅格法应用于变压器内部复杂环境的三维建模,可明显的减少存储的数据量、数据的更新和数据的搜索量;
3、本发明采用人工势场法计算变压器栅格模型中的微型仿生鱼所占栅格的势场合力,并计算变压器微型仿生鱼的运动方向与势场合力的角度差,通过参照变压器微型仿生鱼栅格处势场力的方向可为本发明的蚁群算法路径寻优提高了“方向性”,使变压器微型仿生鱼不再盲目进行搜索
4、本发明采用改进的蚁群算法的状态转移概率公式中除了引入人工势场合力Fto(Pf)方向外,还改进了启发程度ηj,ηj设为目标点与当前微型仿生鱼邻近栅格之间距离的倒数,此函数的作用是当微型仿生鱼靠近目标物时,增大目标物对微型仿生鱼的吸引力。进一步提高了蚁群算法路径寻优的“方向性”,进而提高了算法搜索速度和全局寻优能力。
附图说明
图1是本发明的一种基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法的流程图;
图2是本发明的变压器微型仿生鱼在变压器内部环境中的三维移动示意图。
具体实施方式
以下结合附图对本发明实施例作进一步详述:
一种基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法,如图1和图2所示,包括以下步骤:
步骤1、建立变压器内部环境三维栅格地图,将变压器三维环境地图信息进行初始化,包括变压器微型仿生鱼运动的起始位置和目标位置、人工势场法的初始化和改进蚁群算法的初始化;
所述步骤1获得的变压器内部环境三维栅格地图上,当变压器中的元件占用不满一个栅格时,可按照占用一个栅格来计算;
所述人工势场法的初始化包括:引力系数、斥力系数;
所述改进蚁群算法的初始化包括:蚁群中蚂蚁的数量、启发因子、期望启发因子、迭代次数、信息素挥发系数和禁忌表;
在本实施例中,将该变压器进行60×30×10栅格建模,当变压器中的元件占用不满一个栅格时,可按照占用一个栅格来计算,栅格环境信息用0和1表示,0表示无障碍栅格,1表示有障碍栅格;设置蚂蚁数目为M,启发因子为α,期望启发因子为β,迭代次数为N,信息素挥发系数为ρ,禁忌表Bi(蚂蚁i当前走过的栅格点)为设置蚂蚁的起始点和终止点;设置人工势场法的引力系数Kat和斥力系数Kre
步骤2、采用人工势场法计算变压器栅格模型中的微型仿生鱼所占栅格的势场合力,并计算变压器微型仿生鱼的运动方向与势场合力的角度差;
在本实施例中,所述步骤2采用人工势场法计算变压器栅格模型中的微型仿生鱼所占栅格的势场合力Fto(Pf)为:
其中,Fat(Pf)为目标点对微型仿生鱼所占栅格处产生的引力,Frej(Pf)为第j个障碍物栅格对微型仿生鱼所占栅格处产生的斥力,j=1,2,3….m,表示障碍物所占栅格的序列;
其中,引力Fat(Pf)、斥力Frej(Pf)为:
其中,(xg,yg,zg)是目标点Pg的三维坐标,(x,y,z)是微型仿生鱼位置Pf的三维坐标;分别是三维坐标系X轴、Y轴、Z轴的单位矢量;(xoj,yoj,zoj)是障碍物位置Poj的三维坐标;(x,y,z)是微型仿生鱼位置Pf的三维坐标;ρ0为障碍物的最大影响距离,是预先设定好的。
步骤3、采用改进蚁群算法结合当前栅格处势场力的方向和仿生鱼邻近栅格相关的信息素,计算变压器微型仿生鱼下一步栅格的概率选择移动方向;
所述步骤3中改进的蚁群算法为:依据步骤2中获得的人工势场合力Fto(Pf),参照蚁群算法的状态转移概率公式,改进蚁群算法,蚂蚁按照以下的公式选择下一个节点:
ηj=5/(dg-dj)
其中,表示单个蚂蚁从第i个栅格运动到相邻第j个栅格的概率;φij表示人工势场合力与栅格j方向的夹角;C表示栅格i周围的邻近栅格集合;ηj是改进的启发程度,设为目标点与当前微型仿生鱼邻近栅格之间距离的倒数,此函数的作用是当微型仿生鱼靠近目标物时,增大目标物对微型仿生鱼的吸引力。
步骤4、蚁群中的蚂蚁依据步骤3获得的概率选择移动方向移动至下一个栅格,并判断该当前栅格是否落入陷阱,若没有则将该当前栅格加入禁忌表,否则将蚂蚁重新放入起始点重新开始;
步骤5、判读变压器微型机器鱼移动的当前位置是否到达步骤1中所述的目标位置,如没有到达指定目标点的位置,则跳转至步骤2直至找到目标点,结束。
如图2所示,基于所建立变压器的内部环境模型,主要包括变压器外壳和绕组,微型机器鱼能够在起始点与目标点之间规划出一条无碰撞最优移动路径。
需要强调的是,本发明所述实施例是说明性的,而不是限定性的,因此本发明包括并不限于具体实施方式中所述实施例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。

Claims (4)

1.一种基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法,其特征在于:包括以下步骤:
步骤1、建立变压器内部环境三维栅格地图,将变压器三维环境地图信息进行初始化,包括变压器微型仿生鱼运动的起始位置和目标位置、人工势场法的初始化和改进蚁群算法的初始化;
步骤2、采用人工势场法计算变压器栅格模型中的微型仿生鱼所占栅格的势场合力,并计算变压器微型仿生鱼的运动方向与势场合力的角度差;
步骤3、采用改进蚁群算法结合当前栅格处势场力的方向和仿生鱼邻近栅格相关的信息素,计算变压器微型仿生鱼下一步栅格的概率选择移动方向;
步骤4、蚁群中的蚂蚁依据步骤3获得的概率选择移动方向移动至下一个栅格,并判断该当前栅格是否落入陷阱,若没有则将该当前栅格加入禁忌表,否则将蚂蚁重新放入起始点重新开始;
步骤5、判读变压器微型机器鱼移动的当前位置是否到达步骤1中所述的目标位置,如没有到达指定目标点的位置,则跳转至步骤2直至找到目标点,结束。
2.根据权利要求1所述的一种基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法,其特征在于:所述步骤1获得的变压器内部环境三维栅格地图上,当变压器中的元件占用不满一个栅格时,可按照占用一个栅格来计算;
所述人工势场法的初始化包括:引力系数、斥力系数;
所述改进蚁群算法的初始化包括:蚁群中蚂蚁的数量、启发因子、期望启发因子、迭代次数、信息素挥发系数和禁忌表。
3.根据权利要求1所述的一种基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法,其特征在于:所述步骤2采用人工势场法计算变压器栅格模型中的微型仿生鱼所占栅格的势场合力Fto(Pf)为:
其中,Fat(Pf)为目标点对微型仿生鱼所占栅格处产生的引力,Frej(Pf)为第j个障碍物栅格对微型仿生鱼所占栅格处产生的斥力,j=1,2,3….m,表示障碍物所占栅格的序列;
其中,引力Fat(Pf)、斥力Frej(Pf)为:
其中,(xg,yg,zg)是目标点Pg的三维坐标,(x,y,z)是微型仿生鱼位置Pf的三维坐标;分别是三维坐标系X轴、Y轴、Z轴的单位矢量;(xoj,yoj,zoj)是障碍物位置Poj的三维坐标;(x,y,z)是微型仿生鱼位置Pf的三维坐标;ρ0为障碍物的最大影响距离。
4.根据权利要求1所述的一种基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法,其特征在于:所述步骤3中改进的蚁群算法为:依据步骤2中获得的人工势场合力Fto(Pf),参照蚁群算法的状态转移概率公式,改进蚁群算法,蚂蚁按照以下的公式选择下一个节点:
ηj=5/(dg-dj)
其中,表示单个蚂蚁从第i个栅格运动到相邻第j个栅格的概率;φij表示人工势场合力与栅格j方向的夹角;C表示栅格i周围的邻近栅格集合;ηj是改进的启发程度。
CN201910723996.1A 2019-08-07 2019-08-07 基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法 Pending CN110362116A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910723996.1A CN110362116A (zh) 2019-08-07 2019-08-07 基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910723996.1A CN110362116A (zh) 2019-08-07 2019-08-07 基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法

Publications (1)

Publication Number Publication Date
CN110362116A true CN110362116A (zh) 2019-10-22

Family

ID=68222116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910723996.1A Pending CN110362116A (zh) 2019-08-07 2019-08-07 基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法

Country Status (1)

Country Link
CN (1) CN110362116A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638722A (zh) * 2020-05-12 2020-09-08 国网天津市电力公司电力科学研究院 一种油浸式变压器微型仿生鱼姿态控制方法
CN117288209A (zh) * 2023-11-27 2023-12-26 南昌工程学院 一种变压器声级测定方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107917711A (zh) * 2017-11-14 2018-04-17 重庆邮电大学 一种基于优化混合蚁群算法的机器人路径规划算法
CN108563239A (zh) * 2018-06-29 2018-09-21 电子科技大学 一种基于势场蚁群算法的无人机航迹规划方法
CN109282815A (zh) * 2018-09-13 2019-01-29 天津西青区瑞博生物科技有限公司 一种动态环境下基于蚁群算法的移动机器人路径规划方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107917711A (zh) * 2017-11-14 2018-04-17 重庆邮电大学 一种基于优化混合蚁群算法的机器人路径规划算法
CN108563239A (zh) * 2018-06-29 2018-09-21 电子科技大学 一种基于势场蚁群算法的无人机航迹规划方法
CN109282815A (zh) * 2018-09-13 2019-01-29 天津西青区瑞博生物科技有限公司 一种动态环境下基于蚁群算法的移动机器人路径规划方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘力卿: "油浸式变压器微型仿生鱼全局路径规划策略", 《科学技术与工程》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638722A (zh) * 2020-05-12 2020-09-08 国网天津市电力公司电力科学研究院 一种油浸式变压器微型仿生鱼姿态控制方法
CN111638722B (zh) * 2020-05-12 2023-04-28 国网天津市电力公司电力科学研究院 一种油浸式变压器微型仿生鱼姿态控制方法
CN117288209A (zh) * 2023-11-27 2023-12-26 南昌工程学院 一种变压器声级测定方法及系统
CN117288209B (zh) * 2023-11-27 2024-01-30 南昌工程学院 一种变压器声级测定方法及系统

Similar Documents

Publication Publication Date Title
CN109945873A (zh) 一种用于室内移动机器人运动控制的混合路径规划方法
Liu et al. Dynamic path planning for mobile robot based on improved genetic algorithm
CN108775902A (zh) 基于障碍物虚拟膨胀的伴随机器人路径规划方法及系统
CN108896052A (zh) 一种基于动态复杂环境下的移动机器人平滑路径规划方法
CN109341707A (zh) 未知环境下移动机器人三维地图构建方法
CN109059924A (zh) 基于a*算法的伴随机器人增量路径规划方法及系统
CN103679264B (zh) 基于人工鱼群算法的人群疏散路径规划方法
CN110220525A (zh) 一种基于势场蚁群算法的路径规划方法
CN110375761A (zh) 基于增强蚁群优化算法的无人驾驶车辆路径规划方法
CN105467838B (zh) 一种随机有限集框架下的同步定位与地图构建方法
CN110362116A (zh) 基于改进蚁群算法的变压器微型仿生鱼全局路径规划方法
CN110320930A (zh) 基于Voronoi图的多无人机编队队形可靠变换方法
CN106792750B (zh) 一种基于导向粒子群算法的节点部署方法
CN106931970A (zh) 一种动态环境中机器人安全自主规划导航方法
CN112666957A (zh) 一种基于改进蚁群算法的水下机器人路径规划方法
CN104548598A (zh) 一种虚拟现实场景中寻路的方法
CN110006434B (zh) 温跃层海域中基于蚁群算法避障的水下滑翔机路径规划方法
CN113296520B (zh) 融合a*与改进灰狼算法的巡检机器人路径规划方法
CN110045738A (zh) 基于蚁群算法和Maklink图的机器人路径规划方法
CN110514567B (zh) 基于信息熵的气体源搜索方法
CN107992040A (zh) 基于地图栅格与qpso算法结合的机器人路径规划方法
CN109269518A (zh) 一种基于智能体的可移动装置有限空间路径生成方法
CN109885082A (zh) 一种基于任务驱动下的无人机航迹规划的方法
CN113703450A (zh) 基于平滑因素改进蚁群算法的移动机器人路径规划方法
CN108445894A (zh) 一种考虑无人艇运动性能的二次路径规划方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191022

RJ01 Rejection of invention patent application after publication